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Mean-Squared Error Sampling and Reconstruction
in the Presence of Noise

Yonina C. Eldar, Member, IEEE

Abstract—One of the main goals of sampling theory is to repre-
sent a continuous-time function by a discrete set of samples. Here,
we treat the class of sampling problems in which the underlying
function can be specified by a finite set of samples. Our problem
is to reconstruct the signal from nonideal, noisy samples, which
are modeled as the inner products of the signal with a set of sam-
pling vectors, contaminated by noise. To mitigate the effect of the
noise and the mismatch between the sampling and reconstruction
vectors, the samples are linearly processed prior to reconstruc-
tion. Considering a statistical reconstruction framework, we char-
acterize the strategies that are mean-squared error (MSE) admis-
sible, meaning that they are not dominated in terms of MSE by
any other linear reconstruction. We also present explicit designs
of admissible reconstructions that dominate a given inadmissible
method. Adapting several classical estimation approaches to our
particular sampling problem, we suggest concrete admissible re-
construction methods and compare their performance. The results
are then specialized to the case in which the samples are processed
by a digital correction filter.

Index Terms—Generalized sampling, interpolation, minimax re-
construction, sampling.

I. INTRODUCTION

SIGNAL expansions, in which a signal is represented by a
set of coefficients, find many applications in signal pro-

cessing and communications. The expansion coefficients can be
regarded as generalized samples of the underlying signal, so that
the signal expansion problem can be formulated within a sam-
pling and reconstruction framework.

In this paper, we focus on signal expansions with a finite
number of coefficients. A natural setting in which expansions of
this type arise is in the context of sampling a continuous-time
signal that lies in a finite-dimensional space. For example, it
is well known that a bandlimited periodic signal can be recon-
structed from an arbitrary finite set of its samples, as long as the
number of samples exceeds the corresponding Nyquist rate [1],
[2]. In practice, however, the signal samples are often contam-
inated by noise. The problem then is to “best” approximate the
continuous-time signal from the given noisy samples in some
sense.
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Here we treat a more general formulation of this problem
which allows for nonideal samples that can be described as inner
products of the signal with a set of sampling vectors

. Furthermore, our development is carried out in an
arbitrary Hilbert space , which includes the continuous-time
model as a special case. The underlying signal is constrained
to a finite-dimensional subspace of . In our framework,
the reconstructed signal is obtained by linearly combining a
set of reconstruction vectors that span the signal space . The
combination coefficients are the result of processing the noisy
samples with a linear transformation designed to mitigate the
effect of the noise and to compensate for the possible mismatch
between the sampling and reconstruction vectors.

The sampling setting we consider here, in which we allow
for arbitrary sampling and reconstruction vectors, is an exten-
sion of the noise-free framework developed previously in the
literature [3]–[8], with the restriction that the underlying signal

lies in the reconstruction space . In this case, it was shown
in [4]–[6] that perfect reconstruction from noise-free samples is
possible, regardless of the sampling method, as long as the sam-
pling space and the reconstruction space satisfy a direct-sum
condition. Clearly, in the noisy setting, perfect reconstruction
is no longer attainable. Our goal then is to linearly process the
noisy samples prior to reconstruction such that the reconstructed
signal is close to the original signal , in some statistical sense.

Previous treatment of reconstruction in the presence of noise
includes analysis of the noise effects in existing reconstruction
systems [9]–[12], and concrete reconstruction methods from
noisy samples [13]–[16]. However, the suggested algorithms
tend to focus on the bandlimited setting and are typically not
specified to be optimal from the point of view of statistical
estimation theory. An exception is a recent work [17] that
suggests several concrete reconstruction strategies from noisy
filtered samples in shift-invariant spaces. Here, we study the
reconstruction problem in a general Hilbert-space setting
within a statistical framework, and use statistical-based criteria
to provide a complete characterization of all possible linear
algorithms.

A popular measure of reconstruction performance is the
mean-squared error (MSE), which is the average squared-norm
of the estimation error . In our setting, the original signal

is assumed to be fixed; therefore, the averaging is only over
the noise vector, resulting typically in a signal-dependent MSE,
which cannot be minimized directly. The MSE performance of
different reconstruction methods will also generally depend on

, rendering comparison between different methods a difficult,
and often impossible task. A similar issue arises in the context
of general estimation theory, when studying the performance
of linear estimators in a linear model [18]–[20]. Therefore,
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in order to develop a statistical framework for sampling and
reconstruction, we suggest formulating our problem in an
estimation setup and then adapting recent concepts and results
developed in that context to our particular sampling setting.

Two key ideas that are of paramount importance when com-
paring the performance of different estimation strategies are
those of domination and admissibility [19], [20]. A reconstruc-
tion dominates some other approach in terms of MSE if its
MSE is never larger than that of for all values of , and is
strictly smaller for some ; an admissible reconstruction is one
that is never dominated by another approach. Thus, although we
cannot directly evaluate the MSE performance of different re-
construction strategies, we can characterize those methods that
are admissible. Surprisingly, some of the previously proposed
approaches are inadmissible, implying that they can be uni-
formly improved upon in terms of MSE. We therefore suggest
concrete designs of admissible reconstructions that dominate a
given inadmissible method.

