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Least-Squares Estimator

Yonina C. Eldar, Senior Member, IEEE

Abstract—Since the seminal work of Stein in the 1950s, there
has been continuing research devoted to improving the total mean-
squared error (MSE) of the least-squares (LS) estimator in the
linear regression model. However, a drawback of these methods is
that although they improve the total MSE, they do so at the expense
of increasing the MSE of some of the individual signal components.
Here we consider a framework for developing linear estimators
that outperform the LS strategy over bounded norm signals, under
all weighted MSE measures. This guarantees, for example, that both
the total MSE and the MSE of each of the elements will be smaller
than that resulting from the LS approach. We begin by deriving an
easily verifiable condition on a linear method that ensures LS dom-
ination for every weighted MSE. We then suggest a minimax esti-
mator that minimizes the worst-case MSE over all weighting ma-
trices and bounded norm signals subject to the universal weighted
MSE domination constraint.

Index Terms—Admissible estimators, dominating estimators,
linear estimation, weighted minimax MSE estimation.

I. INTRODUCTION

L INEAR regression, or estimation in linear models, has
been studied extensively since the pioneering work of

Gauss on least-squares (LS) fitting [1]. One of the reasons for
the broad interest in this problem is its applicability to a wide
host of applications in diverse areas ranging from communica-
tion and economics to seismology and control.

The celebrated LS method is aimed at estimating a determin-
istic parameter vector from noisy observations
where is a known model matrix and is a perturbation vector.
While typically in an estimation context the goal is to construct
an estimate that is close in some sense to , the LS design
criterion is the data error between the estimated data

and . Evidently, this approach is deterministic in
nature: the objective is deterministic, and no prior statistical in-
formation is assumed on or . Nonetheless, if the covariance
of the noise is known, then it can be incorporated into the data
error in the form of a weighting matrix, such that the resulting
weighted LS estimate minimizes the variance among all unbi-
ased methods. In the past 30 years attempts have been made to
develop linear estimators that may be biased but closer to the
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true parameter [2]–[7]. By now it is well established that even
though unbiasedness may be appealing intuitively, it does not
necessarily lead to a small estimation error [8].

An alternative approach to account for the noise covariance is
to define a statistical objective which directly measures the esti-
mation error . A common design criterion is the total mean-
squared error (MSE) given by . Unfortunately,
since is deterministic, this measure depends in general on
and therefore cannot be minimized. One way to eliminate the
signal dependency is by restricting attention to linear unbiased
methods, resulting in the LS design. A different strategy is to as-
sume that is norm-bounded, and then minimize the worst-case
MSE. This leads to the minimax trace MSE (MXTM) method,
which was first suggested in [9] and then later extended in [10],
[11]. A nice feature of this approach is that the total MSE of the
MXTM estimator can be shown to be smaller than that of the
LS method, for all values of whose norm is smaller than the
given bound [11]–[13]. Thus, the MXTM strategy dominates LS
in the total MSE sense.

The concept of domination leads to a partial ordering among
methods [14]. An estimator whose total MSE is no larger
than that of a different estimate for all values of on a given
set and strictly smaller for some is said to dominate on
this set. An estimate is admissible if it is not dominated by
any other strategy. The theory of LS domination has been well
developed since the seminal work of Stein and James [15], [16],
in which they showed that it is possible to construct a nonlinear
estimator dominating the LS approach in a total MSE sense.
Various modifications of the James–Stein method have since
been developed that are applicable to the general linear model
considered here [17]–[21].

One of the known shortcomings of the James–Stein concept
is that it reduces the total MSE at the expense of an increase
in the individual component MSEs. In the simplest setting in
which and the noise is white with variance equal to 1,
the MSE of an element of can be as large as , where is
the signal dimension [22], [23]. Consequently, although the total
MSE may be small, specific elements may be severely miss-esti-
mated. This drawback was formulated nicely by Lehmann [14]:
“No one wants his or her blood test or Pap smear subjected to
the possibility of large errors in order to improve a laboratory’s
average performance.”

Componentwise MSE is an example of a weighted MSE mea-
sure where different weights are given to the individual signal
elements to be estimated. A desirable property we may wish
our estimator to possess is that it has “good” performance with
different choices of weighting. For example, we may want our
estimate to have low total MSE while still maintaining small
componentwise MSE. Therefore, we consider a broader notion
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of domination: our goal is to characterize and design estimators
that dominate the LS for every possible choice of weighted MSE.

