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ABSTRACT

A class of non-canonical duals for the multiwindow Ga-
bor scheme, incorporating both rational and integer over-
sampling of the Gaborian combined time-frequency space,
is considered. Using properties of Gabor frame matrices,
block Discrete Fourier transforms, and results from num-
ber theory, we establish existence conditions for the non-
canonical duals for both integer and rational oversampling
rates, in the signal domain. For comparison and complete-
ness of the results, we also obtain the equivalent results in
the Zak transform domain. We show that, using this ap-
proach, both computational efficiency and stability of the
Gabor scheme can be enhanced.

1. INTRODUCTION

Multiwindow Gabor expansion combines the advantages of
localization in the combined time-frequency space, charac-
teristic of the classical Gabor scheme, as well as scale-space
properties of wavelets. Multiwindow Gabor expansions of
signals (and images) find many applications in the fields of
pattern recognition, computer vision, and recently macro-
molecular sequence analysis.

In [1], Zibulski and Zeevi introduced multiwindow Ga-
bor expansions and in [2], extended the concept to the finite,
discrete-time case. The coefficients of the multiwindow Ga-
bor expansion are given by the projection of the finite signal
f ∈ CL onto the combined space

cr,m,n =
L−1
∑

k=0

f [k]gr[k − na]e−j2πmbk/L, (1)

where gr[k], r ∈ 0, . . . , R − 1 are the window functions, a
and b are the combined space sampling intervals along the
time and frequency axes respectively.

Given the coefficients cr,m,n, the analysis windows gr[k],
and the lattice constants a and b, we wish to reconstruct the
signal f [k] from the coefficients. The reconstruction of the

signal f [k] is given by [2]

f [k] =

R−1
∑

r=0

b−1
∑

m=0

a−1
∑

n=0

cr,m,nγr[k − na]ej2πmbk/L, (2)

where γr[k] are the dual windows, a = L/a ∈ N and
b = L/b ∈ N are the number of sampling intervals along
the time and frequency axes respectively. We assume L is
divisible by both a and b [5].

In vector form, (1) can be written as

c = G
∗
f , (3)

where c is the vector of coefficients, and G is the Gabor
matrix

G =











g0,0,0[0] . . . gR−1,a−1,b−1[0]

g0,0,0[1] . . . gR−1,a−1,b−1[1]
...

. . .
...

g0,0,0[L − 1] . . . gR−1,a−1,b−1[L − 1]











(4)

with gr,m,n[k] = gr[k−na]ej2πmbk/L. The reconstruction,
inverse of (1), is the following vector form of (2):

f = Γc, (5)

where Γ is the dual of the Gabor matrix.
It was established in [2] that a necessary condition for

complete reconstruction in the case of multiwindow Gabor
expansions is given by Rab ≥ L. In the case of critical
sampling and a single window, the reconstruction is unsta-
ble according to the Balian-Low theorem [6]. This theorem
extends to well-behaved multiwindows [1]. We, therefore,
consider only the oversampling case where Rab > L, which
implies that the functions gr,m,n[k] are linearly dependent
and the representation is overcomplete.

As the representation is overcomplete, there exist an in-
finite number of possible duals γr[k]. The canonical solu-
tion is to find the minimum norm dual of the set of general-
ized Gabor elementary functions gr,m,n[k] by [4], [5],

γ̃r[k] = (GG
∗)−1gr[k]. (6)



However, it is often better to choose a different dual from a
wider set of duals, as we show in Section 4. Here, we ex-
tend the non-canonical duals introduced in [3], and applied
to single window Gabor expansions in [9] to multiwindow
Gabor expansions.

The non-canonical dual [3] is given by

dr,m,n = dr[k − na]ej2πmbk/L = (HG
∗)−1hr[k], (7)

where H is another Gabor matrix of the same form as G

such that HG
∗ is invertible. We obtain existence condi-

tions for non-canonical multiwindow Gabor frames, both in
the general context and in integer oversampling and rational
oversampling cases. For comparison, we provide the equiv-
alent results in the finite Zak transform domain and discuss
some advantages of non-canonical duals.

The paper is organized as follows: In Section 2, we ob-
tain the existence conditions for the non-canonical multi-
window Gabor dual in the general case. In Section 3, we
consider the conditions for both integer, and rational over-
sampling cases, and also discuss the existence condition in
the Zak transform domain. In Section 4, we show examples
of non-canonical duals, and discuss their advantages.

