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A Minimax Chebyshev Estimator for Bounded

Error Estimation

Yonina C. Eldar and Amir Beck

Abstract

We develop a nonlinear minimax estimator for the classical linear regression model assuming that the true

parameter vector lies in an intersection of ellipsoids. We seek an estimate that minimizes the worst-case estimation

error over the given parameter set. Since this problem is intractable, we approximate it using semidefinite relaxation,

and refer to the resulting estimate as the relaxed Chebyshev center (RCC). We show that the RCC is unique and

feasible, meaning it is consistent with the prior information. We then prove that the constrained least-squares (CLS)

estimate for this problem can also be obtained as a relaxation of the Chebyshev center, that is looser than the RCC.

Finally, we demonstrate through simulations that the RCC can significantly improve the estimation error over the

CLS method.

I. Introduction

Many estimation problems in a broad range of applications can be written in the form of a linear regression

model. In this class of problems, the goal is to construct an estimate x̂ of a deterministic parameter vector x

from noisy observations y = Ax + w, where A is a known model matrix and w is an unknown perturbation

vector.

The celebrated least-squares (LS) method minimizes the data error ‖ŷ − y‖2 between the estimated data

ŷ = Ax̂ and y. This approach is deterministic in nature, as no statistical information is assumed on x or w.

Nonetheless, if the covariance of w is known, then it can be incorporated as a weighting matrix, such that

the resulting weighted LS estimate minimizes the variance among all unbiased methods. However, this does
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not necessarily lead to a small estimation error x̂− x. In particular, when A is ill-conditioned, for example,

when the system is obtained via discretization of ill-posed problems such as integral equations of the first kind

[1] or in certain image processing problems [2], the LS will give poor results with respect to the estimation

error. Thus, many attempts have been made to develop estimators that may be biased but closer to x in

some statistical sense [3–10]. By now it is well established that even though unbiasedness may be appealing

intuitively, it does not necessarily lead to a small estimation error x̂− x [11].

A popular strategy for improving the estimation error of LS is to incorporate prior information on x. For

example, the Tikhonov estimator minimizes the data error subject to a weighted norm constraint on x [5].

In practical applications, more general restrictions on x can be given, such as interval constraints on the

individual components of x. These type of bounds rise naturally e.g., in image processing where the pixel

values are limited. To deal with more general type of restrictions, the constrained LS estimator (CLS) has

been proposed, which minimizes the data error subject to the constraint that x lies in a convex set C [12].

However, this method does not deal directly with the estimation error.

In some scenarios, the distribution of the noise may not be known, or the noise may not be random (for

example, in problems resulting from quantization). A common estimation technique in these settings is the

bounded error approach, also referred to as set-membership estimation (see e.g., [13] and the survey papers

[14, 15]). This strategy is designed to deal with bounded noise, and prior information of the form x ∈ C for

some set C.

In this paper, we adopt the bounded error methodology and assume that the noise is norm-bounded ‖w‖2 ≤

ρ. The estimator we develop can also be used when w is random by choosing ρ proportional to its variance.

We further suppose that x ∈ C where we focus on sets C that are given by an intersection of ellipsoids.

This form of C is quite general and includes a large variety of structures, among them are weighted norm

constraints, and interval restrictions. Since we do not assume a statistical model, our objective is to choose x̂

to be close to x in the squared error sense. Thus, instead of minimizing the data error, we suggest minimizing

the worst-case estimation error ‖x̂ − x‖2 over all feasible solutions. As we show in Section II, the proposed

minimax estimator has a nice geometric interpretation in terms of the center of the minimum radius ball
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enclosing the feasible set. Therefore, this methodology is also referred to as the Chebyshev center approach

[16]. In Section VII we demonstrate that this strategy can indeed reduce the estimation error dramatically

with respect to the CLS method.

Finding the Chebyshev center of a set is a difficult and typically intractable problem. Two exceptions

are when the set is polyhedral and the estimation error is measured by the l∞ norm [17], and when the set

is finite [18]. Recently, we considered this approach for C given by an ellipsoid [19]. When the problem is

defined over the complex domain we showed that the Chebyshev center can be computed exactly by relying

on strong duality results [20]. In the real domain, we suggested an approximation based on Lagrange duality

and semidefinite relaxation, referred to as the relaxed Chebyshev center (RCC). We then showed through

numerical simulations that the RCC estimate outperforms other estimates such as least squares and Tikhonov

with respect to the estimation error.

