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ABSTRACT

We treat the class of sampling problems in which the underlying
function can be specified by a finite set of samples. Our problem
is to reconstruct the signal from non-ideal, noisy samples, which
are modelled as the inner products of the signal with a set of sam-
pling vectors, contaminated by noise. To mitigate the effect of
the noise and the mismatch between the sampling and reconstruc-
tion vectors, the samples are linearly transformed prior to recon-
struction. Considering a statistical reconstruction framework, we
characterize the strategies that are mean-squared error (MSE) ad-
missible, meaning that they are not dominated in terms of MSE by
any other linear reconstruction. We also present explicit designs
of admissible reconstructions that dominate a given inadmissible
method. Adapting several estimation approaches to our problem,
we suggest concrete admissible reconstruction methods and com-
pare their performance. The results are then specialized to the case
in which the samples are processed by a digital correction filter.

1. INTRODUCTION

Signal expansions, in which a signal is represented by a set of co-
efficients, find many applications in signal processing. Here, we
focus on expansions with a finite number of coefficients. A natural
setting in which expansions of this type arise is in the context of
sampling a continuous-time signal that lies in a finite-dimensional
space. For example, a band-limited periodic signal can be recon-
structed from an arbitrary finite set of its samples, as long as the
number of samples exceeds the corresponding Nyquist rate [1]. In
practice, however, the signal samples are often contaminated by
noise. The problem then is to “best” approximate the continuous-
time signal from the given noisy samples in some sense.

In this paper, we consider the problem of recovering a signal
x from a finite-set of its noisy samples. The signal is assumed to
lie in an m-dimensional subspace W of an arbitrary Hilbert space
H. The noise-free samples ci = 〈si, x〉 are described as inner
products of x with a set of sampling vectors {si, 1 ≤ i ≤ m}.
The reconstructed signal x̂ is obtained by linearly combining a set
of reconstruction vectors {wi, 1 ≤ i ≤ m} that span the signal
spaceW . The combination coefficients are the result of processing
the noisy samples with a linear transformation designed to mitigate
the effect of the noise and to compensate for the possible mismatch
between the sampling and reconstruction vectors.

Previous methods for reconstruction in the presence of noise
tend to focus on the bandlimited setting and are typically not spec-
ified to be optimal from the point of view of statistical estimation
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theory [2, 3, 4, 5]. Here, we study the reconstruction problem in a
general Hilbert-space setting within a statistical framework.

A popular statistical measure of reconstruction performance is
the mean-squared error (MSE), which is the average squared-norm
of the estimation error x̂ − x. Unfortunately, the MSE perfor-
mance of different reconstruction methods will generally depend
on x, rendering comparison between different methods a difficult,
and often impossible task. Nonetheless, a reconstruction x̂ may
dominate [6] some other approach x̂0 in terms of MSE, so that
its MSE is never larger than that of x̂0 for all values of x, and
is strictly smaller for some x; an admissible reconstruction is one
that is never dominated by another reconstruction. Thus, although
we cannot directly evaluate the MSE performance of different re-
construction strategies, we can characterize those methods which
are admissible. Surprisingly, some of the previously proposed re-
construction approaches are inadmissible, implying that they can
be uniformly improved upon in terms of MSE. We therefore sug-
gest concrete designs of admissible reconstructions that dominate
a given inadmissible method.

The paper is organized as follows. In Section 2 we introduce
our general sampling framework, and show that both problems of
admissibility and constructing dominating methods can be treated
by solving a certain convex optimization problem. Dominating re-
constructions and necessary and sufficient admissibility conditions
on a bounded norm constraint set and the entire space are devel-
oped in Sections 3 and 5, respectively. In Section 4 we present
several reconstruction methods on a bounded norm set by adapting
known solutions to our particular sampling context: Least-squares,
Tikhonov, and minimax MSE reconstruction [7]. Finally, in Sec-
tion 6, we study FIR reconstruction and compare our results with
the method of [3].