To develop our theory, we adapt recent results on admissible
MSE linear estimation to our sampling context [20]. Using
these ideas, we derive easily verifiable necessary and sufficient
conditions on a reconstruction to be admissible. Our treatment
considers admissibility on the entire reconstruction space ,
as well as on the set of norm-bounded signals in . Although
our results are rooted in [20], they are not a direct extension
since in our setting the reconstruction is restricted to a subspace

and the sampling process projects the signal onto the sam-
pling space. By explicitly taking the structure of our problem
into account, we present several examples of admissible and
dominating reconstructions. In particular, we show that the
consistent approach, previously proposed for the noise-free
sampling problem [3]–[6], is admissible on the entire space, but
not on a spherical constraint set. For norm-bounded signals, we
propose a minimax MSE approach that results in an admissible
reconstruction that strictly dominates the consistent method.
This strategy is based on some of our prior work on minimax
estimation for solving robust estimation problems [21], [22],
adapted to our specific setting. We also suggest a regularized
least-squares, or Tikhonov [23], approach, which is admissible
as long as the regularization parameter is chosen appropriately.
However, as we demonstrate through an example, the Tikhonov
reconstruction is not guaranteed to dominate the consistent
method.

A class of reconstruction methods that was proposed in [14],
[16] in the context of bandlimited sampling is based on con-
volving the noisy samples with a finite-impulse-response (FIR)
filter prior to reconstruction. Under certain conditions on the
sampling and reconstruction spaces, we show that FIR recon-
struction is admissible if and only if the filter impulse response
is symmetric, and its Fourier transform satisfies .
Using these results, we show that one of the methods proposed
in [14] is inadmissible. We then construct an alternative admis-
sible reconstruction that strictly dominates it for all .

Before proceeding to the detailed development, we stress that
although the ideas presented in this paper are based on [20],
there are several important differences. One of the main contri-
butions of the current work is in setting up the reconstruction
problem in an estimation context and systematically classifying

reconstruction strategies, which has not been the conventional
approach in the sampling literature. In fact, by following this
route, we prove that some of the standard strategies to recon-
struction from noisy samples are in fact inadmissible and can
be uniformly improved upon using our methods. From a math-
ematical perspective, the sampling framework is different than
the standard linear estimation setting since the sampling setup
restricts the problem to two subspaces: the sampling space and
the reconstruction space. This added twist renders the mathe-
matics associated with both problems somewhat different, as be-
comes evident from the mathematical derivations in this paper.
Finally, there are aspects of the problem that have not been in-
vestigated in [20] but are interesting in the context of sampling,
such as FIR filtering. Here again we demonstrate that standard
approaches may be inadmissible and can therefore be improved
using our framework.

The paper is organized as follows. In Section II, we intro-
duce our general sampling framework, and show that both prob-
lems of admissibility and constructing dominating methods can
be treated by solving a certain convex optimization problem.
Dominating reconstructions and necessary and sufficient admis-
sibility conditions on a bounded norm constraint set and the
entire space are developed in Sections III and V, respectively.
In Section IV, we present several reconstruction methods on a
bounded norm set by adapting known solutions to our particular
sampling context: least-squares, Tikhonov, and minimax MSE
reconstruction. Finally, in Section VI, we study FIR reconstruc-
tion and compare our results with the method of [14].

II. SAMPLING FRAMEWORK

We denote vectors in an arbitrary Hilbert space by lower-
case letters, and vectors in by boldface lowercase letters.
The th element of a vector is written as . Matrices are rep-
resented by uppercase boldface letters and arbitrary linear trans-
formations on by uppercase letters. The orthogonal projection
operator onto a space is denoted by , and
represents an diagonal matrix with diagonal elements

. Given a transformation , , are its null space
and range space, respectively, and , are the Moore–Pen-
rose pseudoinverse [24] and the adjoint, respectively. The inner
product between vectors , is denoted by , and is
linear in the second argument, and is the norm of . For an
operator , means that is Hermitian and pos-
itive (nonnegative) definite, and means that .

The set transformation corresponding to a set
of vectors is defined by for
any . From the definition of the adjoint
it follows that if , then .

A. Noise-Free Nonideal Sampling

We treat the problem of recovering a signal from a finite-set
of its noisy samples. The signal is assumed to lie in an -di-
mensional subspace of a Hilbert space : examples include
finite-length discrete-time signals , , or contin-
uous-time bandlimited periodic signals . To fix ideas, we
first treat the reconstruction problem in the noise-free setting.
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Given a basis for , any signal can
be written uniquely as a linear combination of these vectors:

(1)

where is the set transformation corresponding to the vectors
, and

(2)

Denoting by the vectors corresponding to
, each coefficient can be written as the

inner product . The expansion (1) can then be inter-
preted within the sampling framework as perfect reconstruction
of any signal from its generalized samples using the
reconstruction vectors .