Here we generalize the RCC estimator to the intersection of several ellipsoids in order to extend its ap-

plicability to a larger set of signal processing problems. In addition, we further explore the properties of

the RCC estimate, and compare it to the CLS approach, thus providing new results even for the case of a

single ellipsoid treated in [19]. In particular, we show that both the exact Chebyshev center and the RCC

are unique and feasible, meaning they satisfy the prior constraints and are therefore consistent with the given

prior knowledge. Our development of the RCC estimate in this paper is different than that presented for the

single ellipsoid case in [19]. Here we use the fact that the RCC can be cast as a solution to a convex-concave

saddle point program. This method of proof leads to an alternative representation of the RCC which has

several advantages. First, it is simpler to solve than the minimization problem obtained in [19]. Second, the

same method can be used to show that the CLS estimator can also be viewed as a relaxation of the Chebyshev

center, however this relaxation is looser than that of the RCC. This motivates the observation that in many

different examples the RCC leads to smaller estimation error. Third, this approach immediately reveals the

feasibility of the RCC solution. Finally, as we discuss next, this strategy can be used to explore methods for

representing linear constraints.

In many applications there are restrictions on x of the form `i ≤ xi ≤ ui. These constraints can be written as
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two linear inequalities, or a single quadratic constraint of the form (xi− `i)(xi−ui) ≤ 0. The true Chebyshev

center is the same regardless of the specific characterization chosen, as it is defined by the constraint set C

which is the same in both cases. However, as we show, the RCC depends on the specific representation of the

set. An important question therefore in the context of the RCC is how to best represent linear constraints

in order to obtain a smaller estimation error. Here we show that the quadratic characterization leads to a

tighter approximation of the true minimax value and is therefore preferable in this sense.

The paper is organized as follows. In Section II we discuss the geometrical properties of the Chebyshev

center and its application to estimation problems. We then develop in Section III the RCC using a simpler

method than that in [19]. The feasibility of the Chebyshev center and the RCC estimate are discussed in

Section IV. In Section V we show that the CLS estimate can also be viewed as a relaxation of the Chebyshev

center, which is looser than the RCC. The representation of linear constraints is discussed in VI. In Section VII

we demonstrate via examples that the RCC strategy can dramatically reduce the estimation error with respect

to the CLS method.

II. The Chebyshev Center

We denote vectors by boldface lowercase letters, e.g., y, and matrices by boldface uppercase letters e.g.,

A. The ith component of a vector y is written as yi, and (̂·) is an estimated vector. The identity matrix is

denoted by I, and AT is the transpose of A. Given two matrices A and B, A Â B (A º B) means that

A−B is positive definite (semidefinite).

We treat the problem of estimating a deterministic parameter vector x ∈ Rm from observations y ∈ Rn

which are related through the linear model

y = Ax + w. (1)

Here A is a known n×m model matrix, w is a perturbation vector with bounded norm ‖w‖2 ≤ ρ, and x lies

in the set C defined by the intersection of k ellipsoids:

C = {x : fi(x)
4
= xTQix + 2gT

i x + di ≤ 0, 1 ≤ i ≤ k}, (2)
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where Qi º 0,gi ∈ Rm and di ∈ R. To simplify notation, we present the results for the real case, however all

the derivations hold true for complex-valued data as well. Combining the restrictions on x and w, the feasible

parameter set, which is the set of all possible values of x, is given by

Q = {x : x ∈ C, ‖y −Ax‖2 ≤ ρ}. (3)

In order to obtain strictly feasible optimization problems, we assume throughout that there is at least one

point in the interior of Q. In addition, we require that Q is compact. To this end it is sufficient to assume

that ATA is invertible.

Given the prior knowledge x ∈ C, a popular estimation strategy is the CLS approach, in which the estimate

is chosen to minimize the data error over the set C. Thus, the CLS estimate, denoted x̂CLS, is the solution to

min
x∈C

‖y −Ax‖2. (4)

Clearly x̂CLS is feasible, namely is satisfies the prior knowledge. However, the fact that it minimizes the data

error over C does not mean that it results in a small estimation error ‖x̂ − x‖. In fact, the simulations in

Section VII demonstrate that the resulting error can be quite large.

