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ABSTRACT

We consider the problem of estimating an unknown deterministic pa-

rameter vector in a linear model with a Gaussian model matrix. The

matrix has a known mean and independent rows of equal covari-

ance matrix. Our problem formulation also allows for some known

columns within this model matrix. We derive the maximum likeli-

hood (ML) estimator associated with this problem and show that it

can be found using a simple line-search over a unimodal function

which can be efficiently evaluated. We then analyze its asymptotic

performance using the Cramer Rao bound. Finally, we discuss the

similarity between the ML, total least squares (TLS), and regularized

TLS estimators.

1. INTRODUCTION

A generic estimation problem that has received much attention in the

estimation literature is that of estimating an unknown, deterministic

vector parameter x in the linear model y = Gx + w, where G
is a linear transformation and w is a Gaussian noise vector. The

importance of this problem stems from the fact that a wide range

of problems in communications, array processing, and many other

areas of signal processing and statistics can be cast in this form.

Most of the literature concentrates on the simplest case, in which

it is assumed that the model matrix G is completely specified. In this

setting, the celebrated least squares (LS) estimator coincides with

the maximum likelihood (ML) estimator and is known to minimize

the mean squared error (MSE) among all unbiased estimators of x
[1]. The estimation problem when G is not completely specified

received much less attention. It can be divided into two main cat-

egories in which G is either deterministically unknown or random.

In the standard errors in variables (EIV) model, G is considered as

a deterministic unknown matrix, and the estimate is based on noisy

observations of this matrix. The ML estimator for x in this case was

derived in [2], and coincides with the well known total LS (TLS)

estimator [3, 4]. Interestingly, the resulting estimator is a deregu-

larized LS estimator. Thus, in order to stabilize the solution, reg-

ularized TLS (RTLS) estimators were derived [5, 6]. An opposite

strategy is the robust LS estimator which is designed for the worst

case G within a known deterministic set [7]. When G is assumed

to be random, an intuitive approach is to minimize the expected LS

(ELS) criterion with respect to G [8].

In this paper, we address the ML estimation of x when the model

matrix G is a random matrix with known second order statistics. We
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recently solved this problem for the special case in which G has sta-

tistically independent and equal variance elements [9]. We found

that the ML estimator in this setting is the solution of a multidimen-

sional, non-linear and non-convex optimization problem. We refor-

mulated it and solved it using a simple line-search over a unimodal

function which can be efficiently evaluated. One of our interesting

results was that the ML estimator can be interpreted as a TLS esti-

mator with a logarithmic penalty. This result provides an important

motivation to the RTLS estimator, and suggests a particular choice

of regularization function.

Here, we develop new results on ML estimation in a linear model

with a random model matrix. First, we generalize the problem set-

ting. One of the important contributions in the TLS literature was

the derivation of the generalized TLS (GTLS) estimator which is de-

signed for the case in which only some of the columns of G are sub-

ject to error. This estimator also allows correlation between the ele-

ments in each of the rows of G (See [10, 4] and references within).

In the sequel, we will derive the ML estimator associated with this

channel model, and show that it can be solved using the same tech-

niques as in [9].

Our second contribution is with respect to the performance analy-

sis of the ML estimator. Since we do not have a closed form solution

for the estimator, it is difficult to analytically asses its performance.

Instead, we provide an asymptotic performance analysis using the

Cramer Rao Bound (CRB). We derive a closed form expression of

the CRB. Interestingly, the bound shows that the degradation in per-

formance due to the randomness of the model matrix is not as severe

as one may suspect. Actually, the randomness may even improve

the performance in terms of MSE. Another interesting result is that

when G is random the performance depends on the particular value

of x. This is in contrast to the well known CRB of estimation with

known G that does not depend on x.

The paper is organized as follows. In Section 2 we introduce the

problem formulation and derive the ML estimator. We then compare

our estimator to existing estimators in Section 3. An asymptotic

performance analysis using the CRB is provided in Section 4. The

advantage of the ML estimator is demonstrated in Section 5 using

computer simulations. Finally, in Section 6, we provide concluding

remarks.

The following notation is used. Boldface upper case letters de-

note matrices, boldface lower case letters denote column vectors,

and standard lower case letters denote scalars. The superscript (·)T

denotes the transpose, and the superscript (·)† denotes the pseudoin-

verse. By I we denote the identity matrix. ‖ · ‖ is the standard

Euclidean norm, and λmin (X) is the smallest eigenvalue of X. Fi-

nally, X � 0 means that the matrix X is a symmetric positive defi-

nite matrix.