The samples (2) are perfectly matched to the reconstruc-
tion vectors . More generally, we can consider samples

that are given as the inner products of with
an arbitrary set of linearly-independent sampling vectors

which span a subspace . Although the
samples are no longer matched to the reconstruction vectors,
it was shown in [4] and [5] that perfect reconstruction of any

from these samples is still possible as long as

(3)

where is the orthogonal complement of in . Since
and have the same finite dimension, (3) is equivalent to the
direct-sum condition . If (3) is satisfied, then
perfect reconstruction can be obtained by first processing the
samples with the linear transformation

(4)

The corresponding reconstruction

(5)

is referred to as a consistent reconstruction [3], since it has the
property that it yields the same samples as for any1 .
The existence of the inverse in (4) follows from the following
proposition.

Proposition 1: Let be a basis for a space
with set transformation and let be a basis
for a space satisfying with set transformation

. Then, we have the following:
1) is invertible;
2) .

Proof: The first part of the proposition is proved in [4]. To
prove the second part, we first show that

(6)

This follows from the fact that (be-
cause for any bounded transformation, ) and

. Indeed, since for any , and

1Alternative methods have been proposed that may yield a better reconstruc-
tion when x 2 H [7]. Here, however, we restrict our attention to x 2 W .

Fig. 1. General sampling and reconstruction scheme.

, under (3) we have that only if
. Using (6), can be expressed as

for some invertible matrix . Thus,

(7)

completing the proof.
We assume throughout the paper that (3) holds.

B. Noisy Sampling

Extending the discussion to the noisy setting, we now treat
the case in which the nonideal samples are corrupted
by a zero-mean noise vector with positive-definite covariance
matrix . The noisy samples are then given by

(8)

As in the noise-free setting, we consider reconstructions of the
form

(9)

where is a linear transformation of the noisy sam-
ples . The sampling and reconstruction scheme is illustrated in
Fig. 1. A special case occurs when represents an FIR filter,
so that reconstruction is obtained by convolving the samples
with a properly chosen impulse response.

When the samples are corrupted by noise, the choice
no longer guarantees perfect reconstruction of .

Our problem then is to choose such that is close to in some
sense, for any . Formulating the problem in a statistical
framework, we seek the transformation that minimizes the
MSE between and . However, computing the
MSE shows that

(10)
which depends in general on and therefore cannot be mini-
mized. To eliminate the signal dependency of the MSE we need
to choose such that for all . Equiva-
lently, must satisfy

(11)

Multiplying (11) on the left by and on the right by
, the unique solution to (11) is

. Thus, the only unbiased strategy is the consistent re-
construction; however, this method does not necessarily result
in a small MSE.

Unless we use the consistent approach, the MSE performance
of in Fig. 1 will depend on the unknown , and therefore
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cannot be evaluated. Nonetheless, some reconstructions may be
better than others in an MSE sense. For example, we will see
in Section IV-C that if for some , then based
on a minimax MSE approach we can choose such that the
resulting MSE is smaller than the MSE of for all ,

; thus, the minimax MSE reconstruction dominates
the consistent method for norm bounded signals. In general, a
reconstruction dominates a reconstruction on a set of

if

for all

for some (12)

Furthermore, strictly dominates on if

for all (13)

A reconstruction that dominates is clearly preferable in
terms of MSE. However, the fact that dominates does not
preclude the possibility that another linear strategy exists that
dominates , and is therefore preferable, from an MSE per-
spective, over both and . An admissible reconstruction has
the property that it is not dominated by any other linear method.
If a reconstruction is inadmissible, then there exists another ap-
proach that leads to better MSE performance on . This discus-
sion raises two interesting questions.

1) Given a correction matrix , can we verify whether it
leads to an admissible reconstruction on a set of ?

2) If results in an inadmissible reconstruction, then can
we develop a systematic approach for constructing an ad-
missible method that dominates on ?

Based on the results of [20], a general answer to both of these
problems is given in the following theorem.

Theorem 1: Let denote noisy samples of a
signal in an -dimensional subspace , where is a
given set transformation and is a zero-mean random vector
with covariance . Suppose that is a linear
reconstruction of in , where is a given set transforma-
tion corresponding to a basis for . Denote the MSE of by

, and let . Then, we
have the following:

1) is admissible on if and only if , or equiva-
lently, if and only if , where is the unique
solution to

(14)

and

(15)

2) if then strictly dominates on ;
3) is admissible on .

Note that the minimum in (14) and (15) is well defined since the
objective is continuous and coercive [25].

Proof: The proof follows immediately from the proof of
[20, Theorem 1] by noting that is continuous, coercive,
and strictly convex in .

Theorem 1 provides a general recipe for determining admissi-
bility of a linear reconstruction and for constructing admissible
and strictly dominating methods, by solving a convex optimiza-
tion problem (the problem (14) is convex for arbitrary constraint
sets since the supremum of a convex function over any set
is convex). As noted in [20], an interesting consequence of the
theorem is that if a reconstruction is inadmissible, then there
exists a method that strictly dominates it.

C. Relation With Linear Estimation in Linear Models

The sampling problem of Fig. 1 is very similar to the standard
linear regression model, in which the goal is to estimate a pa-
rameter vector from observations which are related through
the linear equation

(16)

Here is a given model matrix, which is often assumed to
have full column rank, and is a noise vector. Replacing
in (16) with results in the sampling model (8) (since we
explicitly assume in our development that ).