The notion of local weighted-MSE superiority has been in-
vestigating previously in the statistical literature, where domi-
nation is required only for specific values of (see, e.g., [24],
[25], and references therein). However, since is not known,
the fact that one estimator may be better than another for some

does not help us select between estimators. Here, we focus on
domination for all feasible values of and, in contrast to pre-
vious approaches, we develop conditions that are independent
of . This is a much stronger and more useful notion of superi-
ority as it allows to decisively choose between strategies.

Unfortunately, it is impossible to dominate the LS method
componentwise over the entire space [14]. Instead, several
strategies have been proposed that dominate LS in the total
MSE sense, and have better componentwise behavior than the
James-Stein approach [23], [26]. However, as we show in this
paper, if we restrict our attention to norm-bounded signals

, then we can design linear estimates that dominate
LS simultaneously under all weighted MSE measures. Mathe-
matically, this requires that the MSE matrix of our estimate
is smaller or equal (in a matrix sense) than the MSE matrix of
LS. Focusing on linear estimates, we derive an easily verifiable
necessary and sufficient condition such that dominates LS in
a matrix sense for all . As we show, there is a large
class of methods with this property. An important question is
how to select a “good” strategy from all dominating possibili-
ties. To this end, we suggest a minimax matrix MSE (MXMM)
method that minimizes the worst-case weighted MSE among
all weighting matrices and feasible vectors subject to the
domination constraint. The MXMM solution dominates LS
under all weighted MSE criteria, and at the same time has
small worst-case MSE. As we show, this approach has the
additional desirable property that it is admissible in a weighted
MSE sense, meaning that there is no other linear estimator with
smaller MSE matrix.

We begin in Section II by describing our problem and the
shortcomings of the MXTM method. A necessary and suffi-
cient domination condition in the matrix sense is derived in
Section III. In Section IV we develop the MXMM estimate and
show that it can be found as a solution to a semidefinite program-
ming problem (SDP) [27], [28]. We then consider, in Section V,
a broad class of settings in which a more explicit solution can
be found which depends on a single parameter. In Section VII,
we compare our approach with the MXTM and LS strategies.

II. MSE MATRIX DOMINATION OF LEAST-SQUARES

We denote vectors in by boldface lowercase letters and
matrices in by boldface uppercase letters. The th ele-
ment of a vector is represented by and the th element
of a matrix by . The identity matrix of appropriate di-
mension is written as is the Hermitian conjugate of the
corresponding matrix, is an estimated vector or matrix, and

is an diagonal matrix with diagonal
elements . The vector has 1 in the th component and 0 ev-
erywhere else. For two Hermitian matrices and

means that is positive definite (semidefinite).

The largest and smallest eigenvalues of a Hermitian matrix
are denoted and , respectively. The weighted
norm of a vector is defined as .

A. Estimation Problem

We treat the problem of estimating a deterministic parameter
vector from observations which are related
through the linear model

(1)

Here is a known model matrix with full rank , and
is a zero-mean random vector with covariance . We

assume that the weighted norm of is bounded so that
for some and scalar . This constraint is used

in many different statistical methods (see, e.g., [4], [9], [29]). In
practice, if is unknown, then we can estimate it from the data
using the LS estimator [21]; an example is given in Section VII.

We restrict our attention to linear estimators of of the form
for some matrix . A popular measure of

estimator performance is the total MSE defined by

(2)

where , or , is the MSE matrix

(3)

Using the model (1), it is easy to show that

(4)

More generally, we may consider a weighted total MSE

(5)

for some weighting matrix so that different weights are
assigned to the individual errors. For example, choosing

results in , i.e., the MSE of
the th component.

For a given choice of , a possible design criterion is to min-
imize the weighted MSE (5). Unfortunately, this measure de-
pends in general on , which is unknown, and therefore cannot
be minimized. The dependency of the MSE on can be elim-
inated by requiring that , or equivalently, restricting
attention to unbiased estimators. When , minimizing the
resulting MSE leads to the celebrated LS estimator

(6)

However, this does not mean that the residual MSE is small. In
fact, it is well known that the MSE of the LS method can be
large in many estimation problems.

