
2636 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 7, JULY 2006

Nonideal Sampling and Interpolation From Noisy
Observations in Shift-Invariant Spaces

Yonina C. Eldar, Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract—Digital analysis and processing of signals inherently
relies on the existence of methods for reconstructing a continuous-
time signal from a sequence of corrupted discrete-time samples. In
this paper, a general formulation of this problem is developed that
treats the interpolation problem from ideal, noisy samples, and the
deconvolution problem in which the signal is filtered prior to sam-
pling, in a unified way. The signal reconstruction is performed in
a shift-invariant subspace spanned by the integer shifts of a gen-
erating function, where the expansion coefficients are obtained by
processing the noisy samples with a digital correction filter. Several
alternative approaches to designing the correction filter are sug-
gested, which differ in their assumptions on the signal and noise.
The classical deconvolution solutions (least-squares, Tikhonov, and
Wiener) are adapted to our particular situation, and new methods
that are optimal in a minimax sense are also proposed. The solu-
tions often have a similar structure and can be computed simply
and efficiently by digital filtering. Some concrete examples of re-
construction filters are presented, as well as simple guidelines for
selecting the free parameters (e.g., regularization) of the various
algorithms.

Index Terms—Deconvolution, interpolation, minimax recon-
struction, sampling.

I. INTRODUCTION

S IGNAL deconvolution is aimed at removing the system re-
sponse effect on a signal, and is prevalent in a vast area of

applications such as communications, imaging, and speech pro-
cessing among others. Deconvolution can be cast in the frame-
work of estimation in linear models, a topic that has been studied
extensively in the past century following the classical works of
Wiener [1] and Kolmogorov [2]. A fundamental problem they
treated is that of estimating a stationary random signal in ad-
ditive stationary noise, where the signal is convolved with a
linear time-invariant (LTI) system. The reconstruction strategy
is based on filtering the noisy signal with an LTI estimation filter
with the goal of undoing the system influence and mitigating the
noise.

In the context of sampling [3]–[5], a natural extension of the
classical linear estimation problem is that of reconstructing a
continuous-time function given a sequence of corrupted dis-
crete measurements. When the measurements are samples of an
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underlying continuous-time signal, we obtain an interpolation
problem from noisy data [6], [7]. A more general formulation
of this problem allows for nonideal samples in which the con-
tinuous-time signal is filtered prior to ideal sampling, resulting
in a deconvolution problem with the distinctive feature that we
are seeking a continuous-time solution.

In this paper, we develop a unified approach to this type of re-
construction that extends some of the noise-free sampling and
reconstruction techniques that have been investigated in the lit-
erature [8]–[12]. The specific problem we treat is that of re-
constructing a continuous-time signal from noisy, nonideal
samples, that are modeled as the ideal uniform samples of the
output of a sampling filter with impulse response , with

as its input. We seek a continuous-time reconstruction
which is constrained to lie in a given shift-invariant space
span , spanned by integer shifts of a reconstruc-
tion filter [13], [14]. The reconstruction is obtained by fil-
tering the noisy samples by a discrete-time filter prior to
reconstruction with the filter . Our approach is general in
that we allow for arbitrary sampling and reconstruction filters.

The two main reconstruction strategies in the noise-free case
are consistent reconstruction [8]–[10] and minimax reconstruc-
tion [12]. The consistent approach is based on fitting the data
exactly, so that yields the same samples as . Under an
appropriate condition on the filters, the reconstruction is unique
and is equal to the oblique projection onto the
reconstruction space along the orthogonal complement of the
sampling space span . The minimax recon-
struction is designed to minimize the worst-case squared-norm
of the error between and and can be written as the
double projection , where and are the

orthogonal projections onto and , respectively.
Sampling in the presence of noise has been investigated

primarily in the context of bandlimited sampling. Iterative
reconstruction algorithms in a general shift-invariant setting are
considered in [14]. The work in this area includes analysis of the
noise effects in existing reconstruction systems, e.g., [15]–[18]
and references therein, and concrete reconstruction methods
from noisy samples, such as [14], and [19]–[21]. However, the
proposed algorithms tend to focus on the bandlimited setting
and are typically not specified to be optimal from the point of
view of statistical estimation theory.

Here, we suggest several noniterative reconstruction strate-
gies that differ in their assumptions on the input signal and the
noise. Three alternative formulations of the problem are devel-
oped: 1) deterministic (least-squares, Tikhonov), 2) stochastic
(Wiener), and 3) mixed, where the signal is assumed to be de-
terministic and the noise random (minimax mean-squared error

1053-587X/$20.00 © 2006 IEEE



ELDAR AND UNSER: NONIDEAL SAMPLING AND INTERPOLATION FROM NOISY OBSERVATIONS IN SHIFT-INVARIANT SPACES 2637

(MSE)). As we will see, the first setting leads to a generalization
of the consistent strategy, while the second and third lead to ex-
tensions of the minimax solution. Except for the least-squares
method, which is completely data driven, the common denomi-
nator between these various approaches is that they take advan-
tage of some a priori knowledge on the class of underlying sig-
nals and that they constrain the solution accordingly. Depending
on the type of formulation, these can be given in the form of
a regularization constraint (Tikhonov), the inclusion into some
particular smoothness class (minimax), or a precise specifica-
tion of the power spectrum of the signal (Wiener). Interestingly,
the solutions obtained are often similar and can be computed
simply and efficiently by digital filtering.