2. SAMPLING FRAMEWORK

We denote vectors inH by lowercase letters, and vectors in Cm by
boldface lowercase letters. The ith element of a vector a is denoted
by ai. Matrices are represented by uppercase boldface letters and
arbitrary linear transformations on H by uppercase letters. The
orthogonal projection onto a space S is denoted by PS . Given
a transformation T , N (T ),R(T ) denote its null space and range
space and T †, T ∗ denote the pseudo inverse and the adjoint. For
an operator A, A Â 0 (A º 0) means that A is Hermitian and
positive (nonnegative) definite, and A º B means that A−B º 0.
The set transformation S : Cm → H corresponding to the vectors
{si, 1 ≤ i ≤ m} is defined by Sa =

Pm
i=1 aisi for any a ∈ Cm.

We treat the problem of reconstructing a signal x ∈ W from
noisy samples y = S∗x +n, where n is a zero-mean noise vector
with positive definite covariance matrix C. The noise free samples



c = S∗x are modelled as the inner products ci = 〈si, x〉 of x with
a set of linearly-independent sampling vectors {si, 1 ≤ i ≤ m}
with set transformation S, which span a subspace S ⊆ H. We
consider reconstructions of the form

x̂ =

mX
i=1

diwi = Wd = WGy, (1)

where d = Gy is a linear transformation of the noisy samples y,
and W is the set transformation corresponding to a basis {wi, 1 ≤
i ≤ m} for W . The sampling and reconstruction scheme is illus-
trated in Fig. 1.
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Fig. 1. General sampling and reconstruction scheme.

For the noise-free setting, it was shown in [8] that perfect re-
construction of any x ∈ W is possible as long as

W ∩ S⊥ = {0}, (2)

with
G = GCON = (S∗W )−1. (3)

The corresponding reconstruction x̂CON = WGCONc =
W (S∗W )−1S∗x, is referred to as a consistent reconstruction,
since it yields the same samples as x for any x ∈ H.

When the samples are corrupted by noise, G = GCON no
longer guarantees perfect reconstruction of x ∈ W . Our problem
then is to choose G such that x̂ is close to x in some sense, for any
x ∈ W . Formulating the problem in a statistical framework, we
seek the transformation G that minimizes the MSE E

�‖x̂− x‖2	
between x and x̂. However, computing the MSE shows that

E
�‖x̂− x‖2	 = ‖(I−WGS∗)x‖2 + Tr(W ∗WGCG∗), (4)

which depends in general on x and therefore cannot be minimized.
To eliminate the signal dependency of the MSE we need to choose
G such that WGS∗x = x for all x ∈ W . The unique choice
of G that satisfies this requirement is G = (S∗W )−1 = GCON;
however, this method does not necessarily result in a small MSE.

Unless we use the consistent reconstruction strategy, the MSE
of x̂ in Fig. 1 will depend on x, and therefore cannot be evalu-
ated. Nonetheless, some reconstructions may be better than others
in an MSE sense. For example, we will see in Section 4 that if
‖x‖ ≤ L < ∞, then based on a minimax MSE approach we can
choose G such that the resulting MSE is smaller than the MSE
of GCON for all x ∈ W, ‖x‖ ≤ L; thus, the minimax MSE
reconstruction dominates the consistent reconstruction for norm
bounded signals. A reconstruction x̂1 that dominates x̂2 is clearly
preferable in terms of MSE. However, there may exists another
reconstruction that dominates both x̂1 and x̂2. An admissible re-
construction has the property that it is not dominated by any other
linear method. If a reconstruction is inadmissible, then there exists
another approach which leads to better MSE performance on U .
This discussion raises two interesting questions:

1. Given a correction matrix G0, can we verify whether it
leads to an admissible reconstruction on a set U of W?

2. If G0 results in an inadmissible reconstruction, then can we
develop a systematic approach for constructing an admissi-
ble method G that dominates G0 on U?

Based on the results of [9], a general answer to both of these
problems is given in the following theorem.