2. EXISTENCE CONDITIONS FOR
NON-CANONICAL DUALS

The general condition satisfied by all duals, (called the Wexler-
Raz condition in the single window Gabor case) can be ex-
tended to the case of multiwindow Gabor expansion, the
proof of which can be found in [8]:

Theorem 2.1. The Wexler-Raz identity [4] in the multiwin-
dow case states that, for every set of dual functions γr, r ∈
0, . . . , R − 1, the following identity is satisfied.

R−1
∑

r=0

L−1
∑

k=0

gr
∗[k − nb]e−j2πmk/aγr[k] = (L/ab)δmδn, (8)

where n ∈ 0, . . . , b − 1,m ∈ 0, . . . , a − 1.

From [9], we know that the condition for the existence
of the dual frame is equivalent to the invertibility of the
frame matrix P = HG

∗. In [8], we show that the ma-
trix P = HG

∗ is a block circulant matrix [10], where each
block is of size a × a. Using block circulant properties of
frame P leads to the following condition of invertibility:

Theorem 2.2. [10] The matrix P is invertible if and only if
all the a × a blocks of the block discrete Fourier transform
(BDFT) of P are invertible individually.

The BDFT of a block circulant matrix
P = C(A0, A1, . . . , Aa−1) is given by FP =

C(Â0), Â1, . . . , Âa−1), where C stands for circulation of
the blocks in the block circulant matrix P and

Âq =
a−1
∑

p=0

ωpq
Ap, 0 ≤ q ≤ a − 1, (9)

where ω = e−j2π/a.
Apart from these sufficient conditions for the existence

of the dual, there is a necessary condition that helps in
choosing the synthesis function.

Theorem 2.3. [8] For the matrix P to be invertible, the
condition given below must be satisfied.

R−1
∑

r=0

a−1
∑

n=0

hr[k − na]gr
∗[k − na + qb] 6= 0, (10)

for all k ∈ 0, . . . , L − 1, q ∈ 0, . . . , b − 1.

From (10), we can show that the spread of the window
functions gr and hr should be at least a [8]. This can be
seen as a sort of discrete equivalent of Daubechies’ result
[6] in the continuous case ess inf

x∈[0,q0]

∑

n | g(x − nq0) |
2> 0.

3. SPECIFIC CASES AND EXISTENCE
CONDITIONS

3.1. Integer Oversampling

Using the condition given by Theorem 2.2 and the property
of the banded structure of the Gabor matrix [5], we obtain a
stronger (and more easily verifiable) condition on the invert-
ibility of the matrix P in the case of integer oversampling.

Theorem 3.1. For the matrix P to be invertible in the inte-
ger oversampling case, the following equation must be sat-
isfied.

b−1
∑

q=0

a−1
∑

v=0

R−1
∑

r=0

〈hr[u], gr[u+qb]ej2πvu/a〉ej2πsq/bej2πvk/a 6= 0,

(11)
for any k, s ∈ 0, . . . , b − 1.

Proof. We begin with the properties of block circulant ma-
trix. The BDFT can be written as

Ãs = A0 + ej2πs/bA1 + · · · + ej2πs(b−1)bs/aaA(b−1)b/a

(12)
The diagonal elements of Ãs (the only non zero elements as
shown in [8]) are given by

˜As(k, k)

= b

R−1
∑

r=0

a−1
∑

n=0

hr[k − na]

b−1
∑

q=0

gr
∗[k − na − qb]ej2πqs/b



= b

b−1
∑

q=0

ej2πqs/b
R−1
∑

r=0

hr[k]gr
∗[k − qb]

a−1
∑

n=0

δ[k − na]

=
b

a

b−1
∑

q=0

ej2πqs/b
R−1
∑

r=0

hr[k]gr
∗[k − qb]

a−1
∑

v=0

ej2πvk/a

=
b

a

b−1
∑

q=0

a−1
∑

v=0

ej2πqs/b+(k−u)v/a
R−1
∑

r=0

L−1
∑

u=0

hr[u]

gr
∗[u − qb]

=
b

a

b−1
∑

q=0

R−1
∑

r=0

L−1
∑

u=0

hr[u]gr
∗[u − qb]ej2πqs/b

a−1
∑

v=0

e−j2π(vu/a−kv/a). (13)

Equation (13) gives the condition we mentioned in the the-
orem and thus the theorem is proved.

Theorem 3.1 can be reworded by requiring that the
BDFT of P = HG

∗ have no zeroes along its principal or
lb-th subdiagonals.

From Theorem 3.1, we can develop another condition
that explicitly permits certain types of functions to generate
frames for CL .