To design an estimator with small estimation error, we suggest minimizing the worst-case error over all

feasible vectors. This is equivalent to finding the Chebyshev center of Q:

min
x̂

max
x∈Q

‖x̂− x‖2. (5)

Geometrically, the Chebyshev center is the center of the minimum radius ball enclosing Q. The optimal

minimax value of (5) is the squared radius of the minimal ball enclosing the set. This is illustrated in Fig. 1

with the filled area being the intersection of three ellipsoids. The dotted circle is the minimum inscribing

circle of the intersection of the ellipsoids.

Computing the Chebyshev center (5) is a hard optimization problem. To better understand the intrinsic
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Fig. 1. The Chebyshev center of the intersection of three ellipsoids.

difficulty, note that the inner maximization is a non-convex quadratic optimization problem. Relying on strong

duality results derived in the context of quadratic optimization [20], it was recently shown that despite the

non-convexity of the problem, it can be solved efficiently over the complex domain when Q is the intersection

of 2 ellipsoids. The same approach was then used over the reals to develop an approximation of the Chebyshev

center. Here we extend these ideas to a more general quadratic constraint set. The importance of this extension

is that in many practical applications there are more than 2 constraints. For example, interval restrictions

are popular in image processing in which the components of x represent individual pixel values which are

limited to a fixed interval (e.g., [0,255]). A bound of the form `i ≤ xi ≤ ui can be represented by the ellipsoid

(xi− `i)(xi−ui) ≤ 0, or by the intersection of the two degenerate ellipsoids xi−ui ≤ 0 and `i−xi ≤ 0. These

types of sets and the best way to represent them are discussed in Section VI. Another popular constraint is

‖Lx‖ ≤ η for some η > 0 where L is the discretization of a first or second order differential operator that

accounts for smoothness properties of x [1, 21].

III. The Relaxed Chebyshev Center

The RCC estimator, denoted x̂RCC, is obtained by replacing the non-convex inner maximization in (5) by

its semidefinite relaxation, and then solving the resulting convex-concave minimax problem.
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To develop x̂RCC, consider the inner maximization in (5):

max
x
{‖x̂− x‖2 : fi(x) ≤ 0, 0 ≤ i ≤ k}, (6)

where fi(x), 1 ≤ i ≤ k are defined by (2), and f0(x) is defined similarly with Q0 = ATA, g0 = −ATy, d0 =

‖y‖2 − ρ so that f0(x) = ‖y −Ax‖2 − ρ. Thus, the set Q can be written as

Q = {x : fi(x) ≤ 0, 0 ≤ i ≤ k}. (7)

Denoting ∆ = xxT , (6) can be written equivalently as

max
(∆,x)∈G

{‖x̂‖2 − 2x̂Tx + Tr(∆)}, (8)

where

G = {(∆,x) : Tr(Qi∆) + 2gT
i x + di ≤ 0, ∆ = xxT }. (9)

The objective in (8) is concave (linear) in (∆,x), but the set G is not convex. To obtain a relaxation of (8)

we may replace G by the convex set

T = {(∆,x) : Tr(Qi∆) + 2gT
i x + di ≤ 0, ∆ º xxT }. (10)

The RCC is the solution to the resulting minimax problem:

min
x̂

max
(∆,x)∈T

{‖x̂‖2 − 2x̂Tx + Tr(∆)}. (11)

The objective in (11) is concave (linear) in ∆ and x and convex in x̂. Furthermore, the set T is bounded.

Therefore, we can replace the order of the minimization and maximization [22], resulting in the equivalent
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problem

max
(∆,x)∈T

min
x̂
{‖x̂‖2 − 2x̂Tx + Tr(∆)}. (12)

The inner minimization is a simple quadratic problem, whose optimal value is x̂ = x. Thus, (12) reduces to

max
(∆,x)∈T

{−‖x‖2 + Tr(∆)}, (13)

which is a convex optimization problem with a concave objective and linear matrix inequality constraints.