Theorem 1 Let y = S∗x + n denote noisy samples of a sig-
nal x in an m-dimensional subspace W ⊆ H, where S is a
given set transformation and n is a zero-mean random vector
with covariance C Â 0. Suppose that x̂0 = WG0y is a lin-
ear reconstruction of x in W , where W is a given set transforma-
tion corresponding to a basis for W . Denote the MSE of x̂0 by
ε(G0, x) = E{‖WG0y − x‖2}, and let U ⊆ W . Then

1. x̂0 is admissible on U iff bG = G0 where bG is the unique
solution to minG supx∈U {ε(G, x)− ε(G0, x)}.

2. If minG supx∈U {ε(G, x)− ε(G0, x)} < 0 then x̂ =

W bGy strictly dominates x̂0 on U;

3. x̂ = W bGy is admissible on U .

Theorem 1 provides a general recipe for determining admissi-
bility of a linear reconstruction and for constructing admissible and
strictly dominating reconstructions, by solving a convex optimiza-
tion problem (the problem is convex in G for arbitrary sets U since
the supremum of a convex function over any set U is convex.). In
the rest of the paper we use Theorem 1 to develop easily veri-
fiable admissibility conditions, as well as an explicit method for
constructing a reconstruction dominating an inadmissible method.

3. NORM-BOUNDED SIGNALS

Suppose we are given a reconstruction x̂0 that is inadmissible on
the set U of norm-bounded signals defined by

U = {x ∈ W |‖x‖ ≤ L} . (5)

We would like to construct an admissible reconstruction x̂ that
strictly dominates x̂0. Applying Theorem 1, x̂ can be constructed
as x̂ = W bGy where

bG = arg min
G

max
x∈U

{ε(G, x)− ε(G0, x)} . (6)

Optimality conditions on bG are given in the following theorem.

Theorem 2 The matrix bG is the solution to (6) iff it satisfies the
conditions below for some λ ≥ 0 with R = W bGS∗PW and R0 =
WG0S

∗PW :
1. C−1S∗W bG = bG∗W ∗SC−1;
2. 0 ¹ C−1S∗W bG ≺ C−1;
3. (PW−R)∗(PW−R) ¹ λPW+(PW−R0)

∗(PW−R0);
4. (PW−R)∗(PW−R)R = λR+(PW−R0)

∗(PW−R0)R;

5. Tr(W ∗W bG(C−1 −C−1S∗W bG)−1(W ∗S)−1) ≤ L2;

6. λTr(W ∗W bG(C−1−C−1S∗W bG)−1(W ∗S)−1) = λL2.

Although the conditions of Theorem 2 are hard to solve in
general, they can be used to verify a solution. For example, we
can check when bG = G0, which leads to necessary and sufficient
conditions for admissibility, as we discuss in Section 3.1. Further-
more, in some special cases the conditions can be solved explicitly,
as in the case in which PWSC−1S∗PW and WG0S

∗PW have
the same eigenvector matrix.



Theorem 3 Let PWSC−1S∗PW = UΣU∗ where Σ =
diag(σ1, . . . , σm) with σi > 0 and U∗U = I, and suppose that
WG0S

∗PW = U∆U∗ where ∆ = diag(δ1, . . . , δm). Then

bG = (W ∗W )−1W ∗UDU∗W (S∗W )−1

where D = diag(d1, . . . , dm) with di = max(1 − √ηi, 0) and
ηi = λ + |1− δi|2. The parameter λ is selected according to the
following procedure: if T (0) ≤ 0, where

T (λ) =
X

i:ηi<1

1

σi

�
1√
ηi
− 1

�
− L2, (7)

then λ = 0. Otherwise, λ is the unique value for which T (λ) = 0
in the range (0, α) with α = 1−mini |1− δi|2.

A general case in which the assumptions of the theorem are sat-
isfied is when C = σ2I for some σ2 > 0, PWS = W , and
W ∗W = I so that {wi} form an orthonormal basis for W .