In this paper, we exploit the relationship between the two
models to apply ideas and concepts developed in [20] in the con-
text of linear regression to our sampling problem. In applying
these results, there are two main differences which need to be
accounted for. The first is that the admissibility and domination
conditions of [20] only treat the case in which has full column
rank. However, when is a true subset of , the null space of

is nonzero which is equivalent to a rank-deficient . An-
other important discrepancy between the two problems is that
linear estimators designed to estimate in the regression model
are typically not restricted. In contrast, our reconstruction is
forced to lie in a given subspace .

A naive approach to developing admissible reconstruction
strategies is to use any admissible estimation method for (16)
with replaced by , and then orthogonally project the
estimate onto . Unfortunately, the characterization of all ad-
missible methods in [20] only treats the case in which has
full column rank, which is not relevant to our sampling problem.
Nonetheless, in many special cases, starting from an admissible
linear estimator for (16) when is full rank, substituting
for and orthogonally projecting the solution results in an ad-
missible reconstruction strategy. As an example, assuming that

, the least-squares estimator

(17)

is admissible for the model (16) when is unrestricted [20]. In
order to apply to (8) we first note that it can be alternatively
expressed as

(18)

Replacing by in (18) and orthogonally projecting the
estimator onto leads to the reconstruction

(19)
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From the admissibility conditions we develop in Section V-B
(see Theorem 7), it follows that of (19) is indeed an admissible
reconstruction strategy.

In the rest of the paper, we use Theorem 1 to systematically
develop necessary and sufficient conditions for a reconstruction
to be admissible which are easy to verify, as well as an explicit
procedure for constructing a reconstruction dominating an inad-
missible method. We also propose several admissible strategies
by adapting known estimation methods to our particular sam-
pling framework. Motivated by the fact that in many practical
scenarios the norm of the signal is bounded, in Sections III and
IV we consider the case in which consists of vectors
satisfying . Admissibility over the entire space is
treated in Section V.

III. MSE PERFORMANCE FOR NORM-BOUNDED SIGNALS

Suppose we are given a reconstruction that is inadmissible
on the set of norm-bounded signals defined by

(20)

We would like to construct an admissible reconstruction that
strictly dominates . We defer the discussion on conditions
under which is inadmissible to Section III-C; for now, we
focus on the design problem. Applying Theorem 1, can be
constructed as , where

(21)

Here is the MSE of .
In Section III-A, we derive optimality conditions on

and develop closed form solutions for some special cases. A
semidefinite programming (SDP) formulation is presented in
Section III-B. Using these results, in Section III-C, we provide
necessary and sufficient conditions on a reconstruction to be
admissible on , which are easy to verify. Specific examples
of reconstruction strategies are presented in Section IV.

A. Necessary and Sufficient Conditions for Optimality

Substituting (10) into (21), can be determined as

(22)

where we defined

(23)

Our approach to solving (22) is to apply a change of variables
that reduces the problem to a form similar to that considered
in [20] in the context of estimation in linear models. Adapting
these results to our setting leads to the optimality conditions
given in Theorem 2 below. The detailed proof of the theorem
is presented in Appendix A.

Theorem 2: Let denote noisy samples of a
signal in an -dimensional subspace , where is
the set transformation corresponding to the sampling vectors

which form a basis for an -dimensional
subspace such that , and is a zero-mean

random vector with covariance . Let
denote reconstruction vectors with set transformation that
form a basis for , let , and let

be a given reconstruction of with MSE
. Then,

if and only if satisfies the following conditions for some
with and :
1) ;
2) ;
3) ;
4) ;
5) ;
6) .
Although the conditions of Theorem 2 are difficult to solve

in general, they can be used to verify a solution. For example,
we can check when , which leads to necessary
and sufficient conditions for admissibility, as we discuss in
Section III-C. Furthermore, in some special cases the condi-
tions can be solved explicitly. We now consider one such class
of examples, in which and have
the same eigenvectors.

1) Special Case: Let have an eigendecom-
position

(24)

where is an orthonormal set transformation satis-
fying and with2 , and
suppose that

(25)

where for some .
A general case in which (25) is satisfied is when

for some , , and so that
form an orthonormal basis for . Indeed,

which commutes with , and therefore
in this setting the two matrices have the same eigenvectors.

Theorem 3 below provides a closed form expression for the
optimal matrix under these conditions.

Theorem 3: Consider the problem of Theorem 2. Let
where

with , and suppose that where
. Then

where with

;
,

(26)

and

(27)

2Note, that since S \ W = f0g, S P S is invertible, and the rank of
P SC S P is equal to m.
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The parameter is selected according to the following proce-
dure: if , where

(28)

then . Otherwise, is the unique value for which
in the range with .

Proof: See Appendix B.
We conclude that if we are given an inadmissable satis-

fying (25), then Theorem 3 can be used to construct an admis-
sible reconstruction strictly dominating on . An example
of an application of this theorem is presented in Section IV-C.

