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Abstract—We treat the problem of beamforming for signal esti-
mation where the goal is to estimate a signal amplitude from a set
of array observations. Conventional beamforming methods typi-
cally aim at maximizing the signal-to-interference-plus-noise ratio
(SINR). However, this does not guarantee a small mean-squared
error (MSE), so that on average the resulting signal estimate can
be far from the true signal. Here, we consider strategies that at-
tempt to minimize the MSE between the estimated and unknown
signal waveforms. The methods we suggest all maximize the SINR
but at the same time are designed to have good MSE performance.
Since the MSE depends on the signal power, which is unknown, we
develop competitive beamforming approaches that minimize a ro-
bust MSE measure. Two design strategies are proposed: minimax
MSE and minimax regret. We demonstrate through numerical ex-
amples that the suggested minimax beamformers can outperform
several existing standard and robust methods, over a wide range
of signal-to-noise ratio (SNR) values. Finally, we apply our tech-
niques to subband beamforming and illustrate their advantage in
estimating a wideband signal.

Index Terms—Beamforming, minimax mean-squared error,
minimax regret, robust beamforming, subband beamforming.

I. INTRODUCTION

BEAMFORMING is a classical method of processing tem-
poral sensor array measurements for signal estimation, in-

terference cancellation, source direction, and spectrum estima-
tion. It has ubiquitously been applied in areas such as radar,
sonar, wireless communications, speech processing, and med-
ical imaging (see, e.g., [1]–[4] and references therein).

Conventional approaches for designing data dependent beam-
formers typicallyattempt to maximize thesignal-to-interference-
plus-noise ratio (SINR). Maximizing the SINR requires knowl-
edge of the interference-plus-noise covariance matrix and the
array steering vector. Since this covariance is usually unknown,
it is often replaced by the sample covariance of the measure-
ments, resulting in performance deterioration at high signal-to-
noise ratio (SNR) when the signal is present in the training data.
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Some beamforming techniques are designed to mitigate this ef-
fect [5]–[8], whereas others are developed to also overcome un-
certainty in the steering vector [9]–[13], [14]. Here, we assume
that the steering vector is known exactly and our aim is to de-
sign a beamformer for signal estimation.

Despite the fact that the SINR has been used as a performance
measure and as a design criterion in many beamforming ap-
proaches, maximizing SINR may not guarantee a good estimate
of the signal. In an estimation context, where our goal is to design
a beamformer in order to obtain an estimate of the signal ampli-
tude that is close to its true value, it would make more sense to
choose the weights to minimize an objective that is related to the
estimation error, i.e., the difference between the true signal and
its estimate, rather than the SINR. Furthermore, it may be more
informative to consider the estimation error as a performance
measure in comparing different beamforming methods.

If the signal power is known, then a minimum mean-squared
error (MMSE) beamformer can be designed. The resulting
beamformer can be expressed as a power-dependent constant
which multiplies a fixed weight vector that is optimal in an
SINR sense. Since the SINR is insensitive to scaling, the
MMSE approach also maximizes the SINR. If the scaling is
fixed, then the choice of scaling does not affect the signal
waveform, but only its magnitude. In some applications, the
actual magnitude value may be of importance. This is partic-
ularly true in the context of subband beamforming [15]–[20]
which gained interest in recent years, due to its ability to reduce
the complexity of conventional broadband strategies. In this
context, beamforming is performed independently in decimated
frequency bands, and the outputs of the channels are combined.
Since different scaling coefficients are used in each channel,
the MMSE strategy will generally result in a signal whose
waveform is different than that resulting from an SINR-based
method. Thus, a good choice of scaling factor can significantly
impact the estimated waveform.