Our development is pragmatic in the sense that we suggest a
panorama of solutions, emphasizing commonalities and equiv-
alence in order to help the practitioner design the most appro-
priate filter for his particular application. This approach pro-
vides a number of different routes (and formulations) that in
many cases lead to the same computational solution, while pro-
viding several complementary insights into the problem as well
as on the very notion of optimality.

The paper is organized as follows. In Section II, we describe
our problem and introduce some mathematical preliminaries.
In Section III, we formulate different design criteria and de-
rive the corresponding solutions. This leads to the specifica-
tion of four primary families of reconstruction filters, three of
which (inverse filter, regularized least-squares or Tikhonov, and
Wiener) are adaptations of classical deconvolution methods (cf.
[22]–[24]) to our particular setting. Our fourth minimax solu-
tion is less conventional in the sense that it considers a mixed
setting where the signal is deterministic and the measurement
noise stochastic, and is based on our prior work on minimax es-
timation [25], [26]. A comparison of the various techniques is
presented in Section IV, which is based on the analysis of some
special cases, including the classical setting of a bandlimited re-
construction. Finally, to illustrate the generality of our formula-
tion, we consider several concrete examples of nonbandlimited
reconstructions in Section V. In the process, we provide a gen-
eral computational method for determining the rational form of
the transfer function ( -transform) of the various filters for a re-
construction in a given spline space where the basis functions
are compactly supported. The fact that we can display such ra-
tional solutions, which are generally not available in the ban-
dlimited case nor in the traditional formulation of the Wiener
filter, is interesting from a practical perspective because it nat-
urally yields low complexity recursive algorithms (infinite-im-
pulse-response (IIR) filters).

II. PRELIMINARIES AND RECONSTRUCTION PROBLEM

Throughout this paper, parentheses are used for contin-
uous-time signals, e.g., , and brackets for discrete-time
signals, e.g., . The continuous-time Fourier transform of a
signal is denoted by ,
and the discrete-time Fourier transform of a sequence
is denoted by , where is
the -transform of , and denotes the integers. These
definitions can also be extended to finite energy signals

Fig. 1. Measurement model.

Fig. 2. Reconstruction model.

(i.e., and ). The standard -inner
product between two real signals and is written
as , and the discrete-time
convolution between the sequences and is denoted
by . The shift-invariant
spaces spanned by the functions and are denoted
by span and span ,
respectively, and is the orthogonal projection onto the space

.
The basic problem we treat is the recovery of a continuous-

time signal given some equally spaced, noisy measure-
ments . The signal can either be deterministic, or a
zero-mean stationary signal with known power spectrum. The
sampling of the signal is nonideal in the sense that it is first con-
volved with ; typically, the impulse response of a
measurement device. Moreover, it is corrupted by discrete sta-
tionary additive noise with zero mean and known corre-
lation function. Noting that the samples at times of the
convolution can be expressed as the inner product
sequence , we can write the measurements
as

(1)

The measurement model is depicted in Fig. 1, in which
denote the noise-free samples.

When the sampling is ideal, i.e., when , we have
an interpolation problem with noisy data; otherwise, a deconvo-
lution problem with the distinctive feature that we are seeking
a continuous-time solution. Since we have only a countable set
of measurements and the unknown signal is defined over a
continuum, the reconstruction problem is inherently ill-posed.
To resolve this ambiguity, we seek a reconstruction that is
included in some “shift-invariant” Hilbert space , spanned by
the integer shifts of a generating function [13], [14]. The
signal reconstruction (estimate) is therefore constrained to be of
the form

(2)

and is specified in terms of the unknowns . The reconstruc-
tion can be obtained by modulating the sequence by an
impulse train , and then filtering the modulated
impulse train by a filter with impulse response , as depicted
in Fig. 2.
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Fig. 3. Sampling and reconstruction scheme.

Given a sampling filter and a reconstruction filter ,
we reconstruct from the samples by first applying a
digital correction filter, as illustrated in Fig. 3. The problem then
is to design the filter such that is close to in some
sense, where is specified by (2), with expansion coefficients

determined as

(3)

By appropriately choosing the frequency response
of the filter in Fig. 3, the two noise-free reconstruction
strategies—i.e., consistent and minimax reconstruction—can be
cast in this framework. Specifically, denoting by and
the Fourier transforms of and , respectively, consistent
reconstruction [8] is obtained with the filter

(4)

and minimax reconstruction [12] corresponds to the choice

(5)

Note that the filter (4) is not defined when the denominator is
zero; it can be shown that if and are Riesz generators
(see the next section) and , where denotes the
direct sum, then the denominator is bounded away from zero
[27, Proposition 4.8]. The strategies we propose in the noisy
case generalize these two solutions: the least-squares methods
generalize (4), while the minimax MSE and Wiener approaches
lead to an extension of (5).

A. Mathematical Hypotheses

The reconstruction scheme of Fig. 3 establishes a one-to-one
correspondence between the number of known parameters
(measurements) and unknowns (i.e., the coefficients of

in (2)). However, this does not yet mean that the problem
is well posed mathematically. We still need to introduce a few
safeguards and definitions.

