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I
n this lecture note we discuss meth-
ods to improve the accuracy of unbi-
ased estimators used in many signal
processing problems. Our approach
is based on introducing a bias as a

means of reducing the mean-squared
error (MSE). The important aspect of our
framework is that the reduction in MSE
is guaranteed for all values of the
unknown parameter.

It is customary in signal processing
to seek unbiased estimators that per-
form well. This is typically accomplished
by determining the minimum variance
unbiased (MVU) estimator, using the
theory of sufficient statistics or the
attainment of the Cramér-Rao lower
bound [1]. A more desirable estimator,
however, is one that minimizes the MSE,
which is a direct measure of estimation
error. In these notes we revisit the prob-
lem of determining a minimum MSE
(MMSE) estimator for a parameter that
is deterministic but unknown. We indi-
cate how biased estimators can be found
that outperform the MVU estimator in
terms of MSE.

RELEVANCE
Biased estimation is already a main-
stream approach [2]–[6]. The importance
of this subject is that estimators can be
derived that outperform existing
approaches especially for short data
records and/or low signal-to-noise ratios
(SNRs). Applications include the design
of estimation algorithms for sonar, radar,
and communications as well as a myriad
of other disciplines that rely heavily on
precise measurement of parameters.

Courses that may benefit from this
lecture note include statistical signal
processing, digital communications,

information theory, and modern con-
trol theory.

PREREQUISITES
The reader is assumed to be familiar with
basic classical estimation theory as it is
presented in [1].

PROBLEM STATEMENT
The determination of an MVU estimator
of a deterministic scalar parameter θ is a
pervasive goal in signal processing appli-
cations. However, in some cases an unbi-
ased estimator may not exist [1], or the
unbiasedness requirement can produce
nonsensical results [7]. But perhaps the
most important objection to the con-
straint of unbiasedness is that it pro-
duces estimators θ̂ whose optimality is
based on the difference between θ̂ and its
average value, not θ̂ and the true value
θ , as measured by the MSE. It is the lat-
ter that is actually of prime importance
in an estimation problem. We next indi-
cate how one can determine and imple-
ment estimators of deterministic
parameters with smaller MSE than the
MVU estimator for all values of θ . The
key to be able to reduce the MSE is by
scaling an unbiased estimator by a num-
ber between zero and one, producing a
so-called “shrinkage estimator.”

Suppose we wish to estimate the
value of a deterministic scalar parameter
θ based on the available data
{x1, x2, . . . , xN}. It is assumed that the
MVU estimator θ̂u and its variance
var(θ̂u) = MSE(θ̂u) are known. To
reduce the MSE, we will bias the MVU
estimator by scaling it towards zero [3],
[8]. Specifically, the biased estimator is
given by

θ̂b = (1 + m)θ̂u , (1)

where m will be chosen to minimize the
MSE E [(θ̂b − θ)2]. The MSE can be writ-
ten as the sum of the variance and the
squared bias by

MSE(θ̂b) = E [(θ̂b − θ)2]

= var(θ̂b) + (E [θ̂b] − θ)2 .

(2)

Using the fact that E [θ̂u] = θ , the MSE
of θ̂b becomes

MSE(θ̂b) = (1 + m)2var(θ̂u) + m2θ2 .

(3)

Our goal is to choose m so that
MSE(θ̂b) is less than the MSE of the
original unbiased estimator θ̂u, which is
its variance var(θ̂u), for all values of θ .
(For clarity, we have begun our discus-
sion with the scalar case; the results are
generalized to multiple parameters later
in this column.)

