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Zero Forcing Precoding and Generalized Inverses
Ami Wiesel, Yonina C. Eldar and Shlomo Shamai (Shitz)

Abstract— We consider the problem of linear zero forcing
precoding design, and discuss its relation to the theory of
generalized inverses in linear algebra. Special attention is given
to a specific generalized inverse known as the pseudo-inverse.
We begin with the standard design under the assumption of a
total power constraint and prove that precoders based on the
pseudo-inverse are optimal in this setting. Then, we proceed to
examine individual per-antenna power constraints. In this case,
the pseudo-inverse is not necessarily the optimal generalized
inverse. In fact, finding the optimal inverse is non-trivial and
depends on the specific performance measure. We address two
common criteria, fairness and throughput, and show that the op-
timal matrices may be found using standard convex optimization
methods. We demonstrate the improved performance offered by
our approach using computer simulations.

Index Terms— Zero forcing precoding, Beamforming, Gener-
alized inverses, Semidefinite relaxation, per-antenna constraints.

I. INTRODUCTION

Transmitter design for the multiple input single output
(MISO) multiuser broadcast channel is an important problem
in modern wireless communication systems. The main diffi-
culty in this channel is that coordinated receive processing
is not possible and that all the signal processing must be
employed at the transmitter side. From an information theory
perspective, the capacity region of this channel was only
recently characterized [1]. From a signal processing point of
view there are still many open questions and there is ongoing
search aimed at finding efficient yet simple transmitter design
algorithms. In particular, linear precoding schemes which seem
to provide a promising tradeoff between performance and
complexity received considerable attention [2]–[4].

The most common linear precoding scheme is zero forc-
ing (ZF) beamforming. This simple method decouples the
multiuser channel into multiple independent sub-channels, and
reduces the design into a power allocation problem. It performs
very well in the high signal-to-noise-ratio (SNR) regime or
when the number of users is sufficiently large, and is known
to provide full degrees of freedom [1]. Moreover, it is easy to
generalize this method to incorporate non-linear dirty paper
coding (DPC) mechanisms [1]. There are dozens of papers
on ZF precoding focusing on different design criteria [4]–
[10]. Among these, two common criteria are maximal fairness
and maximum throughput. Due to its simplicity, ZF precoding
is also an appealing transmission method in multiple input
multiple output (MIMO) broadcast channels [11]–[15].
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Traditionally, the transmitter is designed under the assump-
tion of a total power constraint [1]–[10]. In practice, there is
increasing interest in addressing more complicated scenarios,
such as individual per-antenna power constraints. These are
more realistic since each transmit antenna has its own power
amplifier. Moreover, state-of-the-art communication systems
will utilize multiple transmitters, which are geographically
separated, but cooperatively send data to the receiving units.
In such systems, it is clear that each transmitter has its own
power restrictions. Recently, our work on linear precoding [2]
was generalized to incorporate per-antenna power constraints
in [16]. The problem with these methods is their prohibitive
computational complexity. Therefore, ZF precoding methods
were also generalized to address per-antenna power constraints
[17]–[19].

Interestingly, ZF precoding design is highly related to the
concept of generalized inverses in linear algebra [20]. This
is easy to understand as the ZF precoder basically inverts
the multiuser channel. Previous works using total power
constraints [4]–[10] as well as individual per-antenna power
constraints [17]–[19] began with the assumption that the
precoder has the form of a specific generalized inverse known
as the pseudo-inverse. We prove that the pseudo-inverse based
precoder is optimal for maximizing any performance measure
under a total power constraint. However, when per-antenna
power constraints are involved, it is no longer optimal and
other generalized inverses may outperform it. Finding the
optimal inverse is non-trivial and depends on the specific
performance criterion. We consider the two classical criteria,
fairness and throughput, and transform the design problems
into convex optimization programs which can be solved effi-
ciently using off-the-shelves numerical packages.

The ZF precoding design for maximizing throughput turns
out to be a non-convex optimization problem. One of the
methods for handling such problems is to lift it into a
higher dimension and then relax the non-convex constraints.
Consequently, there is an increasing interest in analyzing the
tightness of such relaxations [21], [22]. We apply this method
and use Lagrange duality to prove that the relaxation is always
tight in our setting.