Theorem 3.2. A sufficient condition for the invertibility of
HG

∗ is that the sequences gr[k−na−qb], q ∈ 0, . . . , b−1
be positive (or negative) definite, when hr[k] are all of the
same sign.

Proof. From the properties of the block circulant matrices
(12), we have the values of BDFT of P. Since b is divisible
by a, the matrix is block circulant in blocks of b as well as
in a [8]. We can see that the Fourier matrices Ãs will be
diagonal as well. If we can show that the diagonal elements
of the Fourier block matrix Ãs are not zero, then the matrix
will always be invertible and the proof is complete. The
diagonal elements of Ãs are given by

˜As(k, k) (14)

= b
R−1
∑

r=0

b−1
∑

q=0

a−1
∑

n=0

gr
∗[k − na − qb]hr[k − na]ej2πqs/b

= b

R−1
∑

r=0

a−1
∑

n=0

hr[k − na]

b−1
∑

q=0

gr
∗[k − na − qb]ej2πqs/b

= b
R−1
∑

r=0

a−1
∑

n=0

hr[k − na]ĝr[k − na − qb], (15)

where ĝr[k − na − qb] =
∑b−1

q=0 gr
∗[k − na − qb]ej2πqs/b.

Now it can be easily seen that ĝr[k − na − qb] is the b-
point DFT of the b point sequence gr

∗[k − na − qb]. If

the DFT of the sequence is positive and all the individual
components hr[k] are themselves positive everywhere, then
Ãs(k, k) is real and positive. Since these values correspond
to the values of the diagonal on the b × b diagonal matrix,
the matrix will always be invertible. Similar arguments hold
for the negative definite case.

It can easily be seen that (15) cannot be zero if the con-
ditions are satisfied. Therefore, the statement is proved.

3.2. Rational Oversampling

Theorem 2.2 requires us to prove that the a × a BDFT sub-
matrices are invertible for the matrix P to be invertible.
However, in the case of rational oversampling, these sub-
matrices have a very definite structure. The structure of the
BDFT submatrices are given by the following theorem.

Theorem 3.3. Let the greatest common divisor (gcd) of
(a, b) = α. Then the non-zero elements in the BDFT of
the matrix P are at least at a distance α from each other on
each row.

Proof. Consider the first block a×L of the matrix P which
we use in the generation of the block circulant Fourier ma-
trix. It is easily apparent that structurally (the position of
zeroes to the non-zero elements), the latter rows are simply
the first row shifted right by the appropriate distance from
the first row. Therefore, considering only the first row alone
in the block circulant matrix P, we find the block Fourier
transform of this row.

In the first row, we have the non zero elements at posi-
tions 0, b, . . . , b(b− 1). We add the corresponding elements
of the a×a matrices after the multiplication with the appro-
priate e−j2πmk/L , where m, k ∈ 0, . . . , a − 1.

The elements of the first row of the a × a matrix can be
written as βa+ν, where ν ∈ 0, . . . , a−1, β ∈ 0, . . . , a−1.
The non zero elements being at µb, where µ ∈ 0, . . . , b− 1,
the only non zero elements will occur when ν + βa = µb,
for some β ∈ 0, . . . , a − 1 and µ ∈ 0, . . . , b − 1. But
from Euclid’s algorithm, we know that the smallest positive
number is α = gcd(a, b). Therefore, ν cannot be less than
α. Thus the non zero elements of the block Fourier matrix
of P have to be at least α apart.

Utilizing perfect shuffle matrices [12], matrices Ãk, k ∈
0, . . . , a − 1, can be factorized as shown in Theorem 3.4 to
block diagonal matrices of size a

α × a
α . Of course, in the

worst case α = 1, we have the same as the previous prob-
lem, i.e., showing that an a × a matrix has to be invertible.
Otherwise, we can show that the α matrices of size a

α × a
α

are invertible in place of showing that an a × a matrix is
invertible leading to a simplification of the size of the prob-
lem.



Theorem 3.4. [12] An a × a matrix which has non-zero
elements on the principal diagonal and at a distance of
kα, k ∈ 1, . . . , a

α − 1 from the diagonal can be factorized
into α block diagonal matrices of size a

α × a
α using a per-

fect shuffle matrix Vα,a. The block diagonal matrix W is
created using the formula

W = V
∗
α,aÃsVα,a, (16)

where Ãs is the s-th block of the BDFT of the matrix P.