V ­ 9931­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



2. THE MAXIMUM LIKELIHOOD ESTIMATOR

Consider the problem of estimating an unknown deterministic para-

meter vector x =
[
xT

1 xT
2

]T
in the linear model

y = [G1 G2]

[
x1

x2

]
+ w, (1)

where G = [G1 G2] is an N × (K1 + K2) random matrix parti-

tioned into a random part G1 with mean H1 and independent rows

of covariance CH � 0, and a known part G2 = H2. For con-

venience, we define H = [H1 H2]. The vector w is a zero mean

Gaussian vector with independent elements of variance σ2
w > 0. In

addition, G1 and w are statistically independent.

An estimator x̂(y,H,CH , σ2
w) of x is defined as a function of

the observations vector and the given statistics that is close to x in

some sense. One of the standard approaches for designing x̂ is ML

estimation, where the estimate is chosen as the parameter vector x
that maximizes the likelihood of the observations. Mathematically,

the ML estimate of x is the solution to

max
x

log p (y;x) , (2)

where p (y;x) is the probability density function of y parameterized

by x. It is easy to see that in our model y is a Gaussian vector with

mean Hx and covariance
(
xT

1 CHx1 + σ2
w

)
I. Therefore, the ML

estimator of x can be found by solving

min
x1,x2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∥∥∥∥y − [H1 H2]

[
x1

x2

]∥∥∥∥2

xT
1 CHx1 + σ2

w
+ N log

(
xT

1 CHx1 + σ2
w

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3)

Problem (3) is a K-dimensional, non-linear and non-convex opti-

mization program, and is therefore considered difficult. Our main

result is that we can transform it into a tractable form and solve it

efficiently as we now show.

We begin by solving for x2 using the well known LS solution

x2 = H†
2 (y − H1x1) . (4)

We then plug the optimal x2 back into the objective:

min
x1

⎧⎪⎨⎪⎩
∥∥∥ỹ − H̃1x1

∥∥∥2

xT
1 CHx1 + σ2

w
+ N log

(
xT

1 CHx1 + σ2
w

)⎫⎪⎬⎪⎭ , (5)

where ỹ =
(
I − H2H

†
2

)
y and H̃1 =

(
I − H2H

†
2

)
H1. The prob-

lem in (5) is similar to the optimization program which we solved in

[9]. Therefore, we rely on the results in [9] and obtain the following

theorem:

Theorem 1 ([9]). For any t ≥ 0, let

f(t) =

{
minx1 ‖ỹ − H̃1x1‖2

s.t. xT
1 CHx1 = t,

(6)

and denote the optimal argument by x1(t). Then, the solution to
(5) is x1(t

∗) where t∗ is the minimizer of the following unimodal
optimization problem

min
t≥0

{
f(t)

t + σ2
w

+ N log
(
t + σ2

w

)}
. (7)

At first sight, Theorem 1 looks trivial. It is just a different way

of writing (5) using a slack variable t. However, it allows for an effi-

cient solution of the ML problem due to two important observations.

The first is that there are standard methods for evaluating f(t) in (6)

for any t ≥ 0. The second is that the line-search in (7) is unimodal in

t ≥ 0, and therefore any simple one-dimensional search algorithm,

such as bisection, can efficiently find its global minima.

We will now discuss the methods for evaluating f(t) in (6). This

is a quadratically constrained LS problem whose solution can be

traced back to [11]:

Lemma 1 ([11, 12]). The solution of

f(t) =

{
minx1 ‖ỹ − H̃1x1‖2

s.t. xT
1 CHx1 = t,

(8)

is

x1(t) =
(
H̃T

1 H̃1 + αCH

)†
H̃T

1 ỹ, (9)

where α ≥ −λmin

(
C

− 1
2

H H̃T
1 H̃1C

− 1
2

H

)
is the unique root of the

equation

x1(t)
T CHx1(t) = t. (10)

Using the eigenvalue decomposition of C
− 1

2
H H̃T

1 H̃1C
− 1

2
H we

can easily calculate x1(t)
T CHx1(t) for different values of α. The

monotonicity in α enables us to find the α which satisfies (10) using

a simple line-search. Once this α is found, f(t) can be evaluated by

plugging the appropriate x1(t) into ‖ỹ−H̃1x1(t)‖2. Moreover, the

function can be efficiently evaluated also in large scale problems,

such as those arising in image processing applications, where the

eigenvalue decomposition is not practical. More details on this pro-

cedure and the related “Trust Region Subproblem” can be found in

[13] and references within.