We now show that in the general case, the optimal bG of (6)
can be found numerically by solving an SDP [10], which is the
problem of minimizing a linear objective subject to linear matrix
inequality constraints. The advantage of this formulation is that it
readily lends itself to efficient computational methods which are
guaranteed to converge to the global optimum within any desired
accuracy. In practice, the solution can be obtained using one of the
many available SDP software packages.

To develop the SDP formulation we define the matrices M =
U∗WG, H = S∗U and

A = U∗(I −WG0S
∗)∗(I −WG0S

∗)U, (8)

where U : Cm → H is the orthonormal set transformation in
the singular value decomposition of W . The problem (6) can be
formulated in terms of these matrices as

min
M

{Tr(MCM∗)

+ max
‖d‖≤L

d∗ ((I−MH)∗(I−MH)−A)d

�
. (9)

Now, for any matrix Z, we have that

max
‖d‖≤L

d∗Zd = L2 max (λmax(Z), 0) , (10)

where λmax(Z) is the largest eigenvalue of Z. Expressing
max (λmax(Z), 0) as the solution to

min
λ≥0

{λ : Z ¹ λI} , (11)

we can write (9) as
min

τ,M,λ≥0
τ (12)

subject to

m∗m + L2λ ≤ τ

(I−MH)∗(I−MH)−A ¹ λI. (13)

Here m = vec(C1/2M) is the vector obtained by stacking the
columns of C1/2M. Using Schur’s complement [11, p. 472], the
constraints (13) can be written as the linear matrix inequalities

�
τ − L2λ m∗

m I

�
º 0

�
λI + A (I−MH)∗

I−MH I

�
º 0. (14)

We conclude that the problem (9) is equivalent to the SDP
of minimizing τ subject to (14). The solution bG of (6) can be
obtained from the SDP solution cM as bG = (U∗W )−1cM.

3.1. Admissible Reconstructions

We now use Theorem 2 to develop conditions on x̂0 to be admis-
sible, or equivalently, such that G0 is the solution to (6):

Theorem 4 The reconstruction x̂ = W bGy is admissible on U iff

1. C−1S∗W bG = bG∗W ∗SC−1;

2. 0 ¹ C−1S∗W bG ≺ C−1;

3. Tr(W ∗W bG(C−1 −C−1S∗W bG)−1(W ∗S)−1) ≤ L2.

An immediate consequence of Theorem 4 is that the consistent
reconstruction x̂CON = WGCONy with GCON given by (3) is
inadmissible on the bounded-norm set U .

A general class of admissible reconstructions is given in the
following proposition.

Proposition 1 Let PWSC−1S∗PW = UΣU∗ where Σ =

diag(σ1, . . . , σm) with σi > 0. Then x̂ = W bGy is admissible
for any bG of the form

bG = (W ∗W )−1W ∗UDU∗W (S∗W )−1, (15)

where D = diag(d1, . . . , dm) with values di satisfying

0 ≤ di < 1, 1 ≤ i ≤ m;

mX
i=1

di

(1− di)σi
≤ L2.

4. RECONSTRUCTION METHODS ON A SPHERE

From Theorem 4 we see that there are many possible admissible
reconstructions on U . Therefore, there is a need for a criterion to
choose between them. In this section we consider several possible
strategies and develop the corresponding solutions.

Least-Squares: The most straightforward approach to design-
ing G is to consider a least-squares criterion:

εLS = (S∗WGy − y)
∗
C−1 (S∗WGy − y) . (16)

Clearly, εLS is minimized with G = GCON of (3), and is therefore
inadmissible.

