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Abstract— The problem of estimating random unknown
signal parameters in a noisy linear model is considered. It
is assumed that the covariance matrices of the unknown
signal parameter and noise vectors are known and that
the noise is Gaussian, while the distribution of the random
signal parameter vector is unknown. Instead of the tradi-
tional minimum mean squared error (MMSE) approach,
where the average is taken over both the random signal
parameters and noise realizations, we propose a linear
estimator that minimizes the MSE which is averaged over
the noise only. To make our design pragmatic, the min-
imization is performed for signal parameter realizations
whose probability is sufficiently large, while “discarding”
low-probability realizations. It is shown that the obtained
linear estimator can be viewed as a generalization of the
classical Wiener filter.

I. INTRODUCTION

Estimating a vector of unknown random or determinis-
tic parameters in a noisy linear model represents a classic
problem of estimation theory that has found numerous
applications in signal processing, communications, radar,
and other fields. Mathematically, this problem amounts
to estimating an n× 1 unknown signal parameter vector
x in the linear model

y = Hx + w (1)

where y and w are m × 1 observation and random
noise vectors, respectively, and H is an m × n known
transformation matrix. A linear estimate of the vector x
can be written as
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x̂ = Gy (2)

where G is some n × m matrix.
Different assumptions about the noise vector w and

the unknown signal parameter vector x can be made
depending on particular application. For example, it can
be assumed that w and x are both zero-mean random
stationary Gaussian with known positive definite covari-
ance matrices Cw � E{wwH} and Cx � E{xxH},
where (·)H and E{·} denote the Hermitian transpose
and the statistical expectation, respectively. In this case,
a linear estimator that minimizes the mean squared error
(MSE) averaged over both the signal parameters and
noise realizations coincides with the Wiener filter [1],
[2]. Mathematically, the Wiener filter finds its estimate
x̂ of x as

argG min
x̂=Gy

Ew,x{‖x̂ − x‖2} (3)

where ‖ · ‖2 denotes the Euclidian norm of a vector.
In other applications, the unknown parameter vector

x is assumed to be deterministic with a known uncer-
tainty region. In this case, an approach that is based on
minimizing the worst-case MSE is frequently used [3]-
[5]. Specifically, if the norm of x is bounded by some
known constant U , then this estimation problem can be
written as [5]

argG min
x̂=Gy

max
‖x‖≤U

Ew{‖x̂ − x‖2}. (4)

This estimator is known to be robust because it mini-
mizes the MSE for the worst choice of x.

Robust estimators can also be obtained in the stochas-
tic signal case, when the unknown parameter vector is
random and its covariance matrix is known. In such a
case, we can minimize the MSE (averaged over the noise
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realizations only), while taking into account only realiza-
tions of x that occur with a sufficiently large probability,
and discarding realizations of x whose probability is
low. That way, the outage probability1 of the so-obtained
estimator of x can be maintained at an acceptably low
level.

The latter estimation problem has been recently
addressed in [6] for the case of a random unknown signal
parameter vector with known (Gaussian) distribution. In
this paper, we adopt the main framework of [6], but
address a more general case when the distribution of the
random signal parameter vector is completely unknown.

Mathematically, our problem amounts to the design
of a linear estimator that minimizes the MSE (averaged
over the noise realizations only) with a certain selected
probability under the assumption that the vector x is
random with known covariance matrix Cx and unknown
probability density function (pdf). Such an assumption
can be motivated by the fact that for non-Gaussian
distributions, the problem of estimating the covariance
matrix is much simpler than that of estimating the whole
pdf.

II. PROBLEM FORMULATION

Using (1) and (2), the MSE for any given x can be
expressed as

Ew{‖x̂ − x‖2} = Tr{GCwGH} + xHΛx (5)

where Λ � (GH − I)H(GH − I), and Tr{·} and
I stand for the trace operator and the identity matrix,
respectively.

