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An Expected Least-Squares Beamforming
Approach to Signal Estimation With
Steering Vector Uncertainties

Yonina C. Eldar, Member, IEEE, Arye Nehorai, Fellow, IEEE, and Patricio S. La Rosa

Abstract—We treat the problem of beamforming for signal
estimation in the presence of steering vector uncertainties, where
the goal is to estimate a signal amplitude from a set of array
observations. Conventional beamforming methods typically aim
at maximizing the signal-to-interference-plus-noise ratio (SINR).
Recently, a maximum likelihood (ML) approach was introduced
that leads to an iterative beamformer. Here we suggest an expected
least-squares (LS) strategy that results in a simple linear beam-
former. We then demonstrate through simulations that the LS
beamformer often performs similarly to the ML method in terms
of mean-squared error and outperforms conventional SINR-based
approaches.

Index Terms—Array processing, beamforming, least squares
(LS), random steering vector, signal estimation.

I. INTRODUCTION

EAMFORMING methods are used extensively in a variety
of areas, where one of their goals is to estimate the source
signal amplitude s(t¢) from the array observations

y(t) = s(t)a+i(t) +e(t),

Here y(t) € CM is the complex vector of array observations
at time ¢ with M being the number of array sensors, s(t) is the
signal amplitude, a is the signal steering vector that depends on
the direction of arrival (DOA) of the wavefront plane associ-
ated with s(t), i() is the interference, e(t) is a Gaussian noise
vector, and IV is the number of snapshots [1]. We estimate the
signal amplitude s(¢) from the observations y(¢) using a set of
beamformer weights w(t), where the output of a narrowband
beamformer is given by

8(t) = wr(t)y (D),

In some applications, such as in the case of a fully calibrated
array, the steering vector can be assumed to be known exactly.

1<t<N. (1)

1<t<N. )
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However, in practice, the array response may have some un-
certainties or perturbations in the steering vector, due to errors
in sensor positions, gains or phases, mutual couplings between
sensors, receiver fluctuations due to temperature changes, quanti-
zation effects, and coherent and incoherent local scatters [2], [3].
One approach to account for these uncertainties is to model their
effects [4]. However, these perturbations often take place simul-
taneously, which significantly complicates the model. Instead,
the uncertainties in a can be taken into account by treating it as a
deterministic vector that lies in an ellipsoid centered at a nominal
steering vector [3], [S]. An alternative strategy has been to treat
the steering vector as arandom vector assuming knowledge of its
distribution [6] or the second-order statistics [ 7]—[11]. In the latter
case, the mean value of a corresponds to the nominal steering
vector, and the covariance matrix captures its perturbations.

Here we treat the case in which a is modeled as a random
vector with known mean m and covariance matrix C. The typ-
ical beamforming approach in this setting is to maximize the
signal-to-interference-plus-noise ratio (SINR), resulting in the
principal eigenvector beamformer [12]. Despite the fact that the
SINR has been used as a measure of beamforming performance
and as a design criterion in many beamforming approaches, we
note that maximizing SINR may not guarantee a good estimate
of the signal. In an estimation context, where our goal is to de-
sign a beamformer in order to obtain an estimate of the signal
amplitude that is close to its true value, it is more informative to
consider the estimation error as a measure of performance.

In[11], amaximum-likelihood (ML) approach was suggested
in which the steering vector is chosen to maximize the observa-
tions’ likelihood. The solution assumes that the steering vector
is complex Gaussian with known mean and covariance, and the
noise is given by a zero-mean complex Gaussian vector with
known covariance. Since the ML solution depends on s(t), and
therefore cannot be found explicitly, an iterative method was
proposed; however, no proof of convergence was given. Further-
more, the suggested beamformer is not given in closed form and
is computationally involved.

In this letter, we suggest a simple beamforming strategy re-
sulting in a closed-form linear beamformer. Our method, which
isalsooutlinedin [13], is based on an expected least-squares (LS)
estimator proposed in [14]. The resulting beamformer has a sim-
ilar form to the recursive ML solution [11] but is explicit. As we
show in the numerical examples, the LS beamformer often per-
forms similarly to the ML approach in terms of mean-squared
error (MSE) and outperforms the conventional and robust SINR-
based methods, even when the same prior knowledge is used.

1070-9908/$20.00 © 2006 IEEE
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II. EXPECTED LS BEAMFORMING

The most common approach to designing beamformers is to
maximize the SINR. In the case of a random steering vector, this
methods results in the principal eigenvector beamformer

w=aP {R7'R,} 3)

where P {A} denotes the principal eigenvector of the matrix A,
« is chosen such that w*R,w = 1, and for brevity, we omitted
the index ¢. Here
R=E{(i+n)(i+n)*} 4)
is the interference + noise covariance matrix, which is typically

replaced by an estimate such as the sample covariance matrix
R, with diagonal loading, and

R;=F{aa"} = C+ mm" 5)

is the signal correlation matrix.

Although maximizing the SINR is a popular design strategy,
choosing w to maximize the SINR does not necessarily result in
an estimated signal amplitude § that is close to s. Following the
ideas in [14], we now consider the LS beamformer for the case
of a random steering vector, in which we minimize the expected
LS error.

For a fixed steering vector, maximizing the SINR is equiva-
lent to minimizing the weighted LS error

ers = (y —as)R™H(y — as) (6)
which is the weighted data error, i.e., the error between the given
and estimated observations. This relation no longer holds true
when the steering vector is random. In this case, €1,5 is a random
variable and therefore cannot be minimized. Instead, we con-
sider minimizing the expected LS error where the expectation
is taken with respect to a

=E{(y—-ms—(a—m)s)*R™" (y —ms— (a—m)s)}
~ (y - ms) Ry — ms) + *E {(a - m)"R"(a — m)}
=(y —ms)*R™(y — ms) + s*Tr (R™'C). @)

Differentiating (7) with respect to § and equating to 0, we have

1
IC)+ m*R~!'m

m*Rly. (8)

s =

Tr (R~
Thus, the LS beamformer