Typically, the signal power is unknown, and the MMSE
beamformer cannot be realized. In such cases, other design
criteria are needed to choose the scaling factor. A common ap-
proach is to select the scaling such that the signal is undistorted,
which is equivalent to minimizing the mean-squared error
(MSE) under the constrain that the beamformer is unbiased.
This leads to the well known minimum variance distortionless
response (MVDR) beamformer. However, as we show both
analytically and in simulations, despite the fact that the MVDR
method is optimal in an MSE sense among unbiased tech-
niques, it often results in a large estimation error. An alternative
strategy is to estimate the signal power from the data and use
the power estimate in conjunction with the MMSE beamformer.
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This approach is closely related to the blind minimax-MSE
techniques, recently developed in [21]. Based on the results
of [21], it can be shown that if the signal power is properly
estimated and the noise covariance is known, then this method
can improve the MSE over the MVDR strategy. However, as
we demonstrate via simulations in Section V, in the typical
scenario where the covariance is unknown, the performance
using this method deteriorates considerably.

In order to develop a beamformer with good MSE per-
formance when the signal power and noise covariance are
unknown, in this paper we propose two design strategies that
exploit prior knowledge on the signal power in the form of
upper and lower bounds. Both methods optimize a worst-case
MSE criterion over the feasible signal region. The advantage
of these techniques is two-fold: First, they allow to explicitly
incorporate prior knowledge on the signal power, which in
many contexts is available, and in that way improve the MSE
performance over other methods. Second, in settings where no
prior knowledge is available, the power bounds can be easily
estimated from the data, thus leading to practical beamforming
techniques. Indeed, we demonstrate via simulations that using
the estimated bounds in conjunction with the proposed strate-
gies leads to improved MSE over previous beamformers.

The criteria we choose are based on recent ideas developed
in the context of estimation in linear models [22]–[24]. In the
first method, we minimize the worst-case MSE over all signals
whose magnitude (or variance, in the zero-mean stochastic
signal case) is bounded by a constant. In the second approach,
we minimize the worst-case regret [23], [25], [26] over all
bounded signals, where the regret is defined as the difference
between the MSE of the beamformer output in the presence of
uncertainties, and the smallest attainable MSE when the power
is exactly known. This strategy considers both an upper and a
lower bound on the signal magnitude. To illustrate the advan-
tage of our methods we present several numerical examples
comparing our beamformers with conventional SINR-based
strategies, scaled to account for the MSE, and several recently
proposed robust approaches [10]–[12]. We also apply our tech-
niques to subband beamforming and illustrate their advantage
in estimating a wideband signal.

The theoretical ideas developed here have also been reported
in [13]. However, here we specifically address the practical as-
pects of the methods i.e., their performance in comparison with
scaled SINR techniques, as well as their impact on subband
beamforming.

The paper is organized as follows. In Section II, we formulate
our problem and review existing methods. The minimax MSE
and minimax regret beamformers are developed in Section III.
In Sections IV and V, we discuss practical considerations and
present numerical examples, including a subband beamforming
application.

II. SINR AND MMSE BEAMFORMING

We denote vectors in by boldface lower case letters and
matrices in by boldface upper case letters. The matrix

is the identity matrix of the appropriate dimension, is the

Hermitian conjugate of the corresponding matrix, and de-
notes an estimated variable.

A. SINR Beamforming

One of the main tasks of beamforming is to estimate the
source signal amplitude from a set of array observations

(1)

Here, is the complex vector of array observations
at time with being the number of sensors, is the signal
amplitude to be estimated, is the known steering vector which
depends on the direction of arrival (DOA) of the wavefront plane
associated with , is the interference, is a Gaussian
noise vector and is the number of snapshots [1], [3], [4].

Our goal is to estimate the signal amplitude from the ob-
servations using a set of beamformer weights , where
the output of a narrowband beamformer is given by

(2)

Traditionally, the beamformer weights are chosen to
maximize the SINR

SINR (3)

where is the interference+noise covari-
ance matrix, and is the signal power given by
in the deterministic case, and when is a
zero-mean stationary random process.

In practice, the covariance matrix is often not available,
and is therefore replaced by an estimate. The simplest approach
is to use the sample covariance

(4)

leading to the Capon beamformer [25], [27]. An alternative
choice is the diagonal loading estimate given by

(5)

for some loading factor , resulting in the loaded Capon beam-
former [5], [6]. A common choice for is , where
is the noise power in a single sensor. Another popular strategy is
the eigenspace beamformer [7], in which the inverse covariance
matrix is estimated as

(6)

where is the orthogonal projection onto the signal subspace.