First, we need to make sure that the samples of the noise-
free signal are well defined. In the
deterministic case, we therefore specify our class of admissible
input signals as

(6)
where is the Fourier transform of . In other words,
we are imposing that the continuous-time signal that is fed into

the ideal sampler is at least differentiable once in the -sense,
which implies pointwise continuity. This ensures that
(cf. [28], App. C) and allows us to express the discrete-time
Fourier transform of as

(7)

In the stochastic case, we have a similar admissibility condition
where in (6) is replaced by , the spectral power
density of .

The second requirement is that the discrete/continuous repre-
sentation of the solution (2) be stable and unambiguous. Specif-
ically, we impose that the functions form a Riesz
basis of [13], which ensures that the representation is unique
and that there is a direct equivalence between the discrete-time
and continuous-time quadratic norms of the solution: and

, respectively. The Riesz basis condition is equivalent to
the requirement that there exist two constants and

(the lower and upper Riesz bounds) such that

(8)

almost everywhere, where

(9)

is the Fourier transform of the Gram sequence
(cf. [13]). This also means that

cannot vanish anywhere if it is a continuous function of ,
which is precisely the case here because of (10) below.

Since the noisy samples specified by (1) are not neces-
sarily in , we want a slightly stronger stability condition
for all , which can be enforced by the additional
requirement (cf. [14])

(10)

This condition implies that the continuous-time reconstruction
will be bounded whenever its coefficients are bounded,

and vice versa. Globally, this ensures a BIBO—i.e., bounded
(discrete) input, bounded (continuous) output—behavior when-
ever the digital correction filter in Fig. 3 is stable (i.e.,

).
For convenience, we summarize the assumptions made

throughout the paper on the input signal and the sampling and
reconstruction filters.

• Input signal and sampling filter satisfy (6);
• Reconstruction filter satisfies (10) and

, where , is defined by
(9).
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B. Basic Tools for Energy Calculations

In our derivations of the filter , we rely on the following
two useful identities. The first is Parseval’s theorem, which
states that for any two sequences and ,

(11)

where and are the discrete-time Fourier
transforms of and , respectively. The second follows
from the Poisson sum formula

(12)

where , and is
the Fourier transform of . The classical hypotheses for (12)
to converge uniformly are: i) and ii)
[29]. In the slightly weaker setting, the relation is true almost
everywhere. Also, because we will be mostly integrating pos-
itive terms, we will be able to freely interchange the order of
summation and integration (Fubini’s theorem). For instance, if

and the left-hand integral is well defined, then we can
safely write

(13)

III. RECONSTRUCTION FILTERS

We now investigate several different design criteria for
in Fig. 3 and derive the corresponding solutions. We begin
with the deterministic least-squares approach in Section III-A,
which results in an inverse filter. We then move on to regu-
larization methods, which are better suited for solving inverse
problems in the presence of noise [30]. Specifically, we apply
the Tikhonov–Phillips technique, which imposes a smooth-
ness constraint on the signal; this leads to the derivation of a
regularized least-squares, or Tikhonov, filter in Section III-B.
Departing partially from the deterministic setting, in Sec-
tion III-C, we assume a random noise process and consider
minimax MSE strategies. Finally, in Section III-D, we adopt a
Wiener-type formulation where both the signal and noise are
treated as realizations of stationary processes and minimize an
appropriate MSE measure.

A. Least Squares

The most straightforward design strategy is based on a least-
squares criterion

(14)

where is the noisy data and represents the samples
derived from the reconstructed signal :

(15)

In this approach, the filter is selected such that the estimated
samples are as close as possible to the given samples
in an -norm sense.

Using Parseval’s theorem, (14) can equivalently be written as

(16)

where and are the discrete-time Fourier
transforms of and , respectively. More generally,
introducing a positive frequency weighting kernel
leads to the weighted least-squares criterion

(17)

To develop a solution to (17) we first note that

(18)

where is the frequency response of the filter and
where we defined

(19)

Here, our implicit assumption is that ; this is guaran-
teed whenever and is bounded.

Clearly, is minimized if we can choose
such that for all , where
denotes the set of frequencies such that

. This can be achieved with

(20)

For , the filter can be chosen arbitrarily. In-
terestingly the least-squares filter does not depend
on the frequency weighting kernel.

The least-squares solution (20) is equivalent to the consistent
reconstruction filter (4) of [8], so that in effect, this approach
does not take the noise into account. The results in [8] imply
that for high signal-to-noise ratio (SNR) values, and assuming

, the reconstructed signal approaches the
oblique projection onto along , which is the
unique operator satisfying

(21)

(22)
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The drawback of the least-squares approach is that if
is close to zero for some frequency , then
will be large at that frequency, leading to noise

enhancement. This property of the least-squares solution is
demonstrated in the context of concrete examples in Section V.
Furthermore, the least-squares strategy is aimed at minimizing
the difference between and but does not guarantee a
small difference between and .

B. Regularized Least Squares

To improve the performance of the least-squares filter, a pop-
ular modification is the regularized least-squares, or Tikhonov,
approach in which a regularization term is added to the data fit-
ting error (17):

(23)

for some frequency weighting function and scalar
, where is given by (18) and

(24)

The error measure can be viewed as the Lagrangian as-
sociated with the problem of minimizing of (17) subject to
the constraint that the reconstructed signal lies in the class

defined by

(25)

By introducing the regularization operator L whose fre-
quency response is , this condition can be expressed
compactly as . In this case, it follows from
the Karush–Kuhn–Tucker conditions [31] that at the optimal
solution

(26)

so that either the equality constraint is satisfied for , or
.