Tikhonov Regularization: The least-squares strategy does
not take advantage of the information ‖x‖ ≤ L. To take this into
account, we may minimize (16) subject to ‖x̂‖ ≤ L leading to the
Tikhonov estimator. The resulting estimator can be shown to be
given by

GTIK =�
(S∗W )−1, ‖W (S∗W )−1y‖ ≤ L;

(W ∗W )−1W ∗S (λC + S∗PWS)−1 , otherwise,
(17)

where λ > 0 is chosen such that y∗GTIKW ∗WGTIKy = L2.
Evidently, the Tikhonov reconstruction is in general nonlinear, and
does not have an explicit solution. To obtain a linear reconstruction
we may select λ as a constant such that the resulting reconstruction
is admissible. The possible values of λ satisfying this condition are
given in the following proposition.



Proposition 2 The Tikhonov reconstruction x̂TIK = WGTIKy
with GTIK = (W ∗W )−1W ∗S (λC + S∗PWS)−1 is admissible
on U = {x ∈ W|‖x‖ ≤ L} iff λ ≥ m/L2.

Note that in general, x̂TIK does not dominate the consistent
reconstruction x̂CON. Since x̂CON is inadmissible on U , a strictly
dominating reconstruction exists. We next consider a minimax
MSE approach and show that the resulting reconstruction domi-
nates x̂CON on U .

Minimax MSE Reconstruction: In this approach, we seek
the reconstruction x̂MX = WGMXy that minimizes the worst-case
MSE over all bounded-norm signals, so that GMX is the solution
to

GMX = arg min
G

max
x∈W,‖x‖≤L

ε(G, x). (18)

To solve (18) we note that

GMX = arg min
G

max
x∈W,‖x‖≤L

{ε(G, x)− ε(GCON)} , (19)

where x̂0 = WGCONy is the consistent reconstruction with
GCON = (S∗W )−1. This follows from the fact that, as we have
seen in Section 2, ε(GCON) is independent of x. From Theorem 1
we have immediately that x̂MX is admissible, and strictly domi-
nates x̂CON on U . Theorem 3 can now be used to derive an explicit
solution to (19), leading to

GMX =
L2

L2 + Tr ((S∗PWS)−1C)
(S∗W )−1. (20)

Note that when L → ∞, we have GMX → GCON. Thus,
when x ∈ W is not norm bounded, the minimax MSE reconstruc-
tion coincides with the consistent reconstruction.

5. MSE PERFORMANCE ON THE ENTIRE SPACE

We now consider the case in which x is an arbitrary vector in W .
From Theorem 1 it follows that an admissible reconstruction

x̂ = bGy strictly dominating an inadmissible method x̂0 onW can
be constructed as

bG = min
G

max
x∈W

{ε(G, x)− ε(G0, x)} . (21)

Theorem 5 Denote the orthogonal projection onto N (PW −
R0)

⊥ by PR and define

X = (PWSC−1S∗(PW−R))†−PRW (W ∗SC−1S∗W )−1W ∗PR.

Then the matrix bG is the solution to (21) iff it satisfies the condi-
tions below with R = W bGS∗PW and R0 = WG0S

∗PW :

1. C−1S∗W bG = bG∗W ∗SC−1;

2. 0 ¹ C−1S∗W bG ¹ C−1;

3. (PW −R)PR = (PW −R);

4. (PW −R)∗(PW −R) ¹ (PW −R0)
∗(PW −R0);

5. (PW −R)∗(PW −R)X = (PW −R0)
∗(PW −R0)X .

An explicit closed form solution for bG can be obtained when
PWSC−1S∗PW and WG0S

∗PW have the same eigenvectors.
For arbitrary choices of S, W,C−1 and G0 the optimal solution
can be obtained using an SDP formulation similar to that presented
in the previous section.

Theorem 6 Let PWSC−1S∗PW = UΣU∗ where Σ =
diag(σ1, . . . , σm) with σi > 0, and suppose that WG0S

∗PW =
U∆U∗ where ∆ = diag(δ1, . . . , δm). Then

bG = (W ∗W )−1W ∗UDU∗W (S∗W )−1

where D = diag(d1, . . . , dm) with di = max(1− |1− δi|, 0).