To directly control the MSE, a minimax total MSE (MXTM)
approach was suggested in [10], in which the worst-case total
MSE is minimized over . It was then shown in [12]
that the MXTM strategy dominates LS in terms of total MSE,
meaning that its total MSE is smaller than that of LS for all
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feasible values of . Furthermore, this estimator is total MSE
admissible, namely, there is no other linear method with smaller
total MSE for all [11]. Although the MXTM estimator has
smaller total MSE, the MSE of an individual component may
be larger than that resulting from the LS method. To illustrate
this point, suppose that . In this case the MXTM estimator
is given by

(7)

where we denoted

(8)

The MSE of the th component can be computed by substituting
into (5) which together with (4) yields

(9)

The largest value of (9) over is obtained when
. In comparison, the MSE of the th component using the LS

approach is
(10)

which is independent of . The total MSE of the MXTM and
LS methods can be obtained from (9) and (10) respectively, by
summing over .

In Fig. 1, we compare the MSE of the LS with the worst-case
MSE resulting from the MXTM approach for , white
noise and a random choice of , with . In Fig. 1(a)
we plot the MSE in estimating the first component, as a function
of the noise variance (in dB). As can be seen from the figure, the
component MSE of the MXTM estimator can be higher than that
of the LS approach. In this particular example, 3 of the compo-
nents have behavior similar to that of Fig. 1(a), while the other
two components have a very large MSE using the LS strategy
and a substantially smaller MSE with the MXTM approach. In
Fig. 1(b) we plot the total MSE of the two methods. As expected,
the total MSE of the MXTM strategy is always smaller than that
of LS.

B. Matrix Domination

Fig. 1 illustrates that minimizing the total MSE may be insuf-
ficient when in addition we would like each of the components
to have small MSE, or when a more general weighted total MSE
is of interest. To ensure LS domination for a weighted MSE,
must have the property that

(11)

for all . Since different choices of may be consid-
ered simultaneously, for example we may want small total MSE
and low componentwise MSE, we require that (11) holds for all
choices of . This leads to the following definition.

Definition 1: For two linear estimators and we say that
dominates in a weighted MSE sense if

(12)

Fig. 1. MSE in estimating x as a function of the noise variance using the
MXTM (7) and LS estimators: (a) MSE of the first component; (b) total MSE.
For the MXTM estimator, the worst-case MSE over kxk � L is plotted in each
case.

where is defined by (5), and for each

(13)

It is easy to show that (12) and (13) translate into a simple con-
dition on the MSE matrices of and :

Proposition 1: A linear estimate dominates a linear esti-
mate in the weighted MSE sense if and only if

(14)

and1 , where is defined by (4).
Note that we require (13) to hold for and not all

. This is because the later requirement cannot be satisfied
for and is therefore too strong.

Proof: Suppose first that (14) is satisfied and
. Then for all ,

which together with (5) proves (12). To show that strict in-
equality holds when for some , suppose to the contrary

1By the matrix inequality we mean that we do not have equality for all x,
although we may have equality for some x.
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that for some and each
, or

(15)

where

(16)

Since , (15) and (16) together imply that , or
for all .

It remains to show that if for all
then everywhere. Choosing im-
plies that . For any other choice of , the
equality then means that for all

(17)

Now, let be arbitrary. Then we can define
which satisfies so that for this choice of

, (17) must hold. But this also implies that (17) is true for
which means that everywhere.

Next, let (12) hold for all . Choosing for
an arbitrary we have that

(18)

which proves (14). Furthermore, from (13), for all

(19)

so that .
Proposition 1 implies that weighted MSE domination is

equivalent to matrix domination: the MSE matrix of must
be no larger in the matrix sense than that of .

The connection between weighted MSE and matrix domina-
tion without requiring strict domination was proved in [30]. The
additional requirement, which we add here, for strict domination
for every results in the necessary and sufficient condi-
tion .