The derivation of the Tikhonov filter is relegated to Ap-
pendix I in which we show that

(27)

for frequencies for which , where
is defined by (19). The solution can be obtained by imposing

the condition that all Gateaux differentials are zero, where we
assume that . Although

is arbitrary on values of for which
, the choice of on these frequencies will not af-

fect the reconstructed output . For , the Tikhonov
filter (27) reduces to the least-squares filter (20). If ,
then , since and

for some because of (8).
In the inequality-constrained version of the Tikhonov filter

must be chosen to satisfy (26). Denoting by the recon-
structed signal resulting from the Tikhonov filter (27) for a fixed
value of , this implies the following procedure for selecting :
if , then . Otherwise, is a pa-
rameter that depends on the data and is chosen such that

. In this case does not have an explicit
formula, but, rather, is determined as the solution of a data-de-
pendent, nonlinear equation.

C. Minimax MSE Filters

Both the least-squares and the regularized least-squares
(Tikhonov) algorithms are based on minimizing a data-error
criterion; i.e., a criterion that depends on the error between

and where . However, in an
estimation context, we typically would like to minimize the
estimation error . A popular measure of this error is
the MSE , which is the average squared-norm
estimation error. Computing the MSE in our setting in which
the signal is deterministic shows that it depends explicitly
on , and therefore cannot be minimized. (This is in contrast
with the stochastic setting in which is a stationary random
process, as we discuss in Section III-D.) Assuming, as in the
previous section, that belongs to the class defined by
(25), we can obtain a signal-independent error measure by con-
sidering the worst-case MSE on . The generic case in which
the only information we have is that can be treated
in this framework by choosing and .

Having combated the signal dependence of the MSE, we are
now faced with another problem (which remains also in the
stochastic case): The filter minimizing the worst-case MSE de-
pends on the time index so that in principle, a different
filter is optimal for each . To obtain a fixed solution
for all , we develop two strategies. The first approach is in-
spired by some of our previous work [12] and is based on the
observation that, even in the absence of noise, we cannot in gen-
eral have because the reconstruction is constrained
to lie in the space . Since the minimal norm approximation
to in is , instead of treating the error

, we consider the projected error at a
particular time instance and seek the filter that minimizes
the worst-case projected MSE over

(28)

Fortunately, the resulting filter does not depend on ; therefore,
the same filtering algorithm provides the optimal solution for
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each . In the second approach, the filter is designed to mini-
mize the time-average worst-case MSE

(29)

Interestingly, we will see that these two strategies lead to the
same reconstruction filter.

1) Minimax Projected MSE: We begin by choosing the filter
to minimize the worst-case projected MSE over , so
that is the solution to

(30)

The development of is more conveniently carried out in
the frequency domain. The following lemmas will enable us to
obtain a Fourier-domain formulation of (30).

Lemma 1: Let be the signal reconstruction defined by
(1) and (2), where is a zero-mean stationary noise process
with power spectrum and let . Then

(31)

where

(32)

and

(33)
Proof: See Appendix II.

Lemma 2: Let

for some . Then, for any function such that

we have

Proof: See Appendix III.

Using Lemmas 1 and 2, and assuming that
, ,

the problem (30) can be expressed in the Fourier domain as

(34)

where

(35)

Since , the minimax filter can be obtained by min-
imizing the convex function , which does not depend
on . Setting the derivative to zero results in the minimax MSE
filter

(36)

It is interesting to evaluate the minimax filter when the only
prior information on is that . Substituting

and into (36) yields

(37)
which is equal to the filter (5) proposed in [12] for the noise-free
case. Applying the Cauchy–Schwarz inequality to the denom-
inator, ,
where the last equality follows from the fact that, in this case,
the Tikhonov filter and the least-squares filter coincide.

The minimax filter (37) is also obtained in the noise-free case
in which . From the discussion in [12], the cor-
responding reconstruction is . Since in this
case, , we have that
for every

(38)
Therefore, in the absence of noise, besides minimizing the
worst-case error energy (as established
previously in [12]), also minimizes the
worst-case point-wise error.

2) Average Minimax MSE: We now treat the average worst-
case MSE criterion, as follows:

(39)

Following similar steps as in the proof of Lemma 1, the MSE
can be expressed in the same functional

form as (31), with of (33) replaced by

(40)
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From Lemma 2, the maximal value of over
, denoted , is then

(41)

Since the dependence of on is only through the terms
and , which are both periodic in

with period 1, it follows that is also 1-periodic. Therefore

(42)
and our problem becomes

(43)

In Appendix IV, we show that the solution to (43) is the same as
for the previous problem and is given by (36).

We summarize our results on minimax MSE reconstruction
in the following theorem.

Theorem 1: Let denote
noisy samples of an unknown deterministic signal , where

is a known sampling function and is a zero-mean
stationary noise process with power spectrum . Let

denote a reconstruction of
where is a given reconstruction function and is a dis-
crete-time filter, let
for some and , and let . Then
the following minimax problems result in the same optimal filter

:

• ;
•

.
The frequency response of the filter is independent of and is
given by the equation shown at bottom of page, where and

are the Fourier transforms of and , respectively.
In addition, if and , then .