B. MSE Beamforming

Since SINR SINR for any choice of , the
weight vector maximizing the SINR is specified up to a con-
stant. Although scaling the beamformer weights will not affect
the SINR, it can have an impact on other performance measures.
In applications in which the beamformer is used to estimate the
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signal waveform , scaling becomes important, particularly
in the context of subband beamforming.

A popular design strategy for determining is to require that
, leading to the MVDR beamformer

(7)

This beamformer can alternatively be obtained as the solution
to

subject to (8)

which, as we show below, has the interpretation of minimizing
the MSE subject to the constraint that the beamformer is unbi-
ased. Although this approach has several optimality properties,
it does not necessarily result in a good signal estimate. Instead,
we may try to choose to directly minimize the MSE without
requiring an unbiased output.

Assuming is deterministic, where for brevity we
omitted the index , the MSE between and its estimate is

(9)

where is the variance of and
is its bias. When is a zero-mean random variable with

variance , the term is replaced by . For concreteness,
in the rest of the discussion we assume the deterministic model;
however, all the results are valid in the stochastic setting where

is replaced by .
Minimizing (9) with respect to leads to the MMSE beam-

former

(10)

where the last equality follows from applying the Matrix Inver-
sion Lemma, and we defined the signal-dependent constant

(11)

The scaling satisfies , and is monotonically
increasing in , so that for all . Sub-
stituting back into (9), the minimal attainable MSE, which
we denote by MSEB , is given by

MSE (12)

The MSE of the MVDR beamformer follows from (9) as

MSE (13)

Comparing (12) with (13) shows that MSEB
MSEB for all , so that the MMSE approach
results in a smaller MSE than the MVDR method with the same
SINR.

In practice, we cannot typically implement the MMSE beam-
former of (10) since it depends on , which is usually unknown.
The problem stems from the fact that the bias, and therefore the

MSE of (9) is a function of . One approach to eliminating this
dependency is to force the bias to 0 and then minimize the MSE,
which leads to the problem (8). However, this does not guarantee
a small MSE, so that on average the resulting estimate may be
far from . Indeed, it is well known that unbiased estimators may
often lead to large MSE values.

An alternative strategy is to take advantage of knowledge on
and then design a robust beamformer whose MSE is reason-

ably small across all possible signal values. Here we consider
bounds on of the form

(14)

which can be available, for example, when the type of source
and possible distances from the array are known, as can happen
in wireless communications and underwater source localization.
Given an uncertainty set of the form (14), we adapt the ideas of
[23] and [22] to our context and develop two classes of beam-
formers that minimize a worst-case MSE measure.

When and are not known in advance, we can readily
estimate them from the data, as we elaborate on further in
Sections IV and V. The situation is similar to the MVDR-based
beamformers: In developing these methods it is assumed that
the interference+noise covariance matrix is known; however,
in applications, this matrix is typically estimated from the data.
Similarly, our development of the minimax robust beamformers
will assume that the bounds and and the covariance
are given. As we show, even when the values are estimated,
this methodology leads to improved performance over scaled
MVDR based methods that account for the MSE using a scaling
optimized in terms of MSE.

III. ROBUST MSE-BASED BEAMFORMING

A. Minimax MSE Beamforming

The first approach we consider is to minimize the worst-case
MSE over the set (14). Thus, we seek the beamformer
that is the solution to

(15)

Clearly, the inner maximization is obtained at so that
our problem reduces to

(16)

which is equal to the MSE of (9) with . Therefore,
is an MMSE beamformer (10) matched to ,

(17)

where

(18)
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The resulting MSE is

MSE (19)

Since we assume that ,

MSE MSE

(20)

so that for any finite choice of , the minimax MSE approach
has smaller MSE than the MVDR method. A surprising re-
sult, which follows from [21], is that the MSE superiority of
the minimax method holds for any choice of even when
is not known but estimated from the data as .
Thus, using the MVDR approach to estimate the signal ampli-
tude and then plugging that into the minimax MSE beamformer
is guaranteed to improve the MSE performance over the MVDR
method.