CAN A SCALING FACTOR BE FOUND?
To reduce the MSE we see immediately
from (3) that the variance component
must be reduced more than the squared-
bias component is increased. The MSE is
plotted in Figure 1 versus m over the
range −1 ≤ m < 0 (for which the vari-
ance is decreased). Evidently, there is a
value of m, which we denote by m∗, that
minimizes the overall MSE, trading off
an increase in bias for a decrease in vari-
ance. The key issue is whether the opti-
mal m = m∗ depends on the unknown
value of θ . If it does, then the biased esti-
mator θ̂b will not be realizable and can-
not be implemented. However, even in
this case it is still sometimes possible to
find an m for which the MSE can be
reduced, as we will see shortly. We next
examine how to determine m∗ to see if it
is dependent on θ . Digital Object Identifier 10.1109/MSP.2008.918027



FINDING THE OPTIMAL 
SCALING FACTOR
The value of m that minimizes the
MSE given by (3) is easily found.
Differentiating the MSE, which is
quadratic in m, with respect to m and
setting the result equal to zero pro-
duces the optimal value as

m∗ = − var(θ̂u)

var(θ̂u) + θ2

= − 1

1 + θ2/var(θ̂u)
(4)

which unfortunately appears to depend
on θ . However, if 

ρ = θ2

var(θ̂u)
(5)

is independent of θ , then so is m∗. The
latter occurs when var(θ̂u) is proportion-
al to θ2. 

EXAMPLE 1—SCALE PARAMETER
FOR EXPONENTIAL PDF
Assume that we have N independent and
identically distributed (IID) observations
of an exponential random variable with
probability density function (PDF)
pX(x) = (1/θ) exp(−x/θ) for x ≥ 0 and
0 otherwise, where θ > 0. It is well
known that the MVU estimator of θ is the
sample mean θ̂u = x̄ = (1/N)

∑N
i=1 xi

with a variance of var(θ̂u) = θ2/N .
Clearly, the variance of the unbiased
estimator is proportional to θ2 . As a
result, the MMSE estimator can be
real ized.  From (4)  we have  with
m∗ = −1/(1 + N )

θ̂b = (1 + m∗)θ̂u

=
(

1 − 1
1 + N

)
θ̂u

= N
N + 1

x̄

= 1
N + 1

N∑
i =1

xi .

The MSE of θ̂b is given by (3) and is
equal to 

MSE(θ̂b) =
(

N
N + 1

)2
θ2

N

+ 1
(N + 1)2 θ2

= θ2

N + 1

<
θ2

N
= var(θ̂u)

= MSE(θ̂u) .

The greatest reduction in MSE occurs for
short data record lengths.

We next examine two cases of increas-
ing complexity in which the variance is
not proportional to θ2. First var(θ̂u) is
assumed to be constant with θ and then
the more general problem in which
var(θ̂u) may depend on θ in an arbitrary
manner is described. 

FINDING A SCALING FACTOR—
VARIANCE OF MVU ESTIMATOR 
IS CONSTANT
We now assume that var(θ̂u) = V, a con-
stant. Then ρ = θ2/V is dependent on θ

and hence, θ̂b cannot be implemented.
Nonetheless it may still be possible to
find a biased estimator that achieves a
lower MSE than the MVU estimator. To
do so we require that θ be restricted to a
given range of values. In particular, sup-
pose that |θ | ≤ θ0 for some θ0 > 0, a rea-
sonable assumption for many practical
problems. Then from (3) we have that
MSE(θ̂b) = (1 + m)2 V + m2θ2 , which
is shown in Figure 2 as a function of θ ,
along with MSE(θ̂u). It is clear that if we
can find an m so that MSE(θ̂b) for
θ = θ0 is less than MSE(θ̂u), then the
MSE of the biased estimator will be less
than that of the unbiased estimated for
all |θ | ≤ θ0 . Hence, we would like to
choose an m so that 

MSE(θ̂b) = (1 + m)2 V + m2θ2
0 < V

(6)

for all |θ | ≤ θ0 or equivalently

max
|θ |≤θ0

{MSE(θ̂b) − MSE(θ̂u)} =

(1 + m)2 V + m2θ2
0 − V < 0 .