D. Continuous-Discrete Wiener Filter

We now consider a full stochastic setting, where is a
realization of a continuous-time zero-mean stationary random
process with power spectral density , and is a zero-
mean stationary noise process with power spectrum ,
independent of . Since is now random, the MSE aver-
ages the squared-norm also over the signal, leading to a signal-
independent expression. In principle, therefore, the filter

can be designed to directly minimize the MSE. Unfortunately,
as in the deterministic signal case, the resulting filter depends
on the time index . If instead we minimize the projected MSE

, then the optimal solution is independent
of time, as incorporated in the following theorem.

Theorem 2: Consider the setup of Theorem 1 where now
is zero-mean stationary random process with power spec-

tral density , independent of . Then, the filter
minimizing the projected MSE is inde-
pendent of and is given in the Fourier domain by

(44)
Proof: See Appendix V.

Comparing the Wiener filter (44) with the minimax filter of
Theorem 1, we see that the two filters have a similar form,
with in the minimax filter replaced by the power
spectrum in the Wiener filter. Thus, we can view the
minimax filter as a Wiener filter matched to a power spectrum

.

IV. COMPARISON BETWEEN THE DIFFERENT FILTERS

The filtering algorithms proposed in the previous section were
derived based on the minimization of a suitable cost function.
The suggested methods differ in the assumptions that have been
made and are summarized in Table I. The second formula in
each of the entries gives the -transform of the various filters
which can be determined explicitly when the analysis filter has
a rational transfer function and the synthesis function is com-
pactly supported (cf. Section V).

We have seen already that the Wiener and minimax MSE fil-
ters have a similar structure, independent of the choice of
and . In Section IV-A, we consider bandlimited interpola-
tion and show that in this case the Tikhonov filter also shares
this form. When , we establish the MSE superi-
ority of the minimax MSE filter by showing that the MSE of the
minimax reconstruction is smaller than that of the least-squares
reconstruction for all (not only the worst-case ).

A. Bandlimited Reconstruction

Suppose that we interpolate the given samples to a ban-
dlimited function by choosing . It is tempting in
this case to replace the continuous-discrete model of Fig. 3 by
the discrete-time model depicted in Fig. 4 and define the dif-
ferent error measures directly on the discrete representation in
which and are the sam-
ples at times of the bandlimited version of . As we
now show, this equivalence holds under the least-squares and
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TABLE I
COMPARISON OF METHODS FOR SIGNAL RECOVERY

Fig. 4. Discrete-time deconvolution.

Tikhonov formulations. In the minimax MSE and Wiener ap-
proaches, an additional bandlimited constraint on the input is
required.

Starting with the least-squares method, and using the fact that

(45)

the least-squares filter of (20) reduces to

(46)

Noting that the Fourier transform of is
for , we can express the filter as

, which is precisely the least-squares solution to
the problem of minimizing the data error in the discrete-time
deconvolution problem of Fig. 4.

Similarly, under the model (45), the Tikhonov filter becomes

(47)
This solution can also be interpreted as the Tikhonov filter cor-
responding to the equivalent discrete-time model, subject to the
constraint that lies in the class defined by

(48)
where is the discrete filter satisfying

for .
Since the least-squares and Tikhonov criteria depend only on

, the fact that is bandlimited reduces the entire problem

to the discrete-time version of Fig. 4. This is in contrast with the
minimax MSE filter, which becomes

(49)

for . A functionally equivalent equation is also ob-
tained for the Wiener filter (44) with playing the role of

. The minimax solution (49) does not have a cor-
responding discrete-time interpretation because of the infinite
sum in the denominator. To convert the problem into the dis-
crete form associated with Fig. 4, we need to add the constraint
that the input is bandlimited, or, equivalently, that the anal-
ysis filter is such that for . In this case

(50)
which is equal to the minimax MSE deconvolution
filter that minimizes the worst-case MSE given by

[32].
If we choose in (50), then

reduces to

(51)

The filter (51) is the classical Wiener filter for the problem of
estimating a random process from blurred, noisy observa-
tions.

Comparing (47), (50), and (51), we see that in the case of
bandlimited interpolation, the Tikhonov, minimax, and Wiener
filters are equivalent provided that and

.
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B. Equal Sampling and Reconstruction Spaces

The least-squares filter makes no prior assumption on .
The Tikhonov and minimax MSE filters, on the other hand, as-
sume that , where is defined by (25). Since these
filters incorporate further knowledge on the input , we ex-
pect intuitively that their performance will be superior to that of
the least-squares reconstruction. We now demonstrate that this
intuition is often correct, at least for the minimax MSE filter, by
examining the special case in which .

For the minimax MSE and least-squares filters
are given, respectively, by

(52)

and

(53)

where we defined

(54)
We assume that over some measurable in-

terval of ; otherwise, the filters (52) and (53) coincide. With
of (53), the projected MSE at time

is given from (31) by

(55)

Note that the resulting MSE is independent of . On the other
hand, if is the minimax MSE filter
of (52), then the MSE of (31), which we denote by , will
depend on . However, from Lemmas 1 and 2, we have that
for any ,

(56)

Since with strict inequality for ,
we conclude that for all , as long as

over some measurable interval of . Note, that
this property is not guaranteed to hold for the Tikhonov filter.