The paper is organized as follows. In Section II we in-
troduce the ZF precoding design problem. A brief review
on generalized inverses is provided in Section III. Next,
precoding under total power constraint is addressed in Section
IV, whereas precoding under individual per-antenna power
constraints is considered in Section V. A few numerical results
are demonstrated in Section VI.

The following notation is used. Boldface upper case letters
denote matrices, boldface lower case letters denote column
vectors, and standard lower case letters denote scalars. The
superscripts (·)T , (·)−1, (·)− and (·)† denote the transpose,
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matrix inverse, generalized inverse and pseudo-inverse, respec-
tively. The operators Tr {·}, ‖ · ‖ and ‖ · ‖F denote the trace,
the Euclidean norm and the Frobenius norm, respectively. The
operators diag {d} and diag {dk} denote a diagonal matrix
with the elements d and dk, respectively. The matrix I denotes
the identity matrix, 1 is the vector of ones, and ek is a zeros
vector with a one in the k’th element. Finally, X º 0 means
that X is positive semidefinite.

II. PROBLEM FORMULATION

We consider the standard MISO multiuser broadcast channel

yk = hT
k x + wk, k = 1, · · · ,K, (1)

where yk is the received sample of the k’th user, hk is the
length N channel to this user, x is the length N transmitted
vector and wk are zero mean and unit variance Gaussian noise
samples. For simplicity, we use the following matrix notation

y = Hx + w, (2)

where y = [y1, · · · , yK ]T , H = [h1, · · · ,hK ]T and w =
[w1, · · · , wK ]T . Throughout the paper we will assume that
K ≤ N and H is full row-rank.

In linear precoding methods, the transmitted vector is a
linear transformation of the information symbols (see Fig. 1)

x = Ts, (3)

where the length K information vector s satisfies E{ssT } = I.
The precoding matrix T is then designed to maximize some
performance measure. Typical metrics involve functions of the
received signal-to-interference-plus-noise ratios (SINRs):

qk =
[HT]2k,k∑

j 6=k [HT]2k,j + 1
, k = 1, · · · ,K. (4)

Such measures usually lead to untractable optimization prob-
lems. ZF precoding is a standard approach for addressing such
problems which is known to provide a promising tradeoff
between complexity and performance. Here, T is designed to
achieve zero interference between the users, i.e., [HT]k,j = 0
if k 6= j. Moreover, without loss of generality, we assume that
[HT]k,k ≥ 0 for k = 1, · · · ,K. Using matrix notation, the ZF
condition is equivalent to

HT = diag {√q} , (5)

where
√

q =
[√

q1, · · · ,√qK

]T is a vector with non-negative
elements. These restrictions simplify the design and decouple
the broadcast channel into K independent scalar sub-channels

yk =
√

qksk + wk, k = 1, · · · ,K. (6)

Traditionally, precoders are designed subject to a total power
constraint of the form

E{‖x‖2} = Tr
{
TTT

}
= ‖T‖2F ≤ P, (7)

where P > 0. As we will show in the next sections, the total
power constraint simplifies the design problem and leads to
simple and efficient precoders. Nonetheless, in practice, many
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Fig. 1. ZF precoding with per-antenna power constraints.

systems are subject to individual per antenna power constraints
as illustrated in Fig. 1,

E{|xn|2} =
[
TTT

]
n,n

≤ P

N
, n = 1, · · · , N. (8)

In order to properly formulate the design problem we need
to define its objective. Depending on the application, different
criteria may be considered. Two typical performance measures
are:
• Fairness: f(q) = mink qk

• Throughput: f(q) =
∑

k log (1 + qk)
Therefore, we treat two fundamental design problems. In
section IV, we consider the optimal T for maximizing f(q)
subject to the zero forcing constraint and a total power
constraint. In Section V we generalize the setting to individual
per-antenna power constraints. Both fairness and throughput
are addressed in the two problems.

III. GENERALIZED INVERSES

The ZF precoding design problem is highly related to the
concept of generalized inverses in linear algebra [20], [23].
Therefore, we now briefly review this topic.

Formally, the generalized inverse of a size K × N matrix
H is any matrix H− of size N ×K such that HH−H = H.
If H is square and invertible, then H− = H−1. Otherwise,
the generalized inverse is not unique. The pseudo-inverse H†

is a specific generalized inverse that satisfies HH†H = H,
H†HH† = H†,

(
H†H

)T = H†H and
(
HH†)T = HH†.