B. Semidefinite Programming Formulation

Theorem 2 can be used to derive explicit solutions to (22)
in some special cases. Following [20], we now show that in the
general case, the optimal can be found numerically by solving
an SDP [26], [27], which is the problem of minimizing a linear
objective subject to linear matrix inequality constraints. These
are matrix constraints of the form , where the matrix

depends linearly on the vector . The advantage of this for-
mulation is that it readily lends itself to efficient computational
methods that are guaranteed to converge to the global optimum
within any desired accuracy [26]–[28]. In practice, the solution
can be obtained using one of the many available SDP software
packages.

To develop the SDP formulation we define the matrices
, and

(29)

where is the orthonormal set transformation
in the SVD of (see (78) in Appendix A). As detailed in
Appendix A, the problem (22) can be formulated in terms of
these matrices as

(30)
Now, for any matrix , we have that

(31)

where is the largest eigenvalue of . Expressing
as the solution to

(32)

equation (30) becomes

(33)

subject to

(34)

or, equivalently,

(35)

subject to

(36)

Here is the vector obtained by stacking the
columns of . Using Schur’s complement [29, p. 472], the
constraints (36) can be written as the linear matrix inequalities

(37)

We conclude that the problem (30) is equivalent to the SDP
of minimizing subject to (37). The solution to (22) can be
obtained from the SDP solution as .

C. Admissible Reconstructions

We now use Theorem 2 to develop necessary and sufficient
conditions on to be admissible, or equivalently, such that
is the solution to (21).

Theorem 4: Consider the problem of Theorem 2. Then
is an admissible reconstruction of on if and only if

1) ;
2) ;
3) .

Proof: To prove the theorem it is sufficient to show that
satisfies the conditions of Theorem 2 with for some

if and only if it satisfies conditions 1–3.
Since conditions 1–3 are a subset of those of Theorem 2, any
satisfying Theorem 2 also satisfies these conditions. On the

other hand, if satisfies conditions 1–3, then it satisfies the
conditions of Theorem 2 with .

An immediate consequence of Theorem 4 is that the con-
sistent reconstruction with given
by (4) is inadmissible on the bounded-norm set . Indeed,

, and the second constraint of the theorem is
violated. Since is inadmissible, an interesting problem
is to construct an alternative reconstruction that is admis-
sible and strictly dominates . In Section IV-C, we show
that a reconstruction with this property is the minimax MSE
approach, which minimizes the worst-case MSE on .

A general class of admissible reconstructions is given in the
following proposition.

Proposition 2: Consider the problem of Theorem 2. Let
where with

. Then is admissible for any of the form

(38)

where and the values satisfy

Proof: In the proof of Theorem 3 we showed that of
the form (38) satisfies conditions 1 and 2 of Theorem 3 if
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. We also showed that the trace in condition 3 is equal to
, from which the proposition follows.

IV. RECONSTRUCTION METHODS ON A SPHERE

Theorem 4 implies that there are many possible admissible
reconstructions on . Therefore, there is a need for a criterion
to choose between them. In this section, we consider several
strategies and develop the corresponding solutions. The design
methods are based on standard estimation approaches for the
linear regression model (16), adapted to our particular sampling
problem.

A. Least-Squares

The most straightforward approach to designing is to
consider a least-squares criterion, in which we minimize the
(weighted) data error

(39)

Clearly, is minimized with of (4), and is there-
fore inadmissible on a sphere.

It is interesting to note that from Proposition 1, the least-
squares reconstruction is equal to the recon-
struction (19) which is obtained by a projection onto of the
least-squares estimator for the model (16), with replaced by

.

B. Tikhonov Regularization

The least-squares strategy does not take advantage of the prior
information that has bounded norm. To take this into account,
we may seek the reconstructed signal that minimizes
the least-squares error (39) subject to the constraint .
The solution can be determined by minimizing the Lagrangian

(40)
where from the Karush–Kuhn–Tucker conditions [25]
and at the optimal solution

(41)

thus, either or .
Differentiating (40) with respect to and equating to 0,

(42)

which is satisfied for all if

(43)

Using some algebraic manipulations, of (43) can be shown
to be equivalent to

(44)

where must satisfy (41). Denoting by the matrix of
(44) for fixed , this implies the following procedure for se-
lecting : if , then , and using
Proposition 1, . Otherwise,
is a parameter that depends on the noisy observations and is
chosen such that

(45)

To show that such a always exists, let

(46)

so that is a positive root of . Clearly, is monotoni-
cally decreasing in . In addition, , and
as , so that has exactly one positive root.

We conclude that the Tikhonov matrix is given by (47)
at the bottom of the page, where is chosen such that

.
Evidently, Tikhonov reconstruction is in general nonlinear,

and does not have an explicit solution; the parameter does not
have a closed form, but is rather determined as the solution of the
data-dependent (45). However, instead of choosing according
to (45) we may select as a constant such that the resulting
reconstruction is admissible. The possible values of satisfying
this condition are given in the following proposition.

Proposition 3: The Tikhonov reconstruction
with

is admissible on if and only if
.

Proof: We prove the proposition by showing that the con-
ditions of Theorem 4 are satisfied if and only if .