V. PRACTICAL ISSUES

The practical specification of the filters developed in Sec-
tion III in the nonbandlimited case is delicate because of the var-
ious infinite sums that appear in the filter formulas. Depending
on the rate of decay of and as , these sums
may be truncated to an appropriate number of terms and the fre-
quency responses computed numerically to the required degree
of precision. While this “brute force” approach may work for
most of the filters, it is not elegant and may fail in some cases
because of numeric instabilities. Here, we show how these dif-
ficulties can be bypassed and how the calculations can be done
exactly in spline spaces. Specifically, we propose a practical pro-
cedure for determining the rational transfer functions ( -trans-
form) of the various reconstruction filters.

We concentrate on the case where the analysis filter is causal
and is described by a rational transfer function that has the gen-
eral form

(57)

with . In practice, the regularization operator is often
chosen to be a first or second order derivative in order to con-
strain the solution to be smooth and nonoscillating [23], [33],
[34]. Here, we will assume that the regularization operator is
a differential operator of order of the form

, where D denotes the derivative operator and
is the identity. This means that its frequency response

can be written as

(58)

where the s are the characteristic roots of the operator, and
depend on the coefficients .

A. Determination of the Transfer Functions

To explain our computational approach, we show how to de-
termine the rational form of the inverse filter (20) using a pole
cancellation technique. To this end, we define the digital filter

(59)

whose poles are in exact correspondence with those of (57). We
then rewrite the analysis filter as

(60)

where

(61)

is the Fourier transform of the exponential B-spline
, which is parameterized by its poles and



ELDAR AND UNSER: NONIDEAL SAMPLING AND INTERPOLATION FROM NOISY OBSERVATIONS IN SHIFT-INVARIANT SPACES 2645

zeros using the notation of [35]. The important point is that this
function is compactly supported of size . Taking the inverse
Fourier transform of (60), we obtain the B-spline representation
of the impulse response of the analysis filter

(62)

where is the causal sequence whose -transform is given
by (59). The key observation now is that the infinite sum in the
denominator of (20) represents the discrete-time Fourier trans-
form of the sampled version of , where

. This yields an explicit formula for the
-transform of the inverse filter

(63)

where

(64)

Thus, to get the rational form of (63), all we need to do is eval-
uate the function at the integers, which can be done easily
when is a B-spline, using the E-spline formalism presented
in [35], [36].

The same technique also works for determining the transfer
functions of the remaining filters. To this end, we introduce an
additional B-spline function, , whose
Fourier domain expression is

(65)

where

(66)

We also define a few more auxiliary functions

Now, when is a B-spline, these functions are all exponential
B-splines, and they can be readily specified using the B-spline
convolution relations given in [35]. As in the previous case, the
only information that is really needed to determine the transfer
functions of the various filters are the sample values of these
functions at the integers. Specifically, we rewrite (27) and (36)
as

(67)

(68)

where , are given by (64) and (59) respectively, and
, which is equivalent to (9). The key

step for obtaining (67) is to multiply the numerator and denom-
inator of (36) by the 1-periodic function , which
allows us to identify the Fourier transform of given by
(65).

The various filter formulas call for the following comments.
First, all sums over are finite because the auxiliary functions
(exponential B-splines) are compactly supported. This means
that the restoration filters , , and are
all rational. Second, in contrast with (27) and (36), the Tikhonov
and minimax formulas (67) and (68) with are com-
pletely safe numerically. The key point is that the numerator is
bounded because the corresponding exponential B-splines are
well defined and compactly supported. This is not necessarily
so for (36) because of the division by which can be arbi-
trarily small (the trick here is that, by introducing the B-splines,
we have been able to cancel all potentially dangerous poles and
have moved them into the denominator). We also note that the
denominator of (67) or (68) cannot vanish on the unit circle be-
cause it can always be written as
where and are both positive definite (in particular, if

gets very small, then the effect will be compensated
by the second term becoming very large and vice versa). The
least-squares filter (63), on the other hand, can become unstable
if has a zero close to the unit circle.

B. Linking the Wiener and Minimax Solutions

As mentioned in Section III-D, there is an equivalence be-
tween the minimax and Wiener solutions provided that we se-
lect L to be the whitening filter of the process . Restating
this condition in terms of the quantities defined above, we have
that

(69)

where and are given by (65) and (66), respec-
tively.

To be more concrete, let us consider the case of a
first-order Markov process whose spectral power density
is , where is the
normalized correlation coefficient [37]. It is not difficult to see
that the corresponding whitening operator is , with

. This means that a first-order differential regu-
larization operator is the best choice for this type of process and
that the regularization parameters can be optimally matched to
the spectral characteristics of the input signal; in this particular
case , and . The argument obviously also
holds for higher order Markov processes, which are “whitened”
by higher order differential operators whose zeros are given by
the “stable” poles of the spectral power density function; i.e.,
those that are in the left complex plane.

C. Example: Sampling of a First-Order Differential System

For illustration purposes, we consider the case of an anal-
ysis function that corresponds to a first-order differential system
with a single pole at . We are seeking a reconstruc-
tion in two spaces: i) the space of linear splines with
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Fig. 5. Fourier transforms of the analysis function (solid line) and the two
synthesis functions: linear spline (fine-dashed line) and bandlimited (dashed
line).

Fig. 6. Basis functions associated with a linear spline signal reconstruction:
(a) the analysis B-spline ~�(t) (first-order exponential spline); (b) the synthesis
function '(t) (solid line); and (c) the auxiliary function ' (t) = ~�(t) � '(t)
(dashed line). The key point is that these are all compactly supported. The
integer samples of ' (t) are the coefficients of the Laurent polynomial
A (z) that appears in the specification of the least-squares and Tikhonov
reconstruction filters.