The theoretical MSE superiority of the minimax technique is
true only if is known. As we demonstrate in the simulations
in Section V, when the MVDR method is used together with an
ad hoc signal power estimate and an estimated , the perfor-
mance degrades significantly. If, on the other hand, we treat the
value of as a loose bound on the power, as suggested by our
formulation, then estimating and using the minimax MSE ap-
proach can improve the performance over other beamformers.

B. Minimax Regret Beamforming

In some practical applications, particularly when a lower
bound on is known, the minimax MSE approach may be
overconservative since it replaces by its largest value. To
overcome this possible limitation, we now develop a minimax
regret beamformer whose performance is as close as pos-
sible to that of the MMSE beamformer that knows , for all

.
The regret is defined as the difference between the

MSE using a fixed beamformer and the optimal MSE
attainable with an estimator of the form when is
known. Using (12)

MSE

(21)

The minimax regret beamformer is then designed to
minimize the worst-case regret

(22)

The solution to (22) can be obtained from the results of [28] in
which a similar problem is considered in the context of estima-
tion in linear models, and is incorporated in Theorem 1 below.
A direct proof of this theorem is given in the Appendix.

Theorem 1: Let denote an unknown signal amplitude in the
model , where is a known vector, and is a zero-
mean random vector with covariance . Then, the solution to
the problem

is

where

(23)

From Theorem 1, we see that the regret beamformer is also a
scaled version of the MVDR method, so that it maximizes the
SINR. The scaling satisfies and is mono-
tonically increasing in and . For ,

(24)

in which case is equal to the minimax MSE beamformer
of (19). For , .

The minimax regret beamformer can also be interpreted as an
MMSE beamformer of the form (10), matched to

(25)

where for brevity we denoted

(26)

This follows from substituting of (25) into (10). Since the
regret approach minimizes the MSE for the signal power given
by (25), we may view this power as an estimate of the true, un-
known power. It is interesting to note that while the minimax
MSE estimator is matched to a signal power , the regret es-
timator is matched to a signal power . This
follows from (25) by using the inequality .

To gain further insight into the estimate of (25), we use the
equality

(27)

to express as a weighted combination of and ,

(28)

The weight is given by

(29)
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Fig. 1. Square root of the NMSE as a function of SNR using the MMSE, MXR,
MXM, and MVDR beamformers in estimating a random process with amplitude
uniformly distributed between 3 and 6.

where can be viewed as the SNR in the observa-
tions when the signal power is . If , then

(30)

and the unknown power is estimated as the geometric mean of
its bounds. If, on the other hand, , then

(31)

and the power is estimated as the algebraic mean.
One advantage of the minimax regret approach is that it

explicitly accounts for both the upper and the lower bounds
on , while the minimax MSE method depends only on the
upper bound. Therefore, in applications in which both bounds
are available, the minimax regret beamformer can lead to better
performance. To illustrate this point, in Fig. 1, we compare
the MSE of the minimax regret (MXR) and minimax MSE
(MXM) methods when estimating a complex random process,
temporally white, whose amplitude has a uniform distribution
between the values 3 and 6 and its plane-wave has a DOA of
30 , from a uniform linear array (ULA) of omnidi-
rectional sensors spaced half a wavelength apart. The noise

consists of a zero-mean complex Gaussian random vector,
spatially and temporally white, with a varying power to obtain
the desired SNR, and the interference has a DOA of 30 and
a zero-mean, Gaussian, complex amplitude temporally white
with INR of 20 dB. We assume that and the bounds
and are known. The performance measure we use is the
square root of the normalized MSE (NMSE) averaged over
experiments,

NMSE

(32)
Here, and are the desired signal and its estimate for a
given experiment , where we chose . For comparison,
we also plot the NMSE of the MVDR strategy and the signal-
dependent MMSE beamformer, whose performance serves as a
bound.