First, we note that

(48)

where we used the matrix inversion lemma [29]. It therefore
follows that is Hermitian, so that the first
condition holds. Since , the
second condition is also satisfied. To verify the last con-
dition, we note that by direct substitution of
we have

. Therefore, the last condition is satisfied if and only
if , completing the proof.

;
otherwise

(47)



4626 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 12, DECEMBER 2006

Similarly to the least-squares design method, the Tikhonov
reconstruction can be shown to be equivalent to the orthog-
onal projection onto of the standard Tikhonov estimator for
the linear regression model (16). To see this, recall that the
Tikhonov estimator [23], [30] for (16) is given by the value of

that minimizes the regularized squared error

(49)

and is equal to

(50)
Replacing with , (50) becomes

(51)

C. Minimax MSE Reconstruction

From Proposition 3, it follows that we can choose the regular-
ization parameter in the Tikhonov reconstruction such that
is admissible on . However, in general does not domi-
nate the consistent reconstruction , as we demonstrate in
the context of a concrete example in Section IV-D. Since
is inadmissible on , a strictly dominating method exists. We
now consider a minimax MSE approach and show that the re-
sulting reconstruction dominates on .

Instead of minimizing a regularized data function, we may
seek the reconstruction that minimizes the
worst-case MSE over all bounded-norm signals, so that is
the solution to

(52)

Clearly, if the reconstruction is unique, then it is admissible
since it minimizes the MSE at the worst case and therefore
cannot be dominated by any other method.

To develop the minimax MSE estimator we note that it can
be alternatively expressed as

(53)

where is the consistent reconstruction with
. This follows from the fact that, as we

have seen in Section II, is independent of . From
Theorem 1, we have immediately that is admissible, and
strictly dominates on . Theorem 3 can now be used to
derive an explicit solution to (53), resulting in the following
proposition.

Proposition 4: Consider the problem of Theorem 2. Let
be the minimax MSE estimator with

. Then,

In addition, strictly dominates the consistent reconstruc-
tion on .

Proof: With , we have that
, where we used the fact that

. Therefore, and are
jointly diagonalizable, so that we can use Theorem 3 to find
the minimax MSE reconstruction explicitly. Since the nonzero
eigenvalues of are all equal 1, and .
Denoting it follows that
and

(54)

where . Thus,

(55)

completing the proof.
Note that when , we have . There-

fore, when is not norm bounded, the minimax MSE and
consistent reconstructions coincide.

D. Example

We now provide an example illustrating the performance of
the consistent (least-squares), Tikhonov, and minimax MSE re-
constructions.

Suppose we are given noisy local averages of a signal ,
where is the space of even signals of length 5, spanned by
the columns of

(56)

The samples (local averages) are obtained by taking the inner
products with the columns of

(57)

and are corrupted by zero-mean, independent Gaussian noise
with variance . To reconstruct the signal from the samples,
we consider three choices of : of (4), of (47)
with and of (55) with .

In Figs. 2 and 3 we plot the MSE as a function of the SNR
defined by , using each of the methods above, for
two different choices of : and

. As can be seen from the fig-
ures, the performance of and depends on the partic-
ular choice of : for some values of , performs better than

while for other choices the reverse is true. However, it is
evident from Fig. 2 that does not dominate . On the
other hand, in both figures dominates for all SNR,
as we expect from the theoretical results of Proposition 4. Note
that the performance of does not depend on .

V. MSE PERFORMANCE ON THE ENTIRE SPACE

We now treat the case in which is an arbitrary vector in .
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Fig. 2. MSE in reconstructing x as a function of the SNR for x =
[�1:7 0:6 �2 0:6 �1:7 ] .

Fig. 3. MSE in reconstructing x as a function of the SNR for x =
[ 1 1 1 1 1 ] .

A. Dominating Reconstructions on the Entire Space

From Theorem 1, it follows that an admissible reconstruction
strictly dominating an inadmissible method on can be

constructed as the solution to the problem

(58)

Necessary and sufficient optimality conditions on the solution
to (58) are given in the following theorem.

Theorem 5: Consider the problem of Theorem 2. With
, , denote the orthogonal projec-

tion onto by and define

Then,

if and only if satisfies the following conditions:
1) ;
2) ;
3) ;
4) ;
5) .

Proof: See Appendix C.
As we now show, the conditions of Theorem 5 can be used

to derive explicit closed form solutions in the case in which
and have the same eigenvectors.

For arbitrary choices of , , and the optimal solu-
tion can be obtained using an SDP formulation similar to that
presented in Section III-B.

Theorem 6: Consider the problem of Theorem 5. Let
where

with , and suppose that , where
. Then

(59)

where with

;
.

(60)

Proof: See Appendix D.

B. Admissible Reconstructions on the Entire Space

Using Theorem 5 leads to the following necessary and suffi-
cient conditions on to be admissible for all .

Theorem 7: Consider the problem of Theorem 5. The recon-
struction is admissible on if and only if

1) ;
2) .

Proof: The theorem follows immediately by noting that
satisfies the conditions of Theorem 5 with if and only
if it satisfies conditions 1 and 2.

Note from Theorems 4 and 7 that any reconstruction which is
admissible on , is also admissible on .

A general class of admissible reconstructions is given in the
following proposition.