In the special case in which , Proposition 1 can be
further simplified by noting that for all if
and only if :

Proposition 2: A linear estimate dominates the LS
estimate in the matrix sense if and only if

(20)

where is defined by (4).
Proof: We first note that substituting (6) into (4),

. The proof then follows from combining
Proposition 1 with the fact that

(21)

To establish (21), suppose that . The left-hand equality
then implies . Choosing an arbi-
trary we have . Thus, for all

only if

(22)

Now, recall that minimizes the MSE among unbiased esti-
mators, so that it is the solution to

(23)

Since the problem (23) is strictly convex, the minimizer is
unique, implying that

(24)

which contradicts (22).
In Section III, we use Proposition 2 to derive an easily verifi-

able necessary and sufficient condition on to dominate
in a matrix sense over all .

C. Estimation Strategy

An important question is how to choose a “good” method
among all the LS matrix-dominating possibilities. An obvious
property we would like our approach to posses is that it is ad-
missible in the matrix sense, namely that it is not matrix-dom-
inated by any other linear strategy. In addition, we would like
our estimate to have small weighted MSE for all choices of .
To construct an admissible dominating method with good MSE
performance we propose choosing an estimate that minimizes
the worst-case weighted MSE over all and

, subject to the matrix domination condition. In order to ob-
tain a well-defined problem we need to constrain the norm of

. This is because the weighted MSE can grow
without bound if is unbounded. Furthermore, minimizing

is equivalent to minimizing for
any so that the choice of scaling is immaterial. Therefore,
we assume that , leading to the following optimization
problem:

(25)

The solution is referred to as the minimax matrix-MSE
(MXMM) estimate and is denoted by .

In Section IV we show that is admissible, and de-
rive a size SDP formulation of (25). This allows to com-
pute the solution efficiently using standard software packages.
An explicit expression for is developed in Section V
under the assumption that the matrices and can be jointly
diagonalized.

Note that we could have used any other constraint to restrict
to be bounded, for example, . However, for

this choice, it can be shown that the problem we end up with
is not strictly convex, and therefore the solution is not unique.
In Section IV we prove that the admissibility of is a
direct consequence of the uniqueness of the solution to (25) so
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that it is important to restrict in a manner that results in a
strictly convex problem.

III. LS MATRIX-DOMINATING ESTIMATORS

A problem that has been treated previously in the statistical
literature is that of local MSE superiority, where matrix domi-
nation holds for a specific value of , i.e., for
some (see e.g., [24], [25] and references therein). Our interest
is in domination over all feasible values of so that the condi-
tion for domination is independent of .

Theorem 1 below shows that the LS matrix-domination
condition of Proposition 2 can be translated into the require-
ment that the largest eigenvalue of an appropriate matrix is
non-positive.

Theorem 1: Let be a linear estimate of in the
model (1) and let . Then domi-
nates LS in the matrix sense for all if and only if

Proof: From (4) and (20) matrix domination is equivalent
to

(26)

where we defined and . In order
for (26) to be satisfied we must have that

(27)

Now

(28)

Therefore, (26) is equivalent to

(29)

or , which completes the proof.

A. Examples of Matrix Dominating Estimators

We now present some examples of Theorem 1. For simplicity,
we assume that .

A popular class of estimators for the linear regression model
are the generalized shrinkage (GS) methods, which were first
introduced by Obenchain [31]. Let have an eigendecompo-
sition where is a unitary matrix and

. Then the GS estimators have the form

(30)

for some with . This class is
quite broad and includes many special cases that are commonly
used in practice, such as the shrunken estimator [5], Tikhonov
regularization [2], [4] and the principle component method [32].

We now use Theorem 1 to develop conditions on such that
the GS estimator of (30) dominates LS in the matrix sense. We
will then apply these results to some special cases.

Corollary 2: The GS estimator (30) dominates LS in the ma-
trix sense for all if and only if

(31)

Proof: We begin by noting that for the GS estimator

(32)

Therefore, the condition of Theorem 1 becomes

(33)

where we used the fact that and
. Since for any diagonal matrix

, the condition (33) is equivalent to
or , where

(34)

Now, is a quadratic convex function with zeros at
and . Therefore, for

, which proves (31).
We now consider some special cases of Corollary 2. In all the

examples, , so that domination results are for .
Example I: A popular estimation strategy for the model (1)

is the shrunken estimator [5], which is a scaling of LS:

(35)

with . Clearly has the form (30) with . From
Corollary 2, it then follows that dominates in the matrix
sense if and only if

(36)

where we used the fact that

(37)

The MXTM estimator of (7) is a special case of with
. This then implies that dominates LS

in the matrix sense if and only if

(38)

When , i.e., estimation of a scalar, (38) is always satisfied.
However, if , then (38) may not hold true, as illustrated
for the specific choice in Fig. 1.