The RCC estimate is the x-part of the solution to (13).

The RCC is not generally equal to the Chebyshev center of Q. An exception is when k = 1 with the problem

defined over the complex domain [19]. Since clearly G ⊆ T , we have that

min
x̂

max
x∈Q

‖x̂− x‖2 = min
x̂

max
(∆,x)∈G

{‖x̂‖2 − 2x̂Tx + Tr(∆)}

≤ min
x̂

max
(∆,x)∈T

{‖x̂‖2 − 2x̂Tx + Tr(∆)}. (14)

Therefore the RCC provides an upper bound on the optimal minimax value.

In Theorem III.1 below we present an explicit representation of the RCC.

Theorem III.1: The RCC estimate, x̂RCC which is the solution to (13), is given by

x̂RCC = −
(∑k

i=0 αiQi

)−1 (∑k
i=0 αigi

)
, (15)

where (α1, . . . , αk) is an optimal solution of the following convex optimization problem in k + 1 variables:

minαi

{
(
∑k

i=0 αigi)T (
∑k

i=0 αiQi)−1(
∑k

i=0 αigi)

− ∑k
i=0 diαi

}

s.t.
∑k

i=0 αiQi º I,

αi ≥ 0, 0 ≤ i ≤ k.

(16)
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Before proving the theorem, note that (16) can be cast as a semidefinite program (SDP) [23]:

minαi

{
t−∑k

i=0 diαi

}

s.t.




∑k
i=0 αiQi

∑k
i=0 αigi

∑k
i=0 αigT

i t


 º 0,

∑k
i=0 αiQi º I,

αi ≥ 0, 0 ≤ i ≤ k.

(17)

Proof: To prove the theorem we show that (16) is the dual of (13). Since (13) is convex and strictly

feasible (because we assumed that there is a point in the interior of Q), its optimal value is equal to that of

its dual problem. To compute the dual, we first form the Lagrangian:

L = −‖x‖2 + Tr(∆) + Tr(Π(∆− xxT ))

−∑k
i=0 αi(Tr(Qi∆) + 2gT

i x + di), (18)

where αi ≥ 0 and Π º 0 are the dual variables. Differentiating L with respect to x and equating to 0,

x = −(I + Π)−1 ∑k
i=0 αigi, (19)

where we used the fact that since Π º 0, I + Π is invertible. The derivative with respect to ∆ yields,

I + Π =
∑k

i=0 αiQi. (20)

Combining (19) and (20) yields (15).

Next we note that since Π º 0, we must have from (20) that
∑k

i=0 αiQi º I. Finally, substituting (19) and

(20) into (18), we obtain the dual problem (16).

For k = 1, the expression for the RCC reduces to the one obtained in [19]. We note that our derivation in

Theorem III.1 for an arbitrary k is significantly simpler than the derivation in [19] for the special case k = 1.
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The main difference is that here we replace the inner maximization with its semidefinite relaxation, while

in [19], this maximization was replaced by its Lagrangian dual. These derivations are equivalent since the

dual problem of the inner maximization problem is also the dual of the (convex) semidefinite relaxation [23].

Besides its simplicity, this approach can be used to show that the CLS may also be interpreted as a relaxation

of the Chebyshev center. This is the topic of Section V.

IV. Feasibility of the Exact Chebyshev Center and the RCC

The Chebyshev center and RCC approaches are designed to estimate x when we have the prior knowledge

x ∈ Q where Q is defined by (7) (or (3)). Therefore, a desirable property of these estimates is that they

should also reside in the set Q, meaning they should be consistent with the prior information.

In Section IV-A we use the definition of the exact Chebyshev center to establish its feasibility. We then

prove in Section IV-B the feasibility of the RCC by using the representation (13).

A. Feasibility of the Chebyshev Center

Proposition IV.1: The solution x̂ of (5) is unique and feasible.

Proof: Problem (5) can be written as

min
x̂

{‖x̂‖2 + ϕ(x̂)
}

, (21)

where ϕ(x̂) ≡ maxx∈Q{−2xT x̂ + ‖x‖2}. Since ϕ is a maximum of convex functions of x̂, it is convex. As a

result, ‖x̂‖2 + ϕ(x̂) is strictly convex which readily implies [24] that (21) has a unique solution.