It is unique and is known to have minimal Frobenius norm
among all the generalized inverses.

In this paper, we assume that H is a full row-rank matrix.
Under this assumption, the generalized inverse is any matrix
H− such that HH− = I. The pseudo-inverse is given by
H† = HT

(
HT H

)−1
and any generalized inverse may be

expressed as

H− = H† + P⊥U, (9)

where P⊥ = I −H†H is the orthogonal projection onto the
null space of H and U is an arbitrary matrix.

Using the above definitions and properties, it is easy to see
the relation between ZF precoding and generalized inverses.
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Due to (5), the general structure of any ZF precoder is

T = H−diag {√q}
=

[
H† + P⊥U

]
diag {√q} . (10)

This reduces the precoder design problem to an optimization
with respect to the elements of q and the specific choice of
generalized inverse via U. Roughly speaking, we will show
that the optimization of q depends on the design criteria
(fairness vs. throughput), whereas the optimization of U is
associated with the power constraints (total vs. per-antenna).
In fact, the discussion above suggests that the pseudo-inverse
(U = 0) is optimal with respect to the total power constraint
which is associated with the Frobenius norm. We will show
that when more complicated constraints are involved the
optimal U is not necessarily zero.

IV. TOTAL POWER CONSTRAINT

The problem of ZF precoding design under a total power
constraint has already received considerable attention [4]–
[9]. To our knowledge, in all of the previous works it was
taken for granted that the precoder T must be based on the
pseudo-inverse rather than any other generalized inverse. This
simplified the design and reduced it to a power allocation
problem. The next theorem proves that the pseudo-inverse is
indeed optimal under a total power constraint:

Theorem 1: Let f(·) be an arbitrary function of q. The
optimal solution to

maxT,q f(q)
s.t. HT = diag

{√
q
}

;
Tr

{
TTT

} ≤ P,
(11)

is Topt = H†diag
{√

qopt
}

where qopt is the solution to

maxq≥0 f(q)
s.t.

∑
k qk

[(
H†)T

H†
]

k,k
≤ P.

(12)

Proof: Due to (10), we can rewrite (11) as

maxT,q f(q)
s.t. Tr

{[
H† + P⊥U

]
diag {q} [

H† + P⊥U
]T

}
≤ P.

(13)

Now,

Tr
{[

H† + P⊥U
]
diag {q} [

H† + P⊥U
]T

}

≥ Tr
{
H†diag {q} [

H†]T
}

, (14)

since P⊥H† = 0 and P⊥Udiag {q}UT P⊥ º 0. Therefore,
the following problem

maxT,q f(q)
s.t. Tr

{
H†diag {q} [

H†]T
}
≤ P,

(15)

is a relaxation of (13) and an upper bound on its optimal value.
However, this bound can be achieved by choosing U = 0 and
is therefore tight. Finally, choosing U = 0 is equivalent to
T = H†diag

{√
q
}

and results in (12).
The importance of this result stems from the fact that (12)

is a simple power allocation problem. In particular, assuming

that f(q) is concave in q ≥ 0, the problem is a concave
maximization with one linear constraint. For example, in the
throughput problem the problem boils down to [5], [7]

maxq≥0

∑
k log (1 + qk)

s.t.
∑

k qk

[(
HHT

)−1
]

k,k
≤ P,

(16)

which can be solved using the well known water filling
solution.

V. PER-ANTENNA POWER CONSTRAINTS

We now treat the more difficult case of ZF precoding
design under individual per-antenna power constraints. Here,
the pseudo-inverse is not necessarily the optimal generalized
inverse. In fact, finding the optimal inverse is a non-trivial
optimization problem which depends on the specific perfor-
mance measure. Therefore, we begin by presenting general
performance bounds and then address the two standard met-
rics, fairness and throughput, separately.

The optimal ZF precoder with per-antenna power constraints
for maximizing an arbitrary objective function f(q) is the
solution to

f(qopt) =





maxT,q≥0 f(q)
s.t. HT = diag

{√
q
}

;[
TTT

]
n,n

≤ P
N , ∀ n.

(17)

In general, (17) is a difficult non-convex optimization problem.
However, we can easily bound its optimal value:

L ≤ f(qopt) ≤ U (18)

where

L =

{
maxq≥0 f(q)
s.t.