Example II: Another popular LS alternative is the Tikhonov
regularization [2], [4]

(39)
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which is also of the form (30) with . For this
estimator, the condition of Corollary 2 becomes

where . In particular, any will
result in a LS matrix-dominating estimator regardless of the
choice of .

Example III: A final example is the principle component es-
timator, which has the form (30) with

(40)

where is a predefined threshold. This estimator will dominate
the LS in a matrix sense if and only if for every such
that .

IV. MINIMAX MATRIX-MSE ESTIMATOR

We now derive the MXMM estimator (25) which minimizes
the worst-case weighted MSE over all choices of and while
guaranteeing LS matrix-domination.

Using Theorem 1 we can express (25) in terms of as

(41)

where is defined by (4) and for brevity we denoted

(42)

Since , the inner maximization with respect to is
obtained when , and (41) reduces to

(43)

Note that the objective in (43) is the worst-case total MSE over
. However, in contrast to the MXTM estimator of

[10] that minimizes this objective, here we have an additional
constraint that ensures LS matrix domination.

Theorem 3 below establishes that the MXMM estimator is
admissible so that it is not matrix-dominated by any other linear
strategy.

Theorem 3: Let be the solution to (43). Then
1. is unique;
2. is admissible in the matrix sense;
3. there exists a dominating in the matrix sense if and

only if .
Proof: We prove each of the statements 1–3:

1. Uniqueness follows from strict convexity in of the ob-
jective in (43) (because is strictly convex).

2. Suppose there exists a with for all
. Then

(44)

and in addition satisfies the constraint in (43) because
. Since the objective in (43) is equal to

and is the unique minimizer, (44) can hold
true only if which implies that is admissible.

3. If then clearly it dominates the LS strategy in
the matrix sense since it satisfies the condition of Theorem
1. Conversely, if there exists a dominating then
from (20), for all . Sup-
pose first that . Since is the unique minimizer
of subject to the domination con-
straint, we conclude that

(45)

where , and . If ,
then uniqueness of implies that

(46)

and again .

A. SDP Formulation

Our goal now is to formulate as a solution to an SDP,
which is the problem of minimizing a linear function subject to
linear matrix inequalities (LMIs). A key element in deriving the
LMI representation is Schur’s Lemma:

Lemma 1 [33, p. 28]: Let

be a Hermitian matrix with . Then if and only if
.

Using the relation

(47)

for any , (43) is equivalent to

(48)

Lemma 2 below asserts that the optimal has the form
for an matrix , which re-

duces the dimensionality of the problem when . The
proof of the Lemma is similar to that of [11] [Lemma 1], and
is therefore omitted.
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Lemma 2: Let the matrix be the solution to (48).
Then

(49)

where is the matrix that is the solution to

(50)

Our goal now is to convert (50) into a convex SDP so that the
solution can be computed efficiently. Defining ,
(50) becomes

(51)

The objective in (51) is linear, and the first two constraints can
be converted into LMIs using Schur’s Lemma (Lemma 1). The
last constraint however is nonconvex. Nonetheless, replacing
this equality with the convex constraint does
not change the solution. To see this, suppose that the solutions

and to the relaxed problem satisfy but
. Then obeys the constraints in (51)

and (here we used the fact that for a matrix
if and only if ) so that cannot be

optimal. Applying Lemma 1 to the resulting convex constraints
leads to the following theorem.

Theorem 4: Let denote the deterministic unknown parame-
ters in the model , where is a known matrix
with rank , and is a zero-mean random vector with covari-
ance . Let and denote by of
(4) the MSE matrix. Then the MXMM estimator which is the
solution to

is

where the matrix is a solution to the SDP

(52)

V. COMMUTING MATRICES

We now develop an explicit expression for the MXMM esti-
mate when and have the same eigenvector matrix. Thus, if

has an eigendecomposition where is a uni-

tary matrix and , then for
some .