In order to prove the feasibility of the Chebyshev center, we will assume by contradiction that the optimal

solution x̂ of (5) is infeasible, i.e., x̂ /∈ Q. Let y = PQ(x̂), where PQ(·) denotes the orthogonal projection

operator onto the convex set Q. By the projection theorem on convex sets [24] we have

(x̂− y)T (x− y) ≤ 0 for every x ∈ Q. (22)
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Therefore, for every x ∈ Q,

‖y − x‖2 < ‖y − x‖2 + ‖x̂− y‖2

= ‖y − x + x̂− y‖2 + 2(x− y)T (x̂− y)

≤ ‖x̂− x‖2,

where the first inequality follows from the fact that y 6= x̂ and the last inequality is due to (22). Thus,

‖y − x‖2 < ‖x̂− x‖2 for every x ∈ Q, (23)

which using the compactness of Q implies that

max
x∈Q

‖y − x‖2 < max
x∈Q

‖x̂− x‖2,

contradicting the optimality of x̂.

B. Feasibility of the RCC

Proposition IV.2: The RCC estimate x̂RCC of (11) is unique and feasible.

Proof: The uniqueness follows from similar arguments as in the proof of Proposition IV.1. The feasibility

results from the observation that x̂RCC can be expressed as the solution to (13).

Specifically, let (∆̂, x̂RCC) be a solution to (13). Since (∆̂, x̂RCC) ∈ T , where T is defined by (10), we have

that

Tr(Qi∆̂) + 2gT
i x̂RCC + di ≤ 0, 0 ≤ i ≤ k. (24)
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In addition, ∆̂ º x̂RCCx̂T
RCC. Since Qi º 0, this in turn implies that

fi(x̂RCC) = x̂T
RCCQix̂RCC + 2gT

i x̂RCC + di

= Tr(Qix̂RCCx̂T
RCC) + 2gT

i x̂RCC + di

≤ Tr(Qi∆̂) + 2gT
i x̂RCC + di ≤ 0, (25)

where we used the fact that if A º B and Q º 0, then Tr(AQ) ≥ Tr(BQ). We conclude that fi(x̂RCC) ≤

0, 0 ≤ i ≤ k, which implies that x̂RCC ∈ Q with Q defined by (7).

V. Relation With The CLS

Using a similar derivation to that of the RCC estimator we now show that the CLS estimate can also be

viewed as a relaxation of the Chebyshev center. However, this relaxation is looser than that of the RCC

meaning that the resulting bound on the minimax value is larger.

The RCC estimate was based on the prior information x ∈ C with C given by (2), and the bounded error

constraint ‖y −Ax‖2 ≤ ρ. The CLS estimate, which is the solution to (4), does not consider the bounded

noise restriction and instead tries to minimize the noise (or the data error) over x ∈ C.

To establish the relation with the Chebyshev center, we first note that x ∈ Q is equivalent to x ∈ C and

‖y −Ax‖2 ≤ ρ. Now, the RCC was obtained by replacing x ∈ Q by the equivalent set (x,∆) ∈ G with G

given by (9), and then relaxing the non-convex constraint in G to obtain the convex set T of (10). As we now

show, the CLS can be viewed as a relaxed Chebyshev center where G is replaced by a different convex set V,

that is larger than T . To obtain V, note that G can be written as

G = {(∆,x) : x ∈ C,

Tr(ATA∆)− 2yTATx + ‖y‖2 − ρ ≤ 0, ∆ = xxT }. (26)

In this representation we substituted ∆ = xxT only in the noise constraint, but not in the constraints x ∈ C.
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We now relax the non-convex equality and obtain the relaxed convex set

V = {(∆,x) : x ∈ C,

Tr(ATA∆)− 2yTATx + ‖y‖2 − ρ ≤ 0, ∆ º xxT }. (27)

Evidently, the relaxation only effected the noise constraint and not those in C.

Theorem V.1 establishes that x̂CLS is the solution to the resulting minimax problem:

min
x̂

max
(∆,x)∈V

{‖x̂‖2 − 2x̂Tx + Tr(∆)}. (28)

Theorem V.1: The CLS estimate of (4) is the same as the relaxed Chebyshev center (28).