Our objective is to design a robust estimator by
considering only the realizations of x which occur with
a sufficiently high probability, while discarding the real-
izations whose probability is low. Mathematically, this is
equivalent to replacing the expectation over x in (3) by
the probability operator, and constraining this probability
to be greater than or equal to a certain (preliminary
selected) threshold value p ∈ (0, 1). Thus, using (5),
our estimator is the solution to

min
G,t

{t : Prx{Tr{GCwGH} + xHΛx ≥ t} ≤ 1 − p}
(6)

or, equivalently,

min
G,t

{t : Prx{Tr{GCwGH} + xHΛx < t} ≥ p} (7)

1Note that our definition of (estimator) outage is somewhat dif-
ferent from that used in communication theory. In the latter context,
outage is defined as the situation when the channel is so poor that
no scheme can communicate reliably at a certain target data rate [9].

where Prx{·} denotes the probability operator. This
problem belongs to the class of probability-constrained
stochastic programming problems [7], [8].

As the pdf of x is unknown, our approach is to solve
the problem (7) for the worst-case pdf. To this end we
define

Prx{A, Cx} � inf {Prx{x ∈ A} | Cx} (8)

where the set A is given by

A � {x ∈ C
n | xHΛx − t′ < 0} (9)

with
t′ � t − Tr{GCwGH} (10)

and the infimum is over all probability distributions of
x ∈ C

n with covariance Cx. Equation (8) defines the
worst case corresponding to the least favorable distribu-
tion of x. We then modify the (7) as

min
G,t

{t : Prx{A,Cx}≥p }. (11)

To develop a solution to the stochastic programming
problem (11), we first convert the constraint to a simpler
deterministic form. This derivation is given in Section 3.
A solution to the problem (11) is then given in Section 4.

III. DETERMINISTIC FORM OF THE PROBABILITY

OPERATOR

In Theorem 1 below we show that Prx{A,Cx} can be
bounded above and below by solutions of a semidefinite
program (SDP). We then show that these bounds are
tight, and solve the corresponding SDPs.

Theorem 1: The probability operator in (11) can
be upper- and lower-bounded by the solutions of the
following SDP problems:

Upper bound SDP:

min
Z, λ

1 − λ ≥ Prx{A,Cx}
subject to Tr{ΛZ} − t′λ ≥ 0

0 � Z � Cx, 0 ≤ λ ≤ 1 (12)

where Z is an n×n Hermitian matrix and λ is a scalar.

Lower bound SDP:

max
P , τ

1 − Tr{CxP } ≤ Prx{A,Cx}
subject to P � τΛ, t′τ − 1 ≥ 0

τ ≥ 0 (13)

where P is an n×n Hermitian matrix and τ is a scalar.
Proof: We start with the proof of the upper bound

property (12). We will prove that if Z and λ satisfy
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the constraints in the upper bound SDP (12), then there
exists a random vector x with

E{xxH} = Cx, Prx{x ∈ A} ≤ 1 − λ. (14)

Hence, it will be shown that 1−λ is an upper bound for
Prx{A, Cx}.

To show this, the following lemma will be needed.
Lemma 1 [10]: If the inequality

Tr{ΛZ} − d ≥ 0 (15)

is satisfied for some n × n Hermitian matrix Z � 0,
then there exist n × 1 vectors vi and scalars αi ≥ 0,
i = 1, . . . , K, with K ≤ 2n, such that

vH
i Λvi − d ≥ 0, i = 1, . . . , K (16)
K∑

i=1

αi =1,
K∑

i=1

αivi =0,
K∑

i=1

αiviv
H
i �Z. (17)

An important fact following from this lemma is that,
if s is an n×1 random zero-mean vector with covariance
matrix Z = E{ssH} � 0 satisfying

E{sHΛs − d} = Tr{ΛZ} − d ≥ 0 (18)

then there exists a discrete random zero-mean vector x
with K ≤ 2n possible values, that satisfies

xHΛx − d ≥ 0, E{xxH} � E{ssH} = Z. (19)

Proof: The proof of a rather general form of this
lemma can be found in [10]. In what follows, the proof
of our (more specific) formulation of this lemma is given
for a zero-mean x, positive semi-definite Λ, and d > 0.