As we expect, the minimax regret beamformer outperforms
the minimax MSE and MVDR methods in all the illustrated
SNR range, and approaches the MMSE performance. In
Section V, we show the advantages of the minimax MSE and
minimax regret strategies over several other beamformers for
the case where is known but , , and are estimated from
training data containing .

IV. PRACTICAL CONSIDERATIONS

In our development of the robust MSE beamformers, we as-
sumed that there exist bounds on the magnitude of the signal to
be estimated. In some applications, these bounds may be known,
for example based on a priori knowledge on the type of the
source and its possible range of distances from the array. If no
such bounds are available, then we may estimate them from the
data using one of the conventional beamformers, denoted ,
by the following procedure.

1) Obtain a rough estimate of using .
2) Estimate and as and

where is given by:
a) type 1, is the average power

over the training interval.
b) type 2, is the instantaneous signal

power estimate, i.e., and are time varying.
In the examples below, is chosen as the loaded Capon beam-
former and is set to 4 for the MXR and the MXM beam-
formers. This value was chosen to give the best performance
over a wide range of negative SNR values. We refer to MXM1
and MXM2 for denoting the MXM beamformer with bounds
estimated using type 1 and type 2 , respectively. We use
the same indexing for denoting the MXR beamformer. Since in
most applications the true covariance is not available, we have
to estimate it as well. In the examples below, we use a diagonal
loading estimate as in (5) with diagonal load .

To compare our methods with the SINR-based beamformers,
we scaled the corresponding beamformer vectors by . For
a fair comparison, we would like to choose to minimize the
MSE

(33)
where is any beamformer vector. The optimum under this
criterion is

(34)

Note that if , then in (11). In practice
and are not known, and therefore need to be estimated.

The performance of the normalized SINR-based beamformers
depends very much on the way is computed. In particular, the
measurement covariance matrix can be esti-
mated either with the sample covariance matrix, or by replacing
the estimates of and . In general, the former approach
with type 1 estimate in the numerator improves the per-
formance of all SINR-based methods, while the latter degrades
it significantly. In our examples below we will use the former
scaling approach.
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V. NUMERICAL EXAMPLES

To evaluate and compare the performance of our methods
with other techniques, we conducted two kinds of examples. We
consider the cases for narrowband and wideband . The nar-
rowband signal estimation example is presented in Section V-A,
where we made two choices for : a deterministic complex
sinewave, and a zero-mean, temporally white, Gaussian, com-
plex random signal. The wideband signal estimation example is
shown in Section V-B, where was chosen to be a determin-
istic signal and the estimation is performed using narrowband
beamformers with a subband approach.

In both examples, we use a uniform linear array of
omnidirectional sensors spaced half a wavelength apart. The
signal is continuously present throughout the training data,
and it has a varying amplitude or variance respectively, to ob-
tain the desired SNR in each sensor. Unless otherwise stated,
we use a signal DOA equal to 30 relative to the array normal, a
single interference with INR 20 dB and DOA 30 , and
equal noise power in each sensor. To illustrate the performance
of the beamformers we use the square-root of the NMSE, which
is obtained by averaging 500 simulations. In our examples, we
focus on low SNR values (important e.g., in sonar) and compare
the performance of the proposed methods against six alterna-
tive approaches: the Capon beamformer (CAPON) [25], [27],
loaded Capon beamformer (L-CAPON) [5], [6], eigenspace-
based beamformer (EIG) [7], [8], and three robust beamformers
proposed in the literature, which we refer to, respectively, as
ROB1 [11], ROB2 [12], and ROB3 [10]. For each method, we
tested both the unscaled version and the scaled method, which
accounts for the MSE, as described in the previous section. The
parameters of each of the existing methods were chosen as sug-
gested in the literature. Namely, for L-CAPON (5) the diagonal
loading was set to [10], [11] with being
the noise power in each sensor. For EIG the number of inter-
ferences is set to . For ROB1 , for ROB2,

, and for ROB3 the upper bound on the steering vector
uncertainty was set as [10]. Note that ROB2 is equal
to the L-CAPON beamformer if . In [11], it has been
demonstrated that the ROB1 beamformer vector is equivalent to
the ROB3 beamformer; therefore, both are shown as ROB1 in
the simulations. Table I summarizes the beamformers analyzed.
Note that denotes the principal eigenvector of the ma-
trix (i.e., the eigenvector associated to the largest eigenvalue
of ), is the Lagrange multiplier (see [10] and [11], respec-

tively, for details on its computation), ,
is chosen such that the corresponding beamformer satisfies

, is selected such that , and
is defined by (23).