Proof: To prove the theorem we first follow similar steps as in the proof of the RCC, and replace the

order of the minimization and the maximization. Noting that as before the optimal choice of x̂ is x̂ = x we

arrive at the equivalent problem

max
(∆,x)∈V

{−‖x‖2 + Tr(∆)}. (29)

We now show that (29) and the CLS problem (4) have the same solution x. To see this, let (x1,∆) be an

optimal solution of (29) and let x2 be the solution of (4). Suppose to the contrary that x1 6= x2. Since the

objective function in the CLS problem is strictly convex (because ATA is invertible), x2 is the unique optimal

solution, which implies that

r ≡ ‖y −Ax1‖2 − ‖y −Ax2‖2 > 0. (30)

Define

∆′ = ∆ + x2xT
2 − x1xT

1 +
r

Tr(ATA)
I, (31)

It is easy to see that (∆′,x2) ∈ V. Indeed, x2 ∈ C, and since ∆ º x1xT
1 we have immediately that ∆′ Â x2xT

2 .
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Furthermore,

Tr(∆′ATA) =

= Tr(∆ATA) + r + xT
2 ATAx2 − xT

1 ATAx1

≤ ρ− ‖y‖2 + 2yTATx1 + r + xT
2 ATAx2 − xT

1 ATAx1

< ρ− ‖y‖2 + 2yTATx2, (32)

where the last inequality follows from (30). Denote the objective value of (29) by P (∆,x). Then

P (∆′,x2) = P (∆,x1) + r
n

Tr(ATA)
> P (∆,x1), (33)

which contradicts the optimality of (∆,x1). Therefore we must have x2 = x1.

We conclude that the RCC and CLS estimates can both be viewed as relaxations of the Chebyshev center

problem (5). Since obviously T ⊆ V, the CLS estimate is the solution of a looser relaxation than the one

associated with the RCC. As we show in Section VII, the estimation error corresponding to the CLS estimate

is typically much larger than that resulting from the RCC approach.

VI. Modelling of Linear Constraints

As we noted in Section II, there are many signal processing examples in which there are interval constraints

on the elements of x. In this section we address the question of how to best represent such restrictions.

Specifically, suppose that one of the constraints defining the set Q is a double-sided linear inequality of the

form

` ≤ aTx ≤ u, (34)

where ` < u and a ∈ Rm is a nonzero vector. The constraint (34) can also be written in quadratic form as

(aTx− `)(aTx− u) ≤ 0. (35)
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An important question that arises is whether or not the RCC depends on the specific representation of the

set Q. Clearly the CLS and Chebyshev center estimates are independent of the representation of Q, as they

depend only the set Q itself. However, the RCC estimate is more involved as it is a result of a relaxation of

Q, so that different characterizations may lead to different relaxed sets. In this section we show that indeed

the RCC depends on the specific form of Q chosen. Furthermore, we prove that the quadratic representation

(35) is better than the linear characterization (34) in the sense that the resulting minimax value is smaller.

Suppose that we have the following two representations of the same set:

Q1 = {x : fi(x) ≤ 0,aTx− u ≤ 0,−aTx + ` ≤ 0},

Q2 = {x : fi(x) ≤ 0, (aTx− `)(aTx− u) ≤ 0}, (36)

where 0 ≤ i ≤ p, and fi(x) = xTQix + 2gT
i x + di with Qi º 0,gi ∈ Rm and di ∈ R. The RCC estimates

corresponding to these sets are obtained by forming the relaxed sets T1 and T2, as defined by (10), namely:

T1 = {(∆,x) : Tr(Qi∆) + 2gT
i x + di ≤ 0,

aTx− u ≤ 0,−aTx + ` ≤ 0, ∆ º xxT }, (37)

T2 = {(∆,x) : Tr(Qi∆) + 2gT
i x + di ≤ 0,

Tr(aaT ∆)− (u + `)aTx + u` ≤ 0, ∆ º xxT }. (38)

and then solving (11). Denote by V1 and V2 the objective values resulting from T1 and T2, respectively.