∑
k qk

[
H†]2

n,k
≤ P

N , ∀ n,
(19)

U =

{
maxq≥0 f(q)
s.t.

∑
k qk

[(
H†)T

H†
]

k,k
≤ P.

(20)

As proof, just note that the lower bound in (19) can be
achieved by using the pseudo-inverse T = H†diag

{√
q
}

. In-
deed, this T yields

[
TTT

]
n,n

=
∑

k qk

[
H†]2

n,k
as expressed

in the constraints of (19). The upper bound is equal to the
optimal value of (11) or (12). Clearly, if T is feasible for
(17) then it will also be feasible for (11). Therefore, (11) is a
relaxation of (17) and results in an upper bound.

Although simple, these bounds provide some insight on the
problem without the need for solving (17) explicitly. Indeed, a
sufficient condition for the optimality of the pseudo-inverse is
U = L. Moreover, when the condition does not hold, we can
bound the performance loss due to using the pseudo-inverse by
examining the value of U −L. Depending on the application,
if this difference is sufficiently small, then there is no need to
solve (17). Otherwise, there may be an advantage in finding the
optimal generalized inverse. This optimization is usually more
complicated and depends on the specific performance measure.
In the following sections, we treat two standard objectives:
fairness and throughput.
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A. Fairness
We begin with the fairness criterion which yields the fol-

lowing optimization problem:

maxT,q≥0 mink qk

s.t. HT = diag
{√

q
}

;[
TTT

]
n,n

≤ P
N , ∀ n.

(21)

As can be expected, the fairness criterion implies that

q = q1, (22)

for some q ≥ 0 is optimal. As proof, assume that the optimal
solution is T and q ≥ 0. If qk = 0 for some k then T = 0
and q = 0 are also optimal. Otherwise, define q = mink qk,
T =

√
qT

[
diag

{√
q
}]−1

and q = q1. Then, T and q are
also feasible (since q/qk ≤ 1 for all k) and provide the same
objective value as T.

Interestingly, the observation that (22) is optimal in the
fairness case, provides a simple sufficient condition for the
optimality of the pseudo-inverse:

Proposition 1: Let

an =
[
H† (

H†)T
]

n,n
, n = 1, · · · , N. (23)

If an = a for all n are equal, then the optimal solution to (28)
is T =

√
qH† where q = P/(Na).

Proof: Due to (22), the constraints of (19) are simply
qan ≤ P/N . If an = a then the feasible set is q ≤ P/(Na).
Similarly, the feasible set of (20) can be simplified to

qTr
{(

H†)T
H†

}
= qTr

{
H† (

H†)T
}

= qNa ≤ P. (24)

Consequently, the sets are identical and L = U .
Proposition 1 holds in many practical deterministic chan-

nels. For example, it applies whenever the right singular
vectors of H are the Fourier vectors. More details on such
matrices and geometrically uniform frames can be found in
[24]. Moreover, the condition holds asymptotically in the
number of users under different random H models. Two
typical examples that arise in wireless communication systems
are when the elements of H are zero mean, equal variance and
independent Gaussian random variables [25], and when H is
modeled using the circular Wyner model [18], [19].

We now continue with the general solution to (21). Due to
(10) and (22) we obtain

T =
√

q
[
H† + P⊥U

]
, (25)

for some U. This reduces the problem to

maxU,q≥0 q

s.t. q‖ [
H† + P⊥U

]T
en‖2 ≤ P

N , ∀ n.
(26)

Now, it is clear that

q =
P

N maxn ‖ [H† + P⊥U]T en‖2
, (27)

where U is the solution to
minU,t t

s.t.
∥∥∥
(
H† + P⊥U

)T
en

∥∥∥ ≤ t ∀ n.
(28)

Problem (28) is a convex second order cone program (SOCP).
It can be solved efficiently using standard optimization pack-
ages [26], [27].

B. Throughput

Next, we consider the throughput objective function:

maxT,q

∑
k log (1 + qk)

s.t. HT = diag
{√

q
}

;[
TTT

]
n,n

≤ P
N , ∀ n.

(29)

This is a difficult non-concave maximization problem due to
the squared roots of q. In the sequel, we will show how it can
be solved using modern convex optimization tools. But before
that, we examine the optimality of the pseudo-inverse using
our general bounds and obtain the following proposition:

Proposition 2: Let an be defined as in (23). If an = a for
all n are equal and the power P is sufficiently large, then the
optimal solution to (28) is T =

√
qH† where q = P/(Na).