Theorem 5 can be used to develop necessary and sufficient
conditions on x̂0 to be admissible for all x ∈ W :

Theorem 7 The reconstruction x̂ = W bGy is admissible on W
iff

1. C−1S∗W bG = bG∗W ∗SC−1;
2. 0 ¹ C−1S∗W bG ¹ C−1.

A general class of admissible reconstructions is given in the fol-
lowing proposition.

Proposition 3 Let PWSC−1S∗PW = UΣU∗ where Σ =

diag(σ1, . . . , σm) with σi > 0. Then x̂ = W bGy with

bG = (W ∗W )−1W ∗UDU∗W (S∗W )−1 (22)

is admissible on W where D is a diagonal matrix with diagonal
elements 0 ≤ di ≤ 1.

An immediate consequence of the proposition is that the consistent
reconstruction is admissible on W .

6. FIR RECONSTRUCTION

An interesting class of reconstruction methods is based on process-
ing the samples by a digital correction filter. In this case the noisy
samples are convolved with an FIR filter of length 2M + 1 with
coefficients {gi,−M ≤ i ≤ M} producing the cleaned samples
di = yi ∗ gi. The corresponding matrix G in Fig. 1 is a band
Toeplitz convolution matrix with ith diagonal equal to gi.

For simplicity, we assume that S∗W = I and C = σ2I for
some σ2 > 0. Under this model, our goal is to characterize all
admissible FIR filters on W .

From Theorem 7 it follows that the filter gi is admissible iff
the corresponding matrix G satisfies

G = G∗; (23)
0 ¹ G ¹ I. (24)

Condition (23) implies that the filter must be symmetric, i.e., gi =
g−i, so that G is a symmetric band Toeplitz matrix. Note that such
a matrix is completely determined by its first row. To address the
condition (24) we rely on the following theorem.

Theorem 8 Let A be an m × m symmetric Toeplitz matrix with
first row equal to {ai, 0 ≤ i ≤ m−1}. Then A º 0 iff A(ω) ≥ 0
for all ω ∈ [0, 2π], where

A(ω) =

m−1X

n=−(m−1)

ane−jωn, (25)

is the discrete-time Fourier transform (DTFT) of {ai}.

Using the theorem, it is easy to see that (24) is equivalent to

0 ≤ G(ω) ≤ 1, ∀ω ∈ [0, 2π]. (26)

A sufficient condition for G(ω) ≤ 1 is
PM

i=−M |gi| ≤ 1.
We conclude that x̂0 is admissible iff gi is symmetric, and its

DTFT satisfies 0 ≤ G(ω) ≤ 1.



6.1. Moving Average Reconstruction

In [3] the authors consider the problem of reconstructing a ban-
dlimited signal from a finite set m = 2N + 1 of noisy measure-
ments (see also [5] and reference therein). Their problem can be
cast in our general framework by choosing

si(t) = wi(t) = sinc (π(t− iT )/T ) , −N ≤ i ≤ N. (27)

To reconstruct the signal from the samples they proposed filter-
ing the samples with a symmetric FIR filter with impulse response
gi satisfying

PM
i=−M |gi| ≤ 1. In particular, they considered in

detail the case in which gi = 1/(2M + 1).
The choice of sampling and reconstruction vectors (27) results

in S∗W = W ∗W = I . It then follows from our discussion that
the reconstruction is admissible iff G(ω) ≥ 0. Clearly this does
not hold for gi = 1/(2M + 1). Since this filter is inadmissible,
there exists a transformation G that strictly dominates it for all
x ∈ W . To find a strictly dominating G we now use Theorem 6
where G0 is the matrix representing convolution with the filter
gi = 1/(2M + 1),−M ≤ i ≤ M .

It is easy to see that in this case the conditions of Theorem 6
are satisfied. Let G0 have an eigendecomposition G0 = V∆V∗

where V is a unitary matrix and ∆ = diag(δ1, . . . , δm). Then a
matrix strictly dominating G0 is given by G0 = VDV∗, where
D = diag(d1, . . . , dm) with di = max(δi, 0). Thus, G is con-
structed from G0 by replacing each negative eigenvalue by 0.