Let us use the fact that any positive semi-definite
Hermitian matrix can be decomposed as a sum of rank-
one matrices as

Z =
n∑

i=1

wiw
H
i . (20)

We will refer to such a decomposition as a dyadic
decomposition taking into account that all the matrices
wiw

H
i (i = 1, . . . , n) are dyadic. Inserting (20) into (15),

0 ≤ Tr{ΛZ} − d =
n∑

i=1

wH
i Λwi − d. (21)

The terms wH
i Λwi in (21) are all non-negative because

Λ � 0. Let r (0 < r ≤ n) denote the number of non-zero
terms. Then (21) can be rewritten as

r∑
i=1

wH
i Λwi ≥ d. (22)

Let βi and βr+i (i = 1, . . . , r) be the positive and
negative roots of the equations

β2
i wH

i Λwi = d, i = 1, . . . , r. (23)

These roots are given by

βi =

√
d

wH
i Λwi

, βr+i = −
√

d

wH
i Λwi

. (24)

Let K = 2r and

vi =βiwi, αi=
wH

i Λwi

2
∑r

i=1 wH
i Λwi

,

vi+r = βi+rwi, αi+r = αi. (25)

It can be readily seen that the conditions (16) are satisfied
for the vectors vi. As wH

i Λwi > 0, we have that αi > 0
and αi+r > 0. Moreover,

2r∑
i=1

αi =
r∑

i=1

2αi =
r∑

i=1

wH
i Λwi∑r

k=1 wH
k Λwk

=1 (26)

and
2r∑

i=1

αivi =
r∑

i=1

αi(βi + βr+i)wi =0 (27)

because βi + βr+i = 0. Finally, using (22) and (24),

2r∑
i=1

αiviv
H
i =

r∑
i=1

αi(β2
i + β2

i+r)wiw
H
i

=
r∑

i=1

2dαi

wH
i Λwi

wiw
H
i

=
d∑r

k=1 wH
k Λwk

r∑
i=1

wiw
H
i

�
r∑

i=1

wiw
H
i � Z. (28)

Thus, the conditions (17) are satisfied for the choice of
vi and αi (i = 1, . . . , K) of (25). This completes the
proof. �

Returning to the proof of the property (12), let us
consider the case 0 < λ < 1. Note that the case λ = 0
is trivial because Prx{x ∈ A} ≤ 1 always holds. The
case λ = 1 will be considered at the end of the proof.

Using the result of Lemma 1 together with the first
constraint in (12), the constraint Z � 0, and the
condition 0 < λ < 1, we can define a random vector
x1 that satisfies the following inequalities

xH
1 Λx1 − t′ ≥ 0, E{x1x

H
1 } � Z/λ. (29)
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Then, using the second constraint in (12) and (29), we
have

λE{x1x
H
1 } � Z � Cx. (30)

According to (30), the matrix

C0 � 1
1 − λ

(
Cx − λE{x1x

H
1 }) (31)

is positive semi-definite. Using a dyadic decomposition
of C0 in the form

C0 =
r∑

i=1

cic
H
i (32)

with r ≤ n, we can build a discrete random vector x0

with the covariance matrix E{x0x
H
0 } = C0 as follows.

If r = 0, we choose x0 = 0. If r > 0, then

x0 =
{ √

rci, with probability 1/(2r)
−√

rci, with probability 1/(2r) (33)

is chosen.
Summarizing, we have defined two independent ran-

dom vectors x0 and x1 that satisfy (29) and

(1 − λ)E{x0x
H
0 } + λE{x1x

H
1 } = Cx. (34)

Considering the random vector with a mixture distribu-
tion

x =
{

x0, with probability 1 − λ
x1, with probability λ

(35)

and using (34), we can verify that E{xxH} = Cx.
Moreover, since x1 /∈ A, then Prx{x ∈ A} ≤ 1 − λ,
and hence 1 − λ is an upper bound for Prx{A,Cx}.

If λ = 1, we can define Z̃ � (1 − ε)Z, and λ̃ �
(1−ε)λ = 1−ε, where 0 < ε < 1. Similarly to the case
0 < λ < 1, we can construct a random variable with
E{xxH} = Cx and Prx{x ∈ A} ≤ 1 − λ̃ = ε for any
ε, 0 < ε < 1. Therefore, if λ = 1 then Prx{A,Cx} = 0.
This completes the proof of the upper bound property.