3.3. Zak Transform Domain Results

The finite Zak transform (FZT), of a function f ∈ CL de-
noted by Zb is defined as the mapping Zb : CL → Cb × Cb,
given by the equation

(Zb)(r, v) =
b−1
∑

k=0

f(r − bk)e
j2πbkv

L , (17)

where b ∈ N is a fixed parameter.
Let ab

L = p
q , where p and q are mutually prime. Based

on the definition of FZT, we define piecewise Finite Zak
Transform (PFZT) as a vector valued function of size p:

F(r, v) = [F0(r, v), . . . , Fp−1(r, v)]
T

, (18)

where

Fl(r, v)
4
= (Zf)

(

r, v + l
b

p

)

, 0, . . . , p − 1. (19)

It is important to note that inner products are preserved
across PFZTs.

Using these results, we can define the action of the
frame operator in the Zak transform domain, by [11]

(PF)(r, v) = P(r, v)F(r, v), (20)

where both P and F are the PFZTs of the frame operator
P and f respectively. The elements of the p × p matrix
constituents of the PFZT of P are given by

Pk,l(r, v) =
b

p

q−1
∑

s=0

(Zh)(r − sa, v + kb/p)

(Zg)∗(r − na, v + lb/p) (21)

and (Zg)∗(r, v) is given by (17).
From the result in [11], we obtain the condition for the

existence of the Gabor frame in the general case:

Theorem 3.5. Given that g, h ∈ l2(Z/L), ab ≥ L, and
a matrix valued function as shown in equation (21), the
matrix HG

∗ constitutes a frame operator if and only if
det(P)(r, v) 6= 0 for all r, v ∈ Z2.
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Fig. 1. The canonical dual for the multiple Gaussian win-
dows with lattice constants (a = 2, b = 4, σng = σnh =
2, σwg = σwh = 16, L = 128).

It is interesting to observe the similarities between the
Zak transform domain methods and the block circulant ma-
trix methods which we have used in the paper previously.

For the case of critical sampling, we have the interesting
result that each of the P(s, v) turns into a scalar value func-
tion and we have the result that each of the P(s, v) should
be non zero for all values of s, v - paralleling the result in
the canonical dual case. This provides us the invertibility
condition for the critical sampling case.

Similarly, for integer oversampling, we have p = 1, and
therefore, (21), becomes

P(s, v) = b

q−1
∑

w=0

〈(Zh)(s − wa, v), (Zg)∗(s − wa, v)〉.

(22)
As long as (22) is not zero, we have a simple way of deter-
mining the invertibility of the frame operators.

4. RESULTS AND DISCUSSION

The technique used to invert the multiwindow Gabor frame
operators is the same as the one used for the single window
Gabor frame operators. In [8], the authors established an ef-
ficient technique to invert the Gabor frame operators in case
of integer oversampling. For the case of rational oversam-
pling as well, we have a technique that is slightly better than
the existing one in many cases, and at least as good as the
existing one in all cases. The computational complexity of
finding the dual of the frame is computed to be O(nlog(n))
[7] using the conjugate gradients techniques. The factor-
ization technique we introduced for rational oversampling
cases can be used to simplify the matrix that has to be in-
verted.

For the case of integer oversampling, the computational
complexity can be easily computed. The number of op-
erations necessary to generate the matrix S in the case of
the minimum norm dual is given by R(a + 1)ab multipli-
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Fig. 2. The non canonical dual for the multiple Gaussian
windows with lattice constants (a = 2, b = 4, σng =
2, σnh = 4, σwg = 8, σwh = 16, L = 128).

cations and Rbaa additions [5]. The computational com-
plexity of inverting S is given by O(2Llog(a)) [5] and
O(cb( b2

d2 + blogd)) [12]. Usually a is much larger than all
other constants in the lattice - the shift needs to be small
enough to capture all the details of the signal. Therefore,
anything that eliminates a from the computational complex-
ity is going to be much better than the other methods.

In our case, the number of operations necessary to gen-
erate the matrix P is 2Rab multiplications and 0 additions.
The complexity of computing the Fourier components and
inverting P is given by O(2Llog(b)). The overall complex-
ity of our algorithm is thus seen to be better than the tradi-
tional methods for both integer and rational oversampling.

As we see in Figs. 1 and 2, both the duals retain the
localization properties. The non-canonical dual does not
change much, especially in the wide window case. The pa-
rameters are considerably different, as shown in the figures.
It is also worth mentioning that the ratio of the condition
numbers of the non-canonical dual to the condition number
of the canonical dual is 0.23. This demonstrates that non-
canonical duals may have greater stability than canonical
duals, under certain conditions.
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