Theorem 5: Consider the setting of Theorem 4. Let
where and let

where . Then

(53)

where with

(54)

Here

(55)

with if and 0 otherwise, and is the
unique value of satisfying and where

and are the values to the right and left of

(56)

and for

(57)

Before proving the theorem we discuss how to find . It is
easy to see that , where

(58)

since for , we have . We also
note that is a strictly monotonically decreasing function
with for and when .
Furthermore, is continuous at all points .
Therefore, there is a unique value such that and

which can be found by using a bisection algorithm
on the interval .

Proof: From Lemma 2 the optimal has the form (49).
Since is invertible, we can always express of (49) in the
form

(59)

for some matrix . Next, we show that the optimal
is a diagonal matrix.

Using representation (59) of together with
and the fact that for any matrix if

and only if , problem (50) can be written as

(60)

Let be any diagonal matrix with diagonal elements equal to
. If satisfies the constraints (60), then so does . This
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follows from the fact that and for any diagonal
matrix . Furthermore, the objective value is the
same for and . Since (60) is a strictly convex problem in

, the solution is unique, which implies that the optimal value
satisfies for any . This can hold true only if is a
diagonal matrix.

Substituting into (60), our problem
becomes

(61)

We can immediately verify that (61) is a strictly feasible, convex
problem (to establish strict feasibility choose large enough and

which minimizes the left-hand side of the
second constraint). Therefore, its solution can be determined by
solving the dual problem. The Lagrangian associated with (61)
is

(62)

Differentiating with respect to and equating to 0,

(63)

Minimizing with respect to results in

(64)

Substituting (63) and (64) into (62), the Lagrangian becomes

(65)

and the dual problem is

(66)

The dual optimal values are given in the following lemma.
Lemma 3: Let

(67)

where is an arbitrary number satisfying
, and let

(68)

Then the solution to (66) is and where is the
unique root of

(69)

with chosen if necessary such that has a root.
Proof: See Appendix I.

At the end of the Proof of Lemma 3 we show that is
monotonically decreasing, continuous at all points

and that in (67) can be chosen such that has
a unique root. Choosing of (67) is
equal to of (57). It then follows that there is a unique
satisfying and where is given by
(56), and this value is equal to the unique root of . Thus,
the optimal given by Lemma 3 is equal to that defined by the
theorem statement.

To complete the proof of the theorem we use the relationship
(64) between and given by Lemma 3, which results in
(54).

A. Comparison Between the MXMM and MXTM Methods

It is interesting to compare between the MXMM and MXTM
approaches. For simplicity, we focus here on the case in which

and can be jointly diagonalized.
The MXTM estimator under this assumption is derived in

[10] and has the same form as of (53), where
with

(70)

Here is the unique value satisfying with

(71)

Let the eigenvalues of be sorted in decreasing order such that
(note that this will change the order of

the eigenvectors in which in turn will permute the values of
). With this ordering,

(72)

where is the smallest index such that and
.

Comparing with the MXMM estimate of Theorem 5 leads to
the following result.

Theorem 6: Consider the problem of Theorem 5. Let
and be ordered such that . Then the
MXMM and MXTM estimators both have the form (53) with

for the MXMM estimate and
for the MXTM estimate where

(73)
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Furthermore, the estimators coincide if

(74)

where is defined by (55) and is given by (72) with
the smallest index such that . In

particular, if , then the MXMM and
MXTM methods are equivalent.

Proof: See Appendix II.
Note that both the MXMM and MXTM estimators are gen-

eralized shrinkage estimators of the form (30) with shrinkage
factors and satisfying (73). Evidently, the shrinkage of
the eigenvalues in the MXTM estimate is larger than that of the
MXMM method. Thus, larger shrinkage can decrease the total
MSE at the expense of increasing the MSE of some components.

B. The Case

Using the results of Theorem 5 we now treat the special case
in which .

Corollary 7: Consider the setting of Theorem 5 with .
Let the eigendecomposition of be given by
where with sorted in decreasing
order: . Then the optimal values of are
given as follows. Let be the largest value satisfying

(75)

where is defined by (55). If

(76)

then and

(77)

Otherwise

(78)

Proof: See Appendix III.
Note that when in (72) is 0 and

(79)

From Theorem 6, it then follows that the MXMM and MXTM
methods coincide if

(80)

or equivalently, using the ordering (105), . Substi-
tuting the expressions for and this condition becomes

(81)

An interesting special case is when for some .
Since is independent of of (75)
cannot satisfy (76). Therefore, either , in which case the
MXMM estimate is equal to the MXTM approach, or .
Now, if (81) is satisfied, resulting in

(82)

Thus, the MXMM estimate can be written in this case as

(83)

VI. EXAMPLES

In this section, we compare the MSE performance of the
MXTM, the proposed MXMM, and the LS methods. We con-
sider two measures of MSE: Trace MSE and the MSE of the 1st
component.