(7)

This produces the allowable range of m
to be

1 + m >
θ2

0 − V

θ2
0 + V

. (8)

Any estimator of the form (1) with m sat-
isfying (8) will have lower MSE than the
unbiased estimator for all |θ | ≤ θ0 . As
our goal is to reduce the MSE as much
as possible, we choose m to minimize
(1 + m)2 V + m2θ2

0 . Hence, again differ-
entiating (6) and setting it equal to zero
produces 

1 + m∗ = θ2
0

θ2
0 + V

, (9)

which is easily seen to satisfy (8). Thus,
the biased estimator that minimizes the
maximum MSE over |θ | ≤ θ0 is

θ̂b = (1 + m∗)θ̂u = θ2
0

θ2
0 + V

x̄ . (10)
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[FIG1] Trading off bias for variance in reduction of MSE. The biased estimator is
θ̂b = (1 + m)θ̂u, which is a scaled version of the unbiased MVU estimator.
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Interestingly, as θ0 → ∞, the unbiased
and biased estimators coincide. Using (3)
and (9) the resulting minimum MSE can
be shown to be

MSE(θ̂b) = V

[
θ4

0 + θ2 V

(θ2
0 + V)2

]
. (11)

For |θ | ≤ θ0 the term in brackets is less
than or equal to θ2

0 /(θ2
0 + V ). Thus, a

sizable reduction in the MSE results if
θ2

0 /V � 1. 

EXAMPLE 2—MEAN OF 
GAUSSIAN PDF
As a specific example, suppose we have N
IID observations of X , which have the
Gaussian PDF pX(x) = (1/

√
2πσ 2)

exp [−(x − θ)2/(2σ 2)] . Our goal is to
estimate the mean θ . The MVU estimator
of θ is the sample mean θ̂u = x̄, whose
variance is the constant V = σ 2/N. Our
previous results therefore apply and the
MSE can be reduced by using a biased
estimator. From (10) it is

θ̂b = (1 + m∗)θ̂u = θ2
0

θ2
0 + σ 2/N

x̄ .

(12)

The condition for a sizable reduction in
MSE becomes θ2

0 /(σ 2/N) � 1, which is
equivalent to a short data record and/or
low SNR.

FINDING A SCALING FACTOR—
VARIANCE OF MVU ESTIMATOR IS
DEPENDENT ON θ
The preceding section illustrates that
even when the optimal m of (4) depends
on θ , we may still be able to reduce the
MSE uniformly over all allowable θ by
employing a minimax strategy. In
essence, we chose an m that minimized
the MSE for a given value of the parame-
ter θ = θ0 and argued that the MSE
would also be reduced for all other possi-
ble values of θ . The value of θ chosen was
the one that maximized the MSE, i.e., a
worst case. Because of the subsequent
minimization over m this is a minimax
approach. To state these results more
generally, suppose we have an MVU esti-
mator θ̂u of θ with MSE(θ̂u) = var(θ̂u),
which now may depend on θ in a general

fashion. To reduce the MSE of θ̂u, we
consider biased estimators of the form
(1), where we choose m so that
MSE(θ̂b) < MSE(θ̂u) for all θ , and such
that the reduction in MSE is as large as
possible. Mathematically these goals can
be achieved by selecting m∗ to minimize
the largest (negative) difference between
the two approaches [8] as

m∗ = arg min
m

max
θ

{MSE(θ̂b)

− MSE(θ̂u)} . (13)

The solution of (13) may be
obtained by using any one of the many
known iterative algorithms for mini-
max problems. An important observa-
tion is that even in the absence of
constraints on θ , a biased estimator
can yield reduced MSE over an unbi-
ased approach. If we have prior deter-
ministic knowledge on θ of the form
θ ∈ U , where U is a given constraint
set, then we can readily incorporate it
into our framework by restricting the
inner maximization in (13) over the
corresponding set. An example follows
with others contained in [8].

EXAMPLE 3: PARAMETER IN THE
MVU ESTIMATOR VARIANCE
Assume that −∞ < θ < ∞ and
var(θ̂u) = a + bθ2 for some a, b > 0.
The variance is not proportional to θ2,
which negates the approach in Example
1. Also, var(θ̂u) depends on θ in such a
way that it is unbounded (no parameter
constraints here) so that the approach in
Example 2 does not apply. Using convex

analysis tools, however, (13) can be
solved explicitly resulting in [8]

m∗ = max
(

− 2b
b + 1

,−1
)

.

The corresponding biased estimator is

θ̂b =
{ 1−b

1+b θ̂u, b < 1
0, b ≥ 1 .

It can be shown that θ̂b has lower MSE
than θ̂u for all values of −∞ < θ < ∞. 