Proof: The solution is feasible for (29) and provides an
optimal value of Klog(1 + q) where q = P/(Na). It remains
to show that this value is equal to the upper bound in (20). But
this is simple since uniform power allocation is the optimal
solution to (20) with f(q) =

∑
k log (1 + qk) when the power

P is sufficiently large [28]. Thus, q = q1 for some q ≥ 0,
and an = a for all n implies that U = Klog(1 + q).

In the remainder of this section, we provide an exact
solution to (29) which finds the optimal generalized inverse.
For this purpose, it is convenient to rewrite the problem using
the notation in (1), i.e., hk = HT ek and tk = Tek for
k = 1, · · · ,K. Thus, qk =

(
hT

k tk

)2
and (29) is equivalent

to

maxtk
log

∣∣∣I + diag
{(

hT
k tk

)2
}∣∣∣

s.t.
(
hT

j tk

)2 = 0, ∀ k 6= j;∑
k

[
tktT

k

]
n,n

≤ P
N , ∀ n.

(30)

Next, we linearize the quadratic terms by defining Tk =
tktT

k º 0 for k = 1, · · · ,K, which results in

maxTk
log

∣∣I + diag
{
hT

k Tkhk

}∣∣
s.t. hT

j Tkhj = 0, ∀ k 6= j;∑
k [Tk]n,n ≤ P

N , ∀ n;
Tk º 0, ∀ k;
rank (Tk) = 1, ∀ k.

(31)

The only non-convex constraints in (31) are the rank-one
restrictions. Therefore, we now relax the problem and omit
these problematic constraints to obtain

maxTk
log

∣∣I + diag
{
hT

k Tkhk

}∣∣
s.t. hT

j Tkhj = 0, ∀ k 6= j;∑
k [Tk]n,n ≤ P

N , ∀ n;
Tk º 0, ∀ k.

(32)

Problem (32) is a standard determinant maximization
(MAXDET) program subject to linear matrix inequalities [29].
It is a convex optimization problem and there are off-the-shelf
numerical optimization packages which can solve it efficiently
[27]. If the optimal Tk are all of rank-one, then we can recover
tk from them and find the optimal solution to (29). Fortunately,
the following theorem proves that the relaxation is always
tight:

Theorem 2: Problem (32) always has a solution with rank-
one matrices. This solution can be found as follows: Let Topt

k
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for k = 1, · · · ,K be a (possibly high rank) optimal solution
to (32). For each k define tk as the optimal solution to

maxt hT
k t

s.t. hT
j t = 0, ∀ k 6= j;
−βk,n ≤ [t]n ≤ βk,n ∀ n,

(33)

where βk,n =
√[

Topt
k

]
n,n

. Then, T
opt

k = tktT
k for k =

1, · · · ,K is a rank-one solution to (32).
Proof: See Appendix I.

In practice, our experience shows that the MAXDET software
[27] usually provides a rank-one solution automatically. If it
does not, then the theorem provides a constructive method
for finding a rank-one solution by solving K simple linear
programs of the form (33).

VI. NUMERICAL RESULTS

We now demonstrate our results using two numerical ex-
amples. In the first example, we consider the fairness ZF pre-
coding design under individual per-antenna power constraints.
We simulate a system with K = 3 users and P = 1 (In
the fairness case, the value of P is not important as it just
scales the resulting power). The elements of the matrix H
are randomly generated as independent, zero mean and unit
variance Gaussian random variables. We estimate the average
received power q in (25). For comparison, we also estimate this
mean power when we assume U = 0, i.e., restrict the precoder
to be a standard pseudo-inverse, and when we replace the
per-antenna power constraints with a total power constraint.
The results are presented in Fig. 2 as a function of the
number of transmit antennas N . As expected, the stricter per-
antenna constraints result in a lower received power. However,
the graph shows that part of this loss can be recovered by
optimizing U and finding the appropriate generalized inverse.

In the second example, we consider the maximization of
the throughput under the same setting as before except that
now N = 4 and we simulate different P s. The estimated
sum-rates are provided in Fig. 3. Again, it is easy to see the
degradation in performance due to the individual per-antenna
power constraints, as well as the advantage of optimizing the
generalized inverse.