A. Estimating a Complex Sinewave and a Zero-Mean Complex
Gaussian Random Process

In this example, we first choose in (1) to be a complex
sinewave. The noise is a zero-mean, Gaussian, complex
random vector, temporally and spatially white. The interfer-
ence is given by where is a zero-mean,
Gaussian, complex process independent of the noise, and is

TABLE I
BEAMFORMERS USED IN THE NUMERICAL EXAMPLES

the interference steering vector. Here, unless otherwise stated,
we use . The square root of the NMSE as a function of
the SNR, the length of training data, the difference between
signal and interference DOAs, and the SIR are depicted in
Fig. 2(a)–(d).

In Fig. 2(a), we plot the square root of the NMSE as a func-
tion of the SNR. In this case, we use a type 2 estimator of
for our algorithms, so we show MXR2 and MXM2. Since in
all the scenarios considered in this example the NMSE of the
CAPON beamformer was out of the illustrated scales, we do
not plot the performance of this method. Also, it is straightfor-
ward to show that L-CAPON and L-CAPON are equiv-
alent so we just illustrate the former one. From Fig. 2(a) it
can be seen that the MXR2 beamformer has the best perfor-
mance for SNR values between 8 to 2 dB. In Fig. 2(b),
we plot the square root of the NMSE as a function of the
number of training data with SNR 5 dB. It can be seen
that the difference in performance between our methods and
the EIG and ROB beamformers increases notice-
ably as the number of samples increases. The performance of
the proposed methods as a function of the difference between
the signal and interference DOAs is illustrated in Fig. 2(c). The
NMSE of all the methods remains almost constant for DOA
differences between 10 and 90 but deteriorates for DOA dif-
ferences close to 0 . In this case, the MXR2 and MXM2 out-
perform the others methods for DOA differences larger than
6 . Fig. 2(d) illustrates the performance as a function of the
signal-to-interference-ratio (SIR) for an SNR of 5 dB. The
minimax approaches improve their performance as the SIR
increases, however, this observation is not very clear for the
EIG and ROB beamformers.

Our second choice for is a zero-mean, temporally white,
Gaussian, complex random signal. The square root of the NMSE
as a function of the SNR, the number of training data, the dif-
ference between signal and interference DOAs, and the SIR are
depicted in Figs. 2(e)–(h), respectively. In this case, we only
use MXM1 and MXR1 beamformers since the signal variance
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Fig. 2. Square root of the NMSE as a function of SNR, length of training data, the difference between the signal and interference DOAs, and SIR, when estimating
(a)–(d) a complex sinewave and (e)–(h) a zero-mean complex Gaussian random signal with DOA = 30 , using the MXR1, MXM1, EIG , L-CAPON,
ROB1 , and ROB2 beamformers.

is constant. It can be seen in Fig. 2(e) that the MXR1 has the
best performance for SNR values between 8 to 0 dB. The per-

formance conclusions from Fig. 2(f)–(h) are similar to the case
of a deterministic sinewave.
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B. Estimating a Deterministic Wideband Signal Using a
Subband Beamforming Scheme

We now apply narrowband beamformers in a subband context
to estimate a transmitted wideband signal with bandwidth

and carrier frequency .
Let

(35)

be the complex baseband received signal at the th sensor
[4], where ,
with 8 Hz, 1 GHz so that signal band-
width is Hz. The signal time delay is given by

where is the signal
DOA, is the sampling period. The noise components are
zero-mean, Gaussian, complex random process, spatially white,
and , where

is a zero-mean, Gaussian, complex process, and is the
interference DOA. Both and have a flat spectrum in