3. COMPARISON TO THE ML ESTIMATOR IN THE
ERROR IN VARIABLES MODEL

In this section, we compare our estimation problem with the standard

EIV problem formulation which is a similar approach for handling

the uncertainty in the model matrix [2]. The EIV model is⎧⎨⎩ y = [G1 H2]

[
x1

x2

]
+ w

H1 = G1 + W1,

(11)

where y and H1 are the observed vector and matrix, w is a zero

mean Gaussian vector of covariance σ2
wI, and W1 is a zero mean

Gaussian matrix with independent rows of covariance CH . As be-

fore, we assume that w and W1 are statistically independent.

Models (1) and (11) are very similar. In both, we have access

to the observations y and to H, and the true channel G1 is equal to

H1 plus some Gaussian noise. The main difference is that in model

(1) the matrix G1 itself is random, whereas in (11) the matrix G1 is

deterministically unknown. Thus, the ML estimator in (11) estimates

both x and G1 by solving

max
x,G1

log p (y,H1;x,G1) , (12)
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where p (y,H1;x,G1) is the joint probability density function of y
and H1 parameterized by x and G1. Due to the Gaussian assump-

tion, (12) is equivalent to

min
x1,x2,G1

{
1

σ2
w

∥∥∥∥y − [G1 H2]

[
x1

x2

]∥∥∥∥2

+ ‖H1 − G1‖C−1
H

}
, (13)

where ‖X‖W = Tr
{
XWXT

}
. In our context, we are not really

interested in the nuisance parameter G1. Instead, using tedious alge-

braic manipulations, we analytically solve for G1, substitute it into

(13), and obtain the following optimization problem

min
x1,x2

∥∥∥∥y − [H1 H2]

[
x1

x2

]∥∥∥∥2

xT
1 CHx1 + σ2

w
. (14)

Comparing (3) and (14) we see that the ML in (3) can be considered

as the ML of (14) with an additional logarithmic penalty.

In the signal processing literature (14) is usually known as a

generalized (or weighted) variant of the TLS estimator [10, 4]. The

TLS is an extension of the LS solution for the problem y ≈ Hx
when both y and H are subject to measurement errors. It tries to

find x and G1 that minimize the squared errors in y and in H1 as

expressed by (13). Thus, our ML estimator can also be interpreted

as a regularized (or penalized) generalized TLS estimator.

Interestingly, the concept of regularizing the TLS estimator is

not new [5, 6]. It is well known that the TLS solution is not stable

when it is applied to ill posed problems. In such cases, a regulariza-

tion of some sort is required. Two standard regularization methods

are:

minx
‖y−Hx‖2

xT CHx+σ2
w

s.t. xT Tx ≤ 1 (15)

minx

{
‖y−Hx‖2

xT CHx+σ2
w

+ xT Tx
}

, (16)

where T � 0 is a regularization matrix. It has been shown that

in many applications these heuristic approaches may significantly

improve the performance of the TLS estimator in terms of MSE. Our

new ML estimator provides a statistical reasoning to this phenomena

and suggests an inherent logarithmic penalty scheme. Furthermore,

using log (1 + a) ≤ a, which is tight for sufficiently small a, we

obtain the following upper bound on our ML criterion in (3)

min
x

{
‖y − Hx‖2

xT CHx + σ2
w

+
N

σ2
w

xT CHx

}
, (17)

which is exactly the RTLS estimator in (16) with T = N
σ2

w
CH .

Thus, our ML estimator also provides a reasonable choice for the

regularization matrix of the RTLS estimator.