VII. CONCLUSION

In this paper we consider ZF precoding design in MISO
broadcast channels. We discussed the intimate relation be-
tween ZF precoding and the theory of generalized inverses.
Our results show that designing the precoders based on
the standard pseudo-inverse is optimal under the assumption
of a total power constraint. However, when more complex
power constraints are involved, e.g., individual total per-
antenna power constraints, the pseudo-inverse is no longer
sufficient and other generalized inverses may provide better
performance. In general, finding the optimal inverse is a
difficult optimization problem which is highly dependent on
the specific design criterion. We consider two classical criteria,
fairness and throughput and demonstrate how to transform
these problems into standard convex optimization programs.
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Using the methods that we developed it is straightforward
to generalize the setting to a variety of applications. More
practical criteria may be addressed using the semidefinite
relaxation approach as long as these are concave in the
received powers, e.g., weighted sum-rate. In addition, other
power constraints may be implemented, e.g., the expected
value of the squared norm of sub-blocks of x. Such constraints
may be important in modern systems where multiple base
stations, each with multiple antennas, cooperatively transmit
data to the same users.

Precoding with generalized power constraints is an impor-
tant problem in modern communication systems and there are
still many open questions. More advanced linear precoding
schemes should be addressed. For example, it is well known
that in low SNR conditions, and under channel uncertainty,
regularizing the pseudo-inverse can considerably improve the
performance. It is interesting to examine this property in
the context of generalized inverses. Future work should also
address the implications of our results on non-linear schemes
such as ZF DPC precoding.

Another extension of our work is to consider the well
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known duality between receive and transmit processing. It
has already been shown in [16] that precoding with per-
antenna power constraints is the dual of decoding under noise
uncertainty conditions. ZF decoding using the pseudo-inverse
(the decorrelator) is probably the most common decoding
algorithm. Our results suggest that other generalized inverses
may outperform it under uncertainty conditions.

APPENDIX I
PROOF OF THEOREM 2

First, we rewrite (32) using additional slack variables:

maxpk≥0

∑
k log (1 + γk (pk))

s.t.
∑

k [pk]n ≤ P
N , ∀ n,

(34)

where

γk (pk) =





maxTkº0 hT
k Tkhk

s.t. hT
j Tkhj = 0, ∀ k 6= j;

[Tk]n,n ≤ [pk]n , ∀ n.
(35)

Using this new formulation, all we need to show is that (35)
always has an optimal solution of rank-one. In fact we will
prove a more general result:

Lemma 1: Consider the following optimization problem

S =
{

maxQº0 cT Qc
s.t. Tr {QAi} ≤ bi, i = 1, · · · , I,

(36)

where bi ≥ 0 and Ai º 0. If S is bounded, then there is
always a rank-one solution to (36).

Proof: See Appendix II.
Problem (35) is a special case of Lemma 1. Due to Tk º 0
and [Tk]n,n ≤ [pk]n its optimal value is bounded, and it must
have an optimal solution of rank-one. The fact that (35) has
an optimal rank-one solution also provides a simple way of
finding it. Let Topt

k be the optimal solution of (35) for some
k. Then,

γk (pk) =





maxTkº0 hT
k Tkhk

s.t. hT
j Tkhj = 0, ∀ k 6= j;

[Tk]n,n ≤
[
Topt

k

]
n,n

, ∀ n.
(37)

Due to Lemma 1, we can restrict the attention to rank-one
matrices Tk = tktT

k and solve

γk (pk) =





maxtk

(
tT
k hk

)2

s.t. tT
k hj = 0, ∀ k 6= j;(
tT
k en

)2 ≤ [
Topt

k

]
n,n

, ∀ n.

(38)

Now, if tk is optimal for (38) then −tk is also optimal (it
is feasible and provides the same objective value). Therefore,
without loss of generality we can assume that tT

k hk ≥ 0 and
use the monotonicity of x2 in x ≥ 0 to obtain

√
γk (pk) =





maxtk
tT
k hk

s.t. tT
k hj = 0, ∀ k 6= j;(
tT
k en

)2 ≤ [
Topt

k

]
n,n

, ∀ n,
(39)

which can also be expressed as the linear programs in (33).