As in (14), both values are upper bounds on the exact squared radius of the minimum enclosing ball of

Q = Q1 = Q2, i.e.,

V1 ≥ min
x̂

max
x∈Q

‖x̂− x‖2, V2 ≥ min
x̂

max
x∈Q

‖x̂− x‖2. (39)

This follows from the fact that Q ⊆ T1 and Q ⊆ T2. In the next theorem we show that the “quadratic”

representation Q2 provides a tighter upper bound than the one given by the “linear” representation Q1.
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Theorem VI.1: Let V1 and V2 denote the optimal values of (11) when T = T1 and T = T2, respectively.

Then V2 ≤ V1.

Proof: To prove the result, we will show that

T2 ⊆ T1, (40)

which implies

V1 = min
x̂

max
(∆,x)∈T1

{‖x̂‖2 − 2x̂Tx + Tr(∆)}

≥ min
x̂

max
(∆,x)∈T2

{‖x̂‖2 − 2x̂Tx + Tr(∆)} = V2. (41)

To show (40), it is sufficient to prove that if (∆,x) is in T2, then it is also in T1. Let (∆,x) ∈ T2. Since the

first p + 1 constraints defining T2 are the same as the first p + 1 constraints defining T1, we only need to show

that the last two constraints in T1 are satisfied, i.e.,

aTx− u ≤ 0, −aTx + ` ≤ 0. (42)

Since (∆,x) ∈ T2, we have

Tr(aaT ∆)− (u + `)aTx + u` ≤ 0. (43)

Combining (43) with the matrix inequality ∆ º xxT , it follows that

xTaaTx− (u + `)aTx + u` ≤ 0. (44)

But (44) is equivalent to (aTx− `)(aTx− u) ≤ 0, which in turn is the same as (42). Therefore, (∆,x) ∈ T1,

proving the result.

A consequence of the theorem, is that in the presence of several double sided linear constraints, it is best

to represent all of them as quadratic constraints.
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The importance of the representation of linear constraints in the context of Lagrangian dual bounds was

noted in1 [25, Example 1] where the following two representations of the same optimization problem were

considered:

max{−x2
1 + x2

2 : x2 = 1},

max{−x2
1 + x2

2 : (x2 − 1)2 = 0}.

The Lagrangian dual bound of the first problem is ∞ (i.e., meaningless); the dual bound of the second

problem is equal to 1 which is the optimal value of the two (identical) problems. Theorem VI.1 provides

another motivation to using the quadratic representation.

We have observed through numerical examples that the linear representation provides a much worse bound

on the squared radius of the minimum enclosing circle. A typical example can be seen in Fig. 2. The filled

region describes the intersection of a randomly generated ellipsoid E with the box [−1, 1] × [−1, 1]. The

asterisk in the left picture is the RCC of the set E ∩ ([−1, 1]× [−1, 1]) when the box constraints are modelled

as x2
i ≤ 1, i = 1, 2. The asterisk in the right picture is the RCC when the box constraints are represented as

−1 ≤ xi ≤ 1, i = 1, 2. Clearly, the RCC using the linear representation is far from the center of the filled

region (actually, it is on the boundary of the area!). In contrast, the RCC corresponding to the quadratic

representation seems like a good measure of the center of the set. The minimax value using the linear

representation was approximately 37% higher than that resulting from the quadratic representation.

VII. Examples

To illustrate the effectiveness of the RCC approach in comparison with the CLS method, we consider two

examples from the “Regularization Tools” [26].

1We are indebted to Henry Wolkowicz for refereing us to this example.
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Fig. 2. The RCC of the intersection of an ellipsoid with the box [−1, 1]× [−1, 1] using a quadratic representation (top)
and a linear representation (bottom).

A. Heat Equation

The first example is a discretization of the heat integral equation implemented in the function heat(90,1).

In this case,

Ax = g, (45)

where A ∈ R90×90 and x,g ∈ R90. The matrix A in this problem is extremely ill-conditioned. The true

vector x is shown in Fig. VII-A (True Signal) and resides in the set

C = {x ∈ R90 : x ≥ 0,xTe ≤ η}, (46)

where e is the vector of all ones. The observed vector is given by y = g + w where the elements of w are

zero-mean, independent Gaussian random variables with standard deviation 0.001. Both g and y are shown

in Fig. VII-A (Observation).
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Fig. 3. Comparison between the RCC and CLS estimates.