In all the examples we assume that . In practice, the
norm of may not be known exactly. Instead, we may have a
bound on the norm that can replace the true norm value. Al-
ternatively, as suggested and studied in [21], we can replace

by the norm of the LS estimate: which corre-
sponds to the choice . As another approach, we may
choose which corresponds to

(see [21] for details).
Example I: In the first example, we generate a random model

matrix with and a random vector . The
noise is assumed to be white, and . In Fig. 2,
we plot the MSE as a function of the noise variance (in dB)
for the MXMM, MXTM and LS estimators. In this example,

. The MSE of the first component is plotted in Fig. 2(a),
and the trace MSE divided by in Fig. 2(b). Interestingly, the
trace MSE of the MXMM and MXTM methods are very similar,
while the MSE of the 1st component is much lower using the
MXMM approach. Note that the MXTM estimator is only guar-
anteed to have smaller total MSE for the worst-case , so that it
is possible, as we see in the figure, to achieve lower total MSE
with the MXMM strategy for other choices of . It is also evi-
dent from the figures that the MXMM method dominates LS in
terms of both trace and componentwise MSE, while the MXTM
approach dominates LS only in trace MSE. In Fig. 3, we plot the
MSE of the third component. Here we see that the MXMM and
MXTM approaches lead to comparable performance.

In Fig. 4, we repeat the simulations leading to Fig. 2(a), but
now instead of using , we estimate from the data as
the norm of the LS method. Evidently, even though the value
used is now not a true bound on the signal norm, since
can be smaller than , still the MXMM approach leads to
improved performance.

The behavior in Figs. 2 and 3 seems to be representative
of the performance in random models. In simulations we ob-
served that often the trace behavior of the MXMM and MXTM
methods is similar. In contrast, the componentwise performance
of MXMM is typically much better for some of the compo-
nents, while for others the behavior of both the MXMM and
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Fig. 2. MSE in estimating x as a function of the noise variance using the
MXTM, MXMM and LS estimators: (a) MSE of the first component; (b) total
MSE.

Fig. 3. MSE of the third component when estimating x as a function of the
noise variance using the MXTM, MXMM, and LS estimators.

MXTM estimators is comparable, so that overall the MXMM
leads to better componentwise behavior. Thus, it seems like the
MXMM approach can substantially decrease the weighted MSE
with only a small increase in the trace MSE with respect to the
MXTM estimator.

Example II: This class of examples is taken from the Regu-
larization Tools [34] for Matlab. All the problems in this toolbox

Fig. 4. MSE in the first component when estimatingx as a function of the noise
variance using the MXTM, MXMM, and LS estimators with estimated bound
L = kx k.

are discretized versions of the Fredholm integral equation of the
first kind:

(84)

where is the kernel and is the solution for a given
. The problem is to estimate from noisy samples of
. Using a midpoint rule with points, (84) reduces to an

linear system . The functions in this toolbox
differ in and . Below we consider two choices. In
both cases , the observations are where

is a white Gaussian noise vector with standard deviation
and we use a weighting . This

choice of reflects the fact that components of corresponding
to small eigenvalues of should receive a smaller weight
than components corresponding to large eigenvalues.

First we implement the function which corresponds
to the kernel

(85)

with integration over . The output of the function is
the matrix and the true vector (which represents ). The
original signal along with the estimates using the MXMM and
MXTM methods are plotted in Fig. 5. The LS estimate is not
given since the results are very poor.

In Fig. 6 we show the results using the function
corresponding to the kernel

(86)

with integration over . Here again the estimate using the
LS approach is poor and is therefore omitted.

In both figures we see that the MXMM method provides a
better approximation of the original signal. This can be deter-
mined visually and from the resulting total MSEs, which are
summarized in Table I.
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Fig. 5. True signal and its estimates using the MXMM and MXTM method for
the Shaw problem.

Fig. 6. True signal and its estimates using the MXMM and MXTM method for
the Phillips problem.