(causal triangle) and ii) the space of bandlimited func-
tions with . The Fourier transforms of these
various functions are shown in Fig. 5. The function is
chosen as the first-order differential regularization operator

, which is “optimal” for a first-order Markov process.
We assume that the measurements are corrupted by standard-
ized white noise, corresponding to the choice .

Some of the relevant basis functions for the linear spline case
are shown in Fig. 6. The impulse response of the analysis filter is
a causal exponential that can be represented using the first-order
exponential B-spline, , shown in Fig. 6(a). The
corresponding sequence of weights in (62) is the discrete ver-
sion of this filter, , with , whose -trans-
form is given by (59) with and . The aux-
iliary functions, , are all exponential B-splines
that can be determined analytically [35]. For instance,

. Sampling this function at
the integers yields , as
illustrated in Fig. 6(c). By substituting these expressions in (63),
we get the following concise, rational form of the least-squares
filter

which is causal and stable and can be implemented recursively.
The same technique is also applicable to the determination of the
rational forms of the corresponding Tikhonov and minimax (or

Fig. 7. Frequency responses (amplitude) of various filters associated with
a linear spline signal reconstruction: (a) least-squares (inverse) filter; (b)
Tikhonov (solid line) and minimax (dashed line) filters for � = 1=� = 10 ;
and (c) Tikhonov and minimax filters for � = 1=� = 1. Solutions (b) and
(c) are regularized by means of the same first-order operator L. The minimax
filter is identical to the Wiener filter that would be associated with a first-order
Markov process whose spectral power density is given by (69).

Wiener) filters. The frequency responses of these filters for dif-
ferent values of and are shown in Fig. 7. We note
that the least-squares solution performs the strongest enhance-
ment of the higher frequency part of the spectrum. The Tikhonov
and minimax filters that we are displaying have matched param-
eters—same regularization operator L and . The min-
imax filter results in a slightly stronger attenuation of the higher
frequencies. By increasing , one can modify the frequency re-
sponses of the two filters and make them more and more low
pass. Conversely, when tends to zero, the Tikhonov filter con-
verges to the least-squares solution.

In a practical situation, the regularization parameter should
be matched to the noise level. In fact, the functional equivalence
between the various solutions suggests that should be chosen
to be inversely proportional to the signal-to-noise ratio, which
is itself proportional to , where is the noise variance.

The frequency responses of the corresponding filters for a
bandlimited reconstruction (cf. (46), (47) and (50)) are shown
in Fig. 8 for comparison. The trend is essentially the same as
in the linear spline case. The inverse filtering effect, however, is
not quite as strong as in Fig. 7. This is not surprising since the
bandlimited solution is compensating for the effect of the input
filter (e.g., ) alone, while the spline solution also takes
into account the nonideal frequency response of the synthesis
function (cf. Fig. 5).

We observe that, in both cases, the Tikhonov and minimax
filters have the same qualitative behavior, but they are not iden-
tical. This is to be expected because the underlying cost func-
tions are quite distinct. However, comparing (67) and (68), it
can be seen that the formulas are not so fundamentally different
from each other. In fact, the two solutions can be made equiva-
lent by choosing the particular synthesis function

(70)

The link between both approaches can also be made explicit in
the bandlimited case, as discussed in Section IV-A. Indeed, the
Tikhonov filter (47) (cf. continuous line in Fig. 8) is equivalent
to a hypothetical minimax solution associated with a bandlim-
ited analysis filter: (cf. (50)). Alternatively, it
also corresponds to the Wiener solution of a modified version
of the initial problem where the input signal is bandlimited, that
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Fig. 8. Frequency responses (amplitude) of various filters associated with
a bandlimited signal reconstruction: (a) least-squares (inverse) filter; (b)
Tikhonov (solid line) and minimax (dashed line) filters for a medium SNR ratio
regime; and (c) Tikhonov and minimax filters (undistinguishable) for a lower
SNR regime. The regularization parameters for (b) and (c) are the same as in
Fig. 7. The minimax filter (dashed line) is identical to the Wiener filter that
would be associated with a first-order Markov process whose spectral power
density is given by (69). Likewise, the Tikhonov filter (solid line) corresponds
to the Wiener solution associated with a bandlimited version of the first-order
Markov process.

is, when is replaced by . Thus, it can make
sense to use the Tikhonov filter as a practical substitute for the
minimax or Wiener solutions, especially since it is generally
simpler to specify numerically: The function depends di-
rectly on , while the evaluation of and involve
more complex interactions between the analysis, regularization
and synthesis basis functions.

VI. CONCLUSION

In this paper, we considered the recovery of a continuous-
time signal given noisy samples of its filtered version. The
signal reconstruction is performed in a “shift-invariant” space
and is specified by a sequence of weights in a generic basis

that is defined in the continuous-time domain.
Our formulation addresses the noisy data interpolation and the
deconvolution problems simultaneously.

The solutions that we have identified all use linear digital fil-
tering and were derived based on the minimization of a suitable
cost function. The proposed methods differ in the assumptions
that have been made and are summarized in Table I. The sim-
plest design criteria is minimizing the least-squares error which
results in an inverse filter. It corresponds to the oblique projec-
tion method described in [8] for consistent sampling. The main
feature of this solution is that the estimate remains unchanged if
it is reinjected in the noise-free system, meaning that the data is
fitted exactly. The down side of this strategy is that is provides
a poor signal estimate for noisy data because of its tendency to
overamplify measurement noise.