To compute the RCC, we chose the set Q as

Q = {‖Ax− y‖2 ≤ ρ,x ∈ C}

with ρ = α‖w‖2 for some constant α, and η = α(
∑90

i=1 xi). We then used the following quadratic representation

of C:

{x ∈ R90 : xi(xi − η) ≤ 0, (xTe)2 ≤ η2, i = 1, . . . , 90}.

For comparison, we computed the CLS estimate which is the solution to min{‖Ax− y‖2 : x ∈ C}.

The results of the RCC and CLS estimates for α = 2 and α = 10 are shown at the bottom of Fig. VII-A.

Evidently, the RCC approach leads to the best performance. The squared error of the RCC image ‖x̂RCC−x‖2

was 196 and 55 times smaller than that of the CLS solution for α = 2 and α = 10 respectively.

The performance of both methods is better when α = 2, as expected. However, it is interesting to note that

even when α = 10, so that very loose prior information is used, the RCC results in very good performance.

B. Image Deblurring

As a second example, we consider a small image deblurring problem, again from the regularization tools.
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In this problem the true value of x is of length 256 and is obtained by stacking the columns of the 16× 16

image. The matrix A is of size 256 × 256 and represents an atmospheric turbulence blur originating from

[27]; it is implemented in the function blur(16,4,0.8) (4 is the half bandwidth and 0.8 is the standard deviation

associated with the corresponding point spread function). The image corresponding to x is shown at the

top left corner of Fig. 4. The image is scaled so that each pixel is bounded below and above by 0 and 4

respectively.

The observed vector was generated by Ax + w where each component of w ∈ R256 was independently

generated from a normal distribution with zero mean and standard deviation 0.05. The noisy image is shown

in Fig. 4 (Observation). To estimate x we considered several approaches:

• LS. The LS estimator given by x̂LS = (ATA)−1ATy. As can be seen in Fig. 4, the resulting image is

very poor.

• RLS. The regularized LS solution which is the CLS corresponding to the norm constraint ‖x‖2 ≤ ρ. In

our experiments ρ was chosen to be 1.1‖x‖2. As can be seen from Fig. 4, the RLS method also generates a

poor image.

• CLS. Here we consider the CLS estimator when the bound on the pixels are taken into account. That is,

the CLS image is the solution to the minimization problem

min{‖Ax− y‖2 : xi(xi − 4) ≤ 0, 1 ≤ i ≤ 256}.

Note that we use the quadratic representation of the constraints 0 ≤ xi ≤ 4. The image resulting from the

CLS approach is much clearer than those resulting from the LS and RLS strategies.

• RCC. Finally, we compare the previous results with the RCC estimate corresponding to the set

Q = {x : ‖Ax− y‖2 ≤ ρ, xi(xi − 4) ≤ 0, 1 ≤ i ≤ 256}.

The upper bound on the squared norm of the noise vector was chosen to be ρ = 1.3‖w‖2. Evidently, the
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Fig. 4. Comparison between different estimators.

RCC results in the best image quality. The squared error of the RCC image ‖x̂RCC − x‖2 was 33% smaller

than the squared error of the CLS image ‖x̂CLS − x‖2.

VIII. Conclusion

We introduced a new estimation strategy for estimating a deterministic parameter vector x in the linear

regression model, when x is known to lie in a known parameter set C. In our development, we considered

the case in which C can be described by a set of quadratic inequality constraints. This includes bounded

norm and interval (linear) restrictions. Instead of minimizing the data error, which results from a maximum

likelihood approach, we suggested maximizing the worst-case estimation error over the given parameter set,

which is equivalent to finding the Chebyshev center of the set. This allows to directly control the estimation

error which is a direct measure of estimator quality. To this end we add a constraint on the resulting data

error which can be chosen to be proportional to the variance of the noise. Since the resulting problem is
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intractable, we suggested a relaxation based on semidefinite programming which can be solved efficiently. We

then demonstrated via examples that the performance of the proposed RCC estimate can be much better

than that of conventional least-squares based methods in terms of estimation error.
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