4. ASYMPTOTIC PERFORMANCE ANALYSIS AND THE
CRAMER RAO BOUND

In the previous section (and in [9]) we presented a numerical algo-

rithm for finding the ML estimator in a linear model when the model

matrix is Gaussian. Unfortunately, it is difficult to analytically eval-

uate the performance of this estimator. Instead, we now provide an

asymptotic performance analysis using the CRB. The CRB is a lower

bound for the MSE of any unbiased estimator [1]. Moreover, it is

well known that under a number of regularity conditions the MSE of

the ML estimator asymptotically attains this bound. For simplicity,
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Fig. 1. The CRB in (18) for a specific choices of H and x.

in this section, we restrict ourselves to the case where G = G1 and

x = x1, although the generalization to the model in (1) is straight

forward. The CRB for this special case is provided in the following

theorem.

Theorem 2. Let y = Gx+w where G is Gaussian with a full rank
mean H and independent rows of covariance CH , w is a Gaussian
vector with zero mean and covariance σ2

wI, and G is statistically
independent of w. Then, the CRB for estimating the deterministic
vector x based on the observations y is

B (CH) =
(
xT CHx + σ2

w

) (
HT H

)−1 − ∆ (18)

where

∆ =

(
HT H

)−1
CHxxT CH

(
HT H

)−1

1
2N

+
xT CH(HT H)−1

CHx

xT CHx+σ2
w

(19)

Proof. The CRB is obtained using the closed form expression of the

Fisher information matrix for the multivariate Gaussian distribution

in [1] and by applying the matrix inversion lemma.

In the special case where CH = 0, the CRB in (18) is identical

to the well known CRB of estimating x in a known linear model and

is equal to

B (0) = σ2
w

(
HT H

)−1
. (20)

Comparing (18) with (20) reviles that the randomness of the ma-

trix model has two complementary effects on the CRB. First, as

expected, it can be interpreted as an additional independent noise

term with variance xT CHx. This is easy to explain by writing (1)

as y = Hx + w̃ where w̃ is a zero mean Gaussian vector with

independent elements with variance xT CHx + σ2
w. However, the

randomness has another positive effect on the CRB due to the term

∆. This effect tries to compensate for the additional noise, and de-

creases the CRB. Thus, the degradation in performance due to the

randomness is not as severe as one may intuitively suspect. Actu-

ally, plotting (18) in Fig. 1 for different values of CH and x reveals
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Fig. 2. MSE in estimating x using different estimators in comparison

to the CRB.

that adding randomness may even improve the MSE. A possible ex-

planation is that the randomness in G increases the signal to noise

ratio and is therefore beneficial. Another interesting observation is

that unlike (20) the CRB in a random model matrix depends on the

specific value of x.

5. NUMERICAL EXAMPLE

We now provide a numerical example illustrating the behavior of

our new estimator. The purpose of this example is to demonstrate its

performance advantage, rather than a detailed practical application,

which is beyond the scope of this paper. The parameters in our simu-

lation were as follows. The matrix H was chosen as a concatenation

of T 4×4 matrices with unit diagonal elements and 0.5 off-diagonal

elements. We expect that the ML estimator will attain its asymptotic

performance as T increases, therefore we choose T = 50. The vec-

tor x was chosen as the normalized eigenvector of HT H associated

with its minimal eigenvalue. We estimated the MSEs of each estima-

tor using 50000 computer simulation. For comparison, we provide

the results for the ML estimator of (3), the standard LS estimator, the

ELS estimator of [8], and the RTLS estimator of (17). The results

are presented in Fig. 2 for CH = 0.1I. It is easy to see the advan-

tage of the ML estimator over the existing estimators. As expected,

when σ2
w is relatively high, the RTLS estimator is a good approxi-

mation for the ML estimator, and may even result in lower MSEs.

On the other hand, the ML estimator approaches the CRB when σ2
w

is sufficiently low.

6. CONCLUSION

In this paper, we considered the problem of estimating x in the model

y = Gx+w when G is Gaussian. In continuation to [9], we derived

the ML estimator in a generalized problem formulation and provided

an efficient method for finding it. We discussed the similarity of the

ML estimator with other estimation algorithms, and showed that it

can be expressed as a logarithmic regularization of the well known

TLS estimator. This result provides a statistical justification for the

RTLS that is usually derived based on heuristic considerations. We

then analyzed its asymptotic performance using the CRB, and dis-

cussed the effect of the channel’s randomness on the performance.

Our results motivate the continuing research on this seemingly

simple estimation problem. There are still many open questions.

For example, an important extension of our work is to consider the

problem of estimating x in a model with multiple observations, i.e.,

when we observe yt = Gxt + wt for t = 1, · · · , T and G is

random.
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