Proposition 5: Consider the problem of Theorem 7. Let
where with

. Then with

(61)

is admissible on where with
.

An immediate consequence of the proposition is that the con-
sistent reconstruction is admissible on , since it corresponds
to of (61) with .

VI. FIR RECONSTRUCTION

An interesting class of reconstruction methods is based on
processing the samples by a digital correction filter. In this case
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the noisy samples are convolved with an FIR filter of length
with coefficients producing the

cleaned samples . The corresponding matrix in
Fig. 1 is a band Toeplitz convolution matrix with th diagonal
equal to . For example, if and , then

(62)

Reconstruction is then obtained as with
. For simplicity, throughout this section we assume

that and the noise is white so that for
some . Under this model, our goal is to characterize all
admissible FIR filters on .

From Theorem 7, the filter is admissible if and only if the
corresponding matrix satisfies

(63)

(64)

Condition (63) implies that the filter must be symmetric, i.e.,
, rendering to be a symmetric band Toeplitz matrix.

Note that such a matrix is completely determined by its first
row. To address the condition (64) we rely on the following
proposition.

Lemma 1 [31]: Let be an symmetric Toeplitz matrix
with first row equal to . Then if and
only if for all , where

(65)

is the discrete-time Fourier transform (DTFT) of the sequence3

;
.

From Lemma 1 it follows that if and only if
where is the DTFT of . Next we note
that is a symmetric band Toeplitz matrix corresponding to the
impulse response . Therefore, , or equivalently,

if and only if the DTFT of the sequence
is nonnegative. Since , we

conclude that (64) is equivalent to

(66)

A sufficient condition for is . This
follows from the fact that

(67)

The admissibility conditions on FIR reconstruction are sum-
marized in the following theorem.

3Note that since a is symmetric, A(!) is real.

Theorem 8: Consider the problem of Theorem 5. Let
be a linear reconstruction of , where , and

suppose that and for some . Then
is admissible if and only if is symmetric, and
where is the DTFT of .

A. Moving Average Reconstruction

In [14] the authors consider the problem of reconstructing a
bandlimited signal from a finite set of noisy mea-
surements (see also [16] and reference therein). Their problem
can be cast in our general framework by choosing

(68)

To reconstruct the signal from the samples they proposed fil-
tering the samples with a symmetric FIR filter with impulse re-
sponse satisfying . In particular, they con-
sidered in detail the case in which .

Using Theorem 8 we now show that their reconstruction
method is inadmissible. We then propose an alternative recon-
struction that strictly dominates their approach.

The choice of sampling and reconstruction vectors (68) re-
sults in . It then follows from Theorem 8
that the reconstruction is admissible if and only if the DTFT of
the filter, , satisfies . Clearly this does not hold
for .

Since this filter is inadmissible, there exists a transformation
that strictly dominates it for all . To find a strictly

dominating we now use Theorem 6 where is the ma-
trix representing convolution with the filter ,

. With and given by (68),

(69)

and

(70)

which clearly commutes with . Now, let have an
eigendecomposition where is a unitary ma-
trix and , and define . Then

and . Therefore,

(71)

with , and

(72)

From Theorem 6, it then follows that a matrix strictly domi-
nating is given by

(73)

where with

;
.

(74)
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Fig. 4. MSE in estimating x(t) as a function of Z using the moving average
method and the estimator of (73) for x(t) given by (76).

Since ,

;
.

(75)

Thus, the matrix is constructed from the matrix by re-
placing each negative eigenvalue by 0.

To illustrate the performance advantage of , suppose that
we are given noisy samples of the bandlimited
signal

(76)

at times , , where is the sampling
period. The noise is independent and uniform on .
The sampling and reconstruction functions are given by (68).

In Fig. 4, we plot the MSE as a function of with ,
, and using the moving average estimator of

[14] and the estimator of (73). As can be seen from the figure,
the estimator of (73) dominates the moving average estimator
for all values of . In Fig. 5, we repeat the simulations for a
random, bandlimited input signal.

Although the reconstruction (73) dominates the moving av-
erage estimator, it no longer corresponds to digital filtering. An
important problem therefore that we are currently investigating
is to design an FIR filter that leads to a reconstruction strictly
dominating a given inadmissible FIR-based method.

VII. CONCLUSION

In this paper, we treated the problem of reconstructing a
signal in a finite-dimensional subspace of an arbitrary
Hilbert space from its nonideal, noisy samples. The samples
are modeled as the inner products of with a set of reconstruc-
tion vectors, which span a sampling space , and recovery is

Fig. 5. MSE in estimating x(t) as a function of Z using the moving average
method and the estimator of (73) for a random choice of x(t).

performed in the reconstruction space , where in general
and can be different but satisfy the condition (3).

To reconstruct the signal from the samples, we suggested for-
mulating the reconstruction problem within a statistical frame-
work and characterizing all reconstructions that are MSE ad-
missible. We also developed explicit methods for dominating an
inadmissable reconstruction and proposed several specific ad-
missible strategies, by adapting known estimation approaches
to our context. In particular, we considered solutions based on
digital filtering and showed that admissibility can be determined
by examining the frequency response of the filter.