To illustrate the performance advantage of G0, suppose that
we are given m = 2N +1 noisy samples of the bandlimited signal

x(t) = 4π
√

2π
cos2(t/2)

π2 − t2
, (28)

at times t = iT,−N ≤ i ≤ N where T is the sampling period.
The noise is independent and uniform on [−Z/2, Z/2].
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Fig. 2. MSE in estimating x(t) of (28) as a function of Z using
the moving average method and the dominating method.

In Fig. 2 we plot the MSE as a function of Z with m =
75, M = 5, T = 1.5 using the moving average reconstruction
of [3] and our reconstruction. As can be seen from the figure, our
approach dominates the moving average method for all Z.

Although our reconstruction dominates the moving average
estimator, it no longer corresponds to digital filtering. An impor-

tant problem therefore that we are currently investigating is to de-
sign an FIR filter that leads to a reconstruction strictly dominating
a given inadmissible FIR-based method.

7. CONCLUSION

We considered the problem of reconstructing a signal x in a finite-
dimensional subspace W of an arbitrary Hilbert space H from its
nonideal, noisy samples. The samples are modelled as the inner
products of x with a set of reconstruction vectors, which span a
sampling space S , and recovery is performed in the reconstruc-
tion space W where in general W and S can be different, but are
assumed to satisfy the condition (2).

We characterized all reconstructions that are MSE admissible,
and considered explicit methods for dominating an inadmissable
estimator. We also proposed several specific admissible recon-
struction methods, by adapting known estimation approaches to
our context. In particular, we considered solutions based on dig-
ital filtering and showed that admissibility can be determined by
examining the frequency response of the filter.

8. REFERENCES

[1] E. Margolis and Y. C. Eldar, “Nonuniform sampling of pe-
riodic bandlimited signals: Part I–Reconstruction theorems,”
submitted to IEEE Trans. Signal Processing, Dec. 2004.

[2] E. J. Diethorn and Jr. D. C. Munson, “A linear, time-
varying system framework for noniterative discrete-time
band-limited signal extrapolation,” IEEE Trans. Signal
Processing, vol. 39, pp. 55–68, Jan. 1991.

[3] A. Krzyzak, E. Rafajłowicz, and M. Pawlak, “Moving av-
erage restoration of bandlimited signals from noisy observa-
tions,” IEEE Trans. Signal Processing, vol. 45, pp. 2967–
2976, Dec. 1997.

[4] A. Aldroubi and K. Grochenig, “Nonuniform sampling and
reconstruction in shift invariant spaces,” SIAM Review, vol.
43, pp. 585–620, 2001.

[5] M. Pawlak, E. Rafajłowicz, and A. Krzyzak, “Postfiltering
versus prefiltering for signal recovery from noisy samples,”
IEEE Trans. Inform. Theory, vol. 49, pp. 3195–3212, Dec.
2003.

[6] E. L. Lehmann and G. Casella, Theory of point estimation,
New York, NY: Springer-Verlag, Inc., second edition, 1998.

[7] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Robust mean-
squared error estimation in the presence of model uncertain-
ties,” IEEE Trans. Signal Processing, vol. 53, pp. 168–181,
Jan. 2005.

[8] Y. C. Eldar, “Sampling and reconstruction in arbitrary spaces
and oblique dual frame vectors,” J. Fourier Analys. Appl.,
vol. 1, no. 9, pp. 77–96, Jan. 2003.

[9] Y. C. Eldar, “Comparing between estimation approaches:
Admissible and dominating linear estimators,” submitted to
IEEE Trans. Signal Processing.

[10] L. Vandenberghe and S. Boyd, “Semidefinite programming,”
SIAM Rev., vol. 38, no. 1, pp. 40–95, Mar. 1996.

[11] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge,
UK: Cambridge Univ. Press, 1985.