The second approach is Tikhonov regularization, which in-
troduces a smoothness constraint on the signal to counterbal-
ance the effect of noise. The criterion to be minimized is a data
term regularizations. Its free parameters are the regulariza-
tion operator L and the regularization factor , which should
be set inversely proportional to the signal-to-noise ratio. The
least-squares solution is recovered when .

The third approach is the minimax filter, which assumes that
the signal is deterministic and corrupted by stochastic noise. It

uses the a priori knowledge that , where L is a
suitable operator. The solution is optimal in the sense that it min-
imizes the worst-case projected MSE over the set of admissible
signals. We developed two versions of the minimax problem
(projected pointwise and average) that yield equivalent filters.

The final approach is the adaptation of the Wiener filter to
our particular context where the signal is continuously defined
and the noise discrete. Here, the assumption is that both are
realizations of stationary processes with known spectral power
densities, and the criterion that is minimized is the projected
MSE.

In the high SNR regime, the minimax and Wiener filters result
in the reconstructed signal , while the least-
squares and Tikhonov filters lead to .

The choice of the most suitable method clearly depends on
the context (e.g., deterministic versus stochastic) and on the
type of a priori information available. Nevertheless, by com-
paring the various solutions, we have been able to make some
interesting links and have come up with simple guidelines for
selecting the free parameters of the various algorithms. Obvi-
ously, the least-squares filter is only adequate when the measure-
ment noise is negligible. Otherwise, one would tend to favor the
minimax or Wiener solutions, depending on whether the signal
should be viewed as deterministic or stochastic, because both
minimize a MSE criterion that is a direct measure of the quality
of the solution. The mathematical equivalence between the min-
imax and Wiener formulas suggests selecting an “optimal” oper-
ator L that “whitens” the signal. In practice, this operator may be
determined from the signal using some form of spectral estima-
tion. Even though the use of the Tikhonov formulation is some-
what ad hoc and more difficult to justify on statistical grounds,
it is not too different from the minimax and Wiener methods,
provided that one uses the appropriate regularization. In prac-
tice, it should perform quite adequately if we select the same
“whitening” operator L as for the minimax solution, choose a
spectral weighting function that is inversely proportional to the
power spectrum of the noise, and if we set with

where is the noise-free signal. In fact, we have
shown that the last three (non least-squares) filters can be made
rigorously equivalent, if the various parameters and the recon-
struction space are chosen appropriately.

APPENDIX I
DERIVATION OF THE TIKHONOV FILTER

To develop the Tikhonov filter, we first note that using (13)
the set can be expressed as

(71)
which will be convenient in our derivations below.

Differentiating with respect to and equating
to 0

(72)
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for all such that , where is defined
by (19). If , then to satisfy (72) we must have

(73)

where denotes the set of frequencies such
that . Note that is arbitrary
on . The solution (73) is valid only if the resulting
satisfies the constraint . For example, if we choose

for , then the solution holds only if

(74)
If (74) is not satisfied, then , and the optimal is

(75)

for frequencies for which , where is
chosen such that

(76)

APPENDIX II
PROOF OF LEMMA 1

The projected MSE is given by

(77)

We first consider the expression
. To this end we note that of (32) is

the discrete-time Fourier transform of the sequence
. Using (11), we have that

(78)

where the last equality follows from (7).

Denoting by the Fourier transform of

(79)

where is given by (9) [13]. Therefore

(80)

Combining (78) and (80),

(81)

Next, we note that

(82)

and

(83)

completing the proof of the proposition.

APPENDIX III
PROOF OF LEMMA 2

To prove the lemma we first note that

(84)

with equality if , where
and so that and

are the phases of and respectively. Since
the constraint set does not depend on the phase of , it
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follows from (84) that the phase of the maximizing is
equal to , and .
Thus a

(85)

Now

(86)

where the first inequality follows from applying
Cauchy–Schwarz, and the second inequality holds for
any . We have equality in (86) if

(87)

which satisfies the constraint ,
completing the proof.

APPENDIX IV
DERIVATION OF THE AVERAGE MINIMAX MSE FILTER

To develop the solution to (43), we first compute the integral
. To this end, we need to evaluate the following two

integrals:

(88)

Using the identity

(89)

we have that

(90)
and

(91)

From (88), (90), and (91)

(92)

where we assume that .
Since the integrand in (92) is nonnegative, the optimal solu-

tion can be found by minimizing the integrand, which is convex
in . Differentiating (92) with respect to and
equating to zero, the optimal filter that is the solution to (43) is
given by (36).

APPENDIX V
PROOF OF THEOREM 2

In the stochastic setting, the MSE is given by

(93)

To compute the left-hand expression in (93), we first express
in the time domain. Taking the inverse Fourier transform

of (79)

(94)
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where and is the inverse Fourier
transform of . Therefore

(95)

where is the inverse Fourier transform of
given by (32). Combining (95) with (83) (in Ap-

pendix II)

(96)

Therefore, the Wiener filter is the solution to

(97)

Since the objective of (97) is convex in , the optimal
filter can be found by setting the derivative to 0, which results
in (44).
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