We now continue with the proof of the lower bound
property (13). We will show that, if the constraints in
(13) are satisfied, then

1 − Tr{CxP } ≤ Prx{A,Cx}. (36)

The first and second constraints in (13) can be combined
as [

P − τΛ 0
0T t′τ − 1

]
� 0. (37)

Positive semi-definite property of the matrix in (37)
implies that for all x

xHPx ≥ 1 + τ(xHΛx − t′). (38)

Similarly, because of the first and third constraints in
(13) the matrix P is positive semi-definite. It implies
that for all x

xHPx ≥ 0. (39)

We observe that if xHΛx− t′ < 0 (that is, x ∈ A), then
the right-hand side of (38) is smaller than one. Similarly,
if xHΛx − t′ ≥ 0 (that is, x /∈ A), then the right-hand
side in (38) is larger than one. Using this observation
and the constraint (39), we have

xHPx ≥ 1 − 1A(x) =
{

1, x /∈ A
0, x ∈ A (40)

where 1A(x) denotes the indicator function of the set
A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.
Taking the expectation of the right- and the left-hand
sides of (40) and using the facts that E{xxH} = Cx

and that E{1A(x)} = Pr{x ∈ A}, we obtain

E{xHPx} = Tr{CxP }
≥ 1 − E{1A(x)}
= 1 − Pr{x ∈ A}. (41)

Therefore, 1 − Tr{CxP } is a lower bound for Pr{x ∈
A}, and (36) holds. This completes the proof of the lower
bound property and Theorem 1. �

We now show that the bounds in Theorem 1 are tight.
It can be easily seen that the objective function in (12) is
minimized if Z = Cx and λ = Tr{ΛCx}/t′ provided
that Tr{ΛCx} < t′, which holds in our problem.
Then, the upper bound on the probability operator in
the constraint of (11) is given by the optimal solution of
(12) and can be written as

Prx{A, Cx} ≤ 1 − Tr{ΛCx}/t′. (42)

Furthermore, provided that t′ > 0, the optimal solution
of (13) is given by τ = 1/t′ and P = Λ/t′ . Inserting
this optimal value of P into the objective function of
(13), we can express the lower bound for Prx{A,Cx}
in the constraint of (11) as

Prx{A, Cx} ≥ 1 − Tr{ΛCx}/t′. (43)

Combining (42) and (43), we conclude that if
Tr{ΛCx} < t′, then the upper and lower bounds
coincide and, therefore,

Prx{A, Cx} = 1 − Tr{ΛCx}/t′. (44)
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IV. PROBABILISTICALLY-CONSTRAINED ESTIMATOR

Inserting (44) into (11), we obtain the following
equivalent deterministic optimization problem:

min
G,t

{ t : Tr{ΛCx} < δ(t − Tr{GCwGH})} (45)

where δ � 1 − p. Note that according to the constraint
in (45), the condition Tr{ΛCx} < t′ is always satisfied.
The problem (45) can be equivalently rewritten as

min
G

Tr{GCwGH +δ−1(GH−I)Cx(GH−I)H}.
(46)

Since the objective function is strictly convex in G, the
optimal solution can be found be setting the derivative
to 0 which results in the following probabilistically-
constrained estimator of x:

x̂ = CxHH
(
δCw + HCxHH

)−1
y. (47)

Interestingly, the linear estimator (47) can be viewed
as a generalization of the Wiener filter. In particular, it
coincides with the Wiener filter when δ → 1 (p → 0),
that is, when the constraint in (7) is satisfied indepen-
dently of the realization of x. More generally, it is equal
to a Wiener filter matched to a weighted noise covariance
δCw. Thus, our approach effectively modifies the noise
covariance by a factor of δ.

V. CONCLUSIONS

A linear estimator has been proposed that, in contrast
to the traditional MMSE approach, minimizes the MSE
averaged over the noise realizations only. The mini-

mization takes into account the signal realizations whose
probability is sufficiently large, while discarding the low-
probability realizations. It has been shown that the pro-
posed linear estimator can be viewed as a generalization
of the classical Wiener filter providing an improved
robustness against unknown signal distribution and “bad”
realizations.
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