TABLE I
TOTAL MSE

APPENDIX I
PROOF OF LEMMA 3

To solve (66), we form the Lagrangian

(87)

Differentiating with respect to and equating to 0,

(88)

(89)

for , where . In addition, the Lagrange
multipliers must be nonnegative and satisfy the comple-
mentary slackness conditions

(90)

(91)

Suppose first that . Since the first expression in (88)
is always smaller or equal to 1, we must have which
implies from (90) that . Substituting into (89)

(92)

If , then to satisfy (92) with some we must have
. Otherwise , in which case from (91), .

Substituting into (92)

(93)

which satisfies as long as . Thus, we conclude
that for

(94)

Next, we consider the setting . We first note that from
(88), . Furthermore, either or . To see this,
suppose to the contrary that and . Then from (90)
and (91), . Substituting into (88),

(95)

since , which contradicts the assumption .
Suppose first that . Then and is given

by (93). This solution is valid only if , and (88) is satisfied
for some . The first condition is equivalent to

. The second constraint translates into

(96)

Note that in particular, (96) implies since for
. Thus, if (96) holds, then is given by

(93) and .
Next, let , which implies . From (88),

(97)

The solution (97) is always nonnegative since . To sat-
isfy (89) for some we must have .
Substituting from (97), the condition becomes
where is defined by (96). Thus, (97) is valid if and

.
Finally, suppose that . By simple algebraic ma-

nipulations, it can be shown that (88) and (89) are satisfied in
this case only if . Then

(98)
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and is any value that ensures with given by
(98), or

(99)

Since and the bound in (99)
is nonnegative. Substituting the constraints (99) into (98) we
obtain that

(100)

The relation (98) then implies that

(101)

Summarizing our discussion so far, we have shown that

(102)

where satisfies (100), and

(103)

Since is equivalent to , when of
(55) can be written as . The condition

is therefore equivalent to .
When if which is equivalent to

since implies . If
, then the upper bound in (100) becomes .

On the other hand, when which is
consistent with (67) since and the upper bound on is
0. Thus, (102) and (103) are equivalent to (67) and (68).

To complete the proof it remains to determine the optimal
value of . This can be accomplished by enforcing the last con-
straint in (66) which implies that must be a root of given
by (69). Since is monotonically decreasing on

where is defined by (58), the root is unique. To show
that there is always a value such that note that

is continuous for all . At these points, can be
chosen such that can take on any value between
and where and are the values of to the right and
left of the point of discontinuity. This follows from the fact that
for .
In addition, for , and for

. Therefore, either for a value for which
is continuous, or that we can choose at the disconti-

nuity points such that .

APPENDIX II
PROOF OF THEOREM 6

To prove (73) we note that and are both monoton-
ically decreasing until they reach a constant value: for
where , and 0 for . From the definitions (57), (71) of

it follows that they are both monotonically decreasing and

that for a given . Now, at the optimal values
of and . Therefore, the
optimal choices of and satisfy , from which we con-
clude that .

To prove the second part, suppose that (74) is satisfied. By
definition, with

(104)

Now, from (57) and (74), . This follows from
the fact that for and . Thus,

and is optimal for the MXMM esti-
mator. Substituting into (54) and using
we have of (70).

Finally, if , then .
Since by definition, , in this case
(74) is satisfied.

APPENDIX III
PROOF OF COROLLARY 7

Since the eigenvalues of are sorted in decreasing order and
, it is easy to see that the threshold values

of (55) increase with :

(105)

Therefore, if for some value , then
for all .

As indicated after the statement of Theorem 5, we can find
by first checking whether has a root. To this end we need
to determine of (57). Let be the largest index such that

. Then

(106)

Thus, is a root of if , or

(107)

The solution (107) is valid only if for this choice

(108)

Since is monotonically decreasing in if .
Therefore, using the ordering (105), instead of having to check
(108) for all , it is sufficient to consider the largest value for
which , which is equivalent to (76). Substituting (107)
into (54) leads to (77).

If (76) is not satisfied, then the optimal is of the form
for such that and . We now

show that so that .
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Since is the largest index for which , we have that
. Therefore

(109)

and . Next, we note that for some .
Using the ordering (105), this implies that . Thus,

(110)

and , completing the proof.
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