One of the main contributions of this paper is introducing a
framework for systematic design of reconstruction strategies.
There are still various aspects that need to be further studied.
However, it is our hope that this viewpoint of the reconstruction
problem will serve as a catalyst to further investigations of re-
construction from noisy samples.

APPENDIX A
PROOF OF THEOREM 2

To prove the theorem, we begin by considering the maximiza-
tion problem in (22):

(77)

Let have a singular value decomposition (SVD)

(78)

where is an orthonormal set transformation satis-
fying , with , and is
an unitary matrix. Since , it follows that
for some vector . Furthermore, because

. Therefore,

(79)
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where we defined , , and

(80)

Note that since if follows from Proposition 1 that
is invertible. Next, using the fact that

(81)

we have

(82)

Therefore, (22) is equivalent to

(83)
The problem (83) was considered in [20] in which it was

shown that is optimal if and only if
where and satisfies the conditions below for
some :

1) ;
2) ;
3) ;
4) ;

5) ;

6) .

In our case, is invertible, so that .
Therefore, the optimal has the form , where

(84)

Using (84) and

(85)

the first condition becomes

(86)

where . Since is invertible, (86) is equiv-
alent to , which proves the first condition.

We now consider the second condition, which using (86) can
be written as

(87)

Multiplying on the right by and on the left by
, (87) is equivalent to , proving the

second condition.
To establish the third condition, we note that from (84),

(88)

and

(89)

Therefore, the third condition becomes

(90)

Noting that for any two matrices and we have that
if and only if , (90) becomes

(91)

The third condition then follows from the fact that

(92)

The fourth condition is proven in a similar way.
To prove the fifth and sixth conditions, we need to find an

expression for . Using (88) and (86),

(93)

where we used the fact that from condition 2,
is invertible. Therefore,

(94)

Noting that

(95)

equation (94) becomes

(96)

which completes the proof.

APPENDIX B
PROOF OF THEOREM 3

To prove Theorem 3, we need to show that with given
by (26) satisfies the optimality conditions of Theorem 2.

We first note that
. Therefore,

(97)

Using (97) together with the fact that , we have
that

(98)
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From (98) the first condition is equivalent to . Since
, is real and the first condition is satisfied.

Since is invertible, the second condition becomes

(99)

or,

(100)

Using the fact that , (100) reduces to . By
definition of , we have that . To show that we
need to show that . Since , . Furthermore,

if and only if and . But, if , then
so that cannot be equal to 0. Therefore,

and .
We now consider the third condition. With our definition of
,

(101)
Since ,

(102)

and

(103)

Therefore, conditions 3 and 4 become
and , which can be written as

(104)

and

(105)

Since , both conditions are satisfied.
To address conditions 5 and 6 we now find an expression for

. To this end we
note that

(106)

Thus,

(107)

Finally, the last two conditions are satisfied by our definition
of . It remains to show that if , then there is a
unique value of such that .

Since is monotonically increasing in , and each term
in the sum in the definition of is positive, is mono-
tonically decreasing in as long as there exists at least on for
which , or equivalently, as long as . In addition,

is continuous. Now, we are assuming that . Fur-
thermore, for . Therefore, there is a unique

such that .

APPENDIX C
PROOF OF THEOREM 5

We consider the problem

(108)

where is defined in (23). Using the SVD (78) of ,

(109)
where , , and is defined in (80). Now,
for any matrix ,

;
otherwise.

(110)

Therefore, (108) is equivalent to

(111)

subject to

(112)

The problem of minimizing (111) subject to (112) was con-
sidered in [20], in which it was shown that is optimal if and
only if where and sat-
isfies the following conditions:

1) ;
2) ;
3) ;
4) ;
5) .

Here, and de-
notes the orthogonal projection onto . As we now show,
adapting these conditions to our problem results in the condi-
tions of Theorem 5.

The proof of the first two conditions follows as in the proof
of Theorem 2. Condition 4 follows in a similar way as condition
3 in Theorem 2 with .

To prove the third condition, we note that from (84),

(113)

In addition, since ,

(114)
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Therefore, the third condition becomes

(115)

Since , and ,
(115) is equivalent to , proving the
third condition.

We now prove the 5th condition. To this end we note that

(116)

Using the fact that ,

(117)

The last equality follows from the fact that
for any with and .

Combining (116), (117) and
, we have that . Thus,

(118)

and

(119)

which proves the fifth condition.

APPENDIX D
PROOF OF THEOREM 6

To prove Theorem 6, we need to show that of (59) with
given by (60) satisfies the optimality conditions of Theorem 5.
Following similar steps as in the proof of Theorem 3, the first
two conditions become and and the fourth
condition becomes , which are all satisfied.

We now consider the third condition. Since

(120)

we have that , where and

;
.

(121)

Noting that , the third condition becomes

(122)

Since from our definition of , for all such that ,
(122) is satisfied.

To prove that the fifth condition is also satisfied, we note that
under the assumptions of the theorem,

(123)

With given by (123), the fifith condition becomes

(124)

which is equivalent to

(125)

Now, from our definition of we have that
only if . In this case and , so that

. Therefore, (125) is also satisfied, completing the proof.
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