, where 4 Hz is the sampling frequency.
Since is wideband, it varies fast compared to the propa-

gation time of the signal wave across the array. Therefore, we
cannot model the time delay of the signal as a simple phase
shift of the carrier frequency, as in (1). The classical method
of tapped delay line [29], [30] overcomes this difficulty by
combining spatial filtering with temporal filtering, which makes
the response of the array the same across different frequencies.
However, this approach has slow convergence and requires a
large number of computations [31]. A computationally cheaper
strategy is subband beamforming [15]–[20], [31], in which
the wideband signal is decomposed into a number of fre-
quency bands by means of a filter bank. These subbands have
a reduced bandwidth allowing the application of narrowband
beamformers. The summation over the individual beamformers
outputs in each subband yields the wideband signal estimate.

Here, we apply the subband method of [17] to design
analysis and synthesis FIR uniform DFT-filter banks using
unconstrained quadratic optimization. This approach mini-
mizes aliasing in the subband signals as well as magnitude,
phase, and aliasing distortion in the reconstructed output signal
(see [17] for details). In this scheme, the parameters that need
to be set are the number of subbands , the analysis and
synthesis filter lengths and , respectively, the decimation
factor , the passband cut-off frequency , the delay of the
analysis filter bank , and the total subband filtering delay

. Fig. 3 illustrates the subband beamformer implemented
in this example. This scheme splits the set of array observa-
tions into subbands using bandpass filters ,

, where the subband bandwidth is
with chosen such that . Each
subband is then processed at a lower sampling rate, using a
decimator with rate , where we assume that is an in-
teger. Let ,
be the downsampled filtered version of . Denoting

and using the fact
that is a narrowband signal, we obtain the vector model

(36)

Fig. 3. Subband beamformer scheme implemented for wideband signal wave-
form estimation.

where , , and are the downsampled outputs of
filtering , , and with , respectively, and is
the steering vector

where is the th subband center frequency. Using the model
(36), we can now design subband beamformers toesti-
mate from , where the interference+noise covari-
ance matrix for subband is

(37)

To restore the original sampling rate on , we apply a syn-
thesis filter which first upsamples with rate , and then interpo-
lates with an FIR bandpass filter

. The wide band signal estimate is then given by

(38)

where is the delay introduced by the analysis and synthesis
filters.

In our simulations, we use subbands and .
The analysis and synthesis filters have the following character-
istics [17]: , , , ,

, and .
We first assume that the subband array covariance matrix ,

and the subband steering vector are known for .
The MMSE beamformer uses the knowledge of for

, and in the case of the MXM and MXR beam-
formers we use and , where

is the average signal power in subband . Fig. 4(a) illus-
trates the square-root of the NMSE as a function of SNR using
the MMSE, MXR, MXM, and MVDR beamformers. As in the
narrowband example, we observe that for low SNR values the
performance of the MMSE and robust MSE beamformers are
better than the MVDR method. As the SNR increases the be-
havior of all beamformers tends to be similar. In Fig. 4(b), we
show one realization of the absolute value of the signal wave-
form estimates using the same beamformers for SNR 1 dB.
It can be seen that the waveform estimates using the MSE crite-
rion are closer to the true waveform than the one obtained
using MVDR. In implementing the MVDR beamformer, the
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Fig. 4. Performance of estimating a deterministic wideband signal using a subband beamformer scheme in the presence of an interference with INR = 20 dB
and DOA = �30 . We assume that js j , U , L , k = 1; . . . ; K and the covariance matricesR are known. (a) Square root of the NMSE as a function of SNR
using the MMSE, MXR, MXM, and MVDR beamformers. (b) Absolute values of: the true signal, the waveform estimate using the MVDR beamformer, and the
waveform estimate using MMSE, MXR, and MXM beamformers.

scaling coefficient was chosen optimally such that the received
signal waveform magnitude is not distorted in each subband.
However, it can be seen that choosing the scaling function ac-
cording to the MSE criterion leads to estimates that are closer
to the true signal waveform.