APPENDIX II
PROOF OF LEMMA 1

We begin by eliminating all the constraints for which bi =
0. Assume that bj = 0 for all j in J = {j1, · · · , jJ}, and
positive for all other indices. Define A = [Aj1 , · · · ,AjJ

], and
let P = I −AA

†
be the orthogonal projection onto the null

space of A. Now, Tr {QAj} = 0 for all j ∈ J if and only if
Q = PQP. Thus, S in (36) is equivalent to

maxQº0 cT PQPc
s.t. Tr {PQPAi} ≤ bi, i ∈/J,

Q = PQP.
(40)

Next, we omit the Q = PQP constraint and obtain:

maxQº0 cT Qc
s.t. Tr

{
QAi

} ≤ bi, i ∈/J,
(41)

where c = Pc, Ai = PAiP and bi > 0 for i ∈/J are
all strictly positive. If Qopt is a rank-one optimal solution
to (41) then PQoptP is a rank-one optimal solution to (40).
Therefore, we can prove the lemma for (41) instead of (36).
For simplicity, we continue with the notation in (36) but
assume that bi > 0 for all i.

Consider the following problem

Q =
{

maxq

(
qT c

)2

s.t. qT Aiq ≤ bi.
(42)

Program S is the SDP relaxation of Q. That is val (S) ≥
val (Q), and if q is optimal for Q then Q = qqT is feasible
for S . Thus, all we need to prove is that val (S) ≤ val (Q). We
will do this by considering their corresponding dual programs.

We begin with S which is a convex optimization problem.
Its Lagrange dual is

dS =
{

minλº0

∑
i λibi

s.t.
∑

i λiAi − ccT º 0.
(43)

The problem is strictly feasible since bi are all positive.
Therefore, Slater’s condition for strong duality holds and
val (S) = val (dS).

We now move on to Q. Unfortunately, this is a nonconvex
problem due to quadratic objective. However, if q is optimal
then so is −q. Therefore, we can assume that qT a ≥ 0 and
use the monotonicity of x2 in x ≥ 0. This yields

L =
{

maxqº0 qT c
s.t. qT Aiq ≤ bi,

(44)

which is guaranteed to satisfy (val (L))2 = val (Q). The
main advantage of this linearization is that L is a convex
optimization problem which can be solved using its Lagrange
dual program

dL = min
λ≥0

max
q
−qT c−

∑

i

λiqT Aiq +
∑

λibi. (45)

Adding an auxiliary variable t ≥ 0 yields

dL =
{

minλ,t≥0 t +
∑

λibi

s.t.
∑

i λiqT Aiq + qT c + t ≥ 0, ∀ q.
(46)

If t = 0 then c = 0 and the proof is completed since val (S) =
val (Q) = 0. Otherwise, t > 0 and we can use
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Lemma 2: [30, p. 112,135] Let A be a symmetric matrix
and s > 0. The condition xT Sx+ 2sT x + s ≥ 0 holds for all
x if and only if S− 1

sss
T º 0.

Using the Lemma, we transform dL into an SDP

dL =
{

minλ≥0,t>0

∑
i λibi + t

s.t.
∑

i λiAi − 1
4tcc

T º 0.
(47)

As before, Slater’s condition holds due to the strict feasibility.
Thus, strong duality assures that val (L) = val (dL) and if
we square the objective again and use the monotonicity of x2

in x ≥ 0, we obtain the following dual of Q (this is not the
Lagrange dual but just the squared value of dL)

dQ = (dL)2 =
{

minλ≥0,t>0 (
∑

i λibi + t)2

s.t.
∑

i λiAi − 1
4tcc

T º 0
(48)

which satisfies val (Q) = val (dQ). Next, we exchange vari-
ables and optimize over λi = 4tλi ≥ 0 instead of λi

dQ =





minλ≥0,t>0

(∑
i
λibi

4t + t

)2

s.t.
∑

i λiAi − ccT º 0.

(49)

Now examining (43) and (49) we see that their feasible set is
identical, and in order to prove that val (dQ) ≥ val (dS) all
we need to show is that

µ

4t
+ t ≥ √

µ for all t > 0 (50)

where µ =
∑

i λibi ≥ 0. But this is easily proved by noting
that the left hand side of (50) is convex in t > 0 and attains
its minimum when

∂

∂t

[ µ

4t
+ t

]
= − µ

4t2
+ 1 = 0 (51)

and

tmin =
1
2
√

µ (52)

which yields
µ

4tmin
+ tmin =

√
µ (53)

as required.
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