EXTENSION TO MULTIPLE
PARAMETERS
All of the results presented so far extend
naturally to estimation of a vector
parameter θθθ . Assuming an MVU estima-
tor θ̂θθu exists, we can follow the same
approach presented in the previous sec-
tions and seek a biased estimator
θ̂θθb = (I + M)θ̂θθu whose total MSE, given
by E [‖θ̂θθb − θθθ‖2], is smaller than that of
θ̂θθu. To design an appropriate matrix M
we solve the vector equivalent of (13)

M∗ = arg min
M

max
θ∈U

{MSE(θ̂θθb)

− MSE(θ̂θθu)} , (14)

where U is a possible constraint set on θθθ ,
although there need not be any con-
straints, and

MSE(θ̂θθb) = E [‖θ̂θθb) − θθθ‖2]

= Tr((I + M)C
θ̂u

(I + M)T)

+ θθθ TMTMθθθ (15)

[FIG2] Choose θ = θ0 to guarantee that the MSE will be reduced for all other values of θ.
A possible value of m is m2 but not m1 since for the latter the MSE is not uniformly
reduced.

V = var(θu) = MSE(θu)
MSE(θb)

m1

m2

θ
−θ0 θ0

∧
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with C
θ̂u

= E[(θ̂θθu−E[θ̂θθu])(θ̂θθu − E[θ̂θθu])T]
denoting the covariance matrix of θ̂θθu, and
MSE(θ̂θθu) = var(θ̂θθu) = Tr(C

θ̂u
) being the

sum of the variances of the elements of
θ̂θθu. Note that the first term of (15) is the
variance term and the second is the
squared-bias term. 

EXAMPLE 4—VECTOR AMPLITUDE
PARAMETER OF LINEAR 
GAUSSIAN MODEL
Consider the linear Gaussian model in
which we seek to estimate a p× 1
parameter vector θθθ based on an N × 1
observation vector x, which are related
through the linear model

x = Hθθθ + w.

Here H is a known N × p model matrix
with N > p and full column rank, and
w is a zero-mean Gaussian random
vector with covariance matrix C = σ 2I.
This is an extension of Example 2 to
the vector setting. The MVU estimator
is given by the well  known least-
squares solution [1]

θ̂θθu = (HTH)−1HT x (16)

with covariance matrix C
θ̂u

=
σ 2(HTH)−1.

To reduce the MSE of θ̂θθu suppose that
θθθ is restricted to lie in a sphere of the form
U = {θθθ : ‖θθθ‖2 ≤ θ2

0 } for some known
positive scalar θ2

0 > 0. Solving (14) with
the MSE given by (15) yields the biased
estimator [9]

θ̂θθb = θ2
0

θ2
0 + Tr((HTC−1H)−1)

θ̂θθu . (17)

Note that if H = [1 1 . . . 1]T, then (17)
reduces to (12). As an example of the
improvement  a f forded by  θ̂θθb ,  in
Figure 3 we compare its MSE to that
of θ̂θθu of (16) as a function of the SNR,
def ined by  10 log10 ‖θθθ‖2/σ 2 .  Here
θθθ = [1 1 . . . 1]T, θ2

0 = 4 and HTH was
generated as a realization of a ran-
dom matrix. As can be seen, allowing
bias in the estimator improves the
performance significantly.

WHAT WE HAVE LEARNED
In this lecture note we have illustrated
some of the approaches to determining
a biased estimator that exhibits smaller
MSE than the “optimal” MVU solution
for all feasible values of the unknown
parameters. Although we have always
assumed that the MVU estimator exists
and that it is known along with its vari-

ance, there are means to derive good
biased estimators that rely on bounds
such as the Cramér-Rao lower bound.
Hence, a practitioner may well be able
to determine good biased estimators
when the MVU estimator does not exist
or cannot be found. The improvement
in performance is greatest for short
data records and/or low SNRs.
Fortuitously, this is exactly the regime
in which most signal processing algo-
rithms must operate.
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[FIG3] MSE in estimating θ in a linear Gaussian model as a function of the SNR using the
MVU estimator (16) and the biased estimator (17).
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