Next, we considered a more realistic scenario where the
bounds as well as the covariance matrix are estimated from the
data. In each subband, we implemented the MXR1 and MXM1
beamformers with the sample covariance matrix estimated
using a loading factor [10], [11], where

(39)

is the noise power in the subband. Similarly as in the first
case, we estimate the bounds and with given by the
L-CAPON beamformer with , and type 2 es-
timate with set as 4, for these beamformers, respectively. We
choose , so that in each subband we use 32 samples
to estimate the sample covariance matrix. Fig. 5 illustrates the
square root of the NMSE as a function of SNR using the MXM2,
MXR2, L-CAPON, ROB1, and ROB beamformers. It can
be seen that the MXR2 and MXM2 beamformers outperform
the SINR-based methods in the SNR range illustrated. Between

5 dB and 0 dB, the MXR1 and the ROB beamformers
perform similarly.

VI. SUMMARY

We developed beamforming methods to estimate a source
signal from sensor array observations, where the goal is to
obtain an estimate that is close to . Although standard
beamforming approaches are aimed at maximizing the SINR,
this does not necessarily guarantee a small MSE, hence on av-
erage a signal estimate maximizing the SINR can be far from

. To ensure that is close to , we proposed using
the more appropriate design criterion of MSE. Since the MSE
depends in general on which is unknown, we suggested

Fig. 5. Square root of the NMSE as a function of SNR using the MXR2,
MXM2, L-CAPON, ROB1, and ROB1 beamformers in a subband beam-
former scheme, to estimate a deterministic wideband signal in the presence of
an interference with INR = 20 dB and DOA = �30 .

beamforming strategies that minimize a worst-case measure of
MSE assuming bounded signal power. We first considered a
minimax MSE approach that minimizes the worst-case MSE.
We then proposed a minimax regret method that minimizes the
worst-case difference between the MSE using a beamformer ig-
norant of and the smallest possible MSE attainable when

is known. The proposed methods all maximize the SINR
but, in general, have better MSE performance than traditional
beamformers.

In the numerical examples, we illustrated the advantages of
our methods in terms of the MSE, both with respect to SINR
based method and scaled SINR techniques which account for
the MSE through an optimal scaling factor. We also showed
the merits of our techniques in estimating a wideband signal
waveform using a subband beamformer approach. In most of the
examples shown, the minimax beamformers consistently have
the best performance, particularly for negative SNR values.
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APPENDIX A
PROOF OF THEOREM 1

In this Appendix, we prove Theorem 1. Although parts of the
proof are similar to those in [26], we repeat the arguments for
completeness. The proof can also be found in [13].

To develop a solution to (22), we first consider the inner max-
imization problem

(40)

where we denoted and
. To derive an explicit expression for we note that the

function

(41)

with is convex in (it is easy to see that
for all ). It follows that for fixed , is

convex in , and consequently the maximum of over
a closed interval is obtained at one of the boundaries. Thus

(42)

and the problem (22) reduces to

(43)

We now show that the optimal value of has the form

(44)

for some (possibly complex) . To this end, we first note that the
objective in (43) depends on only through and .
Now, suppose that we are given a beamformer , and let

(45)

Then, and

(46)

From the Cauchy–Schwarz inequality, for any vector

(47)

Substituting (47) with into (46)

(48)

Since the objective is strictly convex, the solution is unique, so
that

(49)

which implies that has the form (44).

Fig. 6. Illustration of the functions f (d) and f (d) of (52).

Combining (44) and (43), our problem reduces to

(50)

Since is in general complex, we can write for some
. Using the fact that ,

it is clear that at the optimal solution, . Therefore, we as-
sume in the sequel that . We can then express the problem
of (50) as

(51)

where

(52)

To develop a solution to (51) we note that both and
are quadratic functions in , that obtain a minimum at and

respectively, where

(53)

Therefore, if the functions intersect in the interval ,
then the intersection point, denoted , is the optimal value of

, as illustrated in Fig. 6.
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The intersection points of and are given by

(54)

Since , clearly . Using the fact that

(55)

we have that , and therefore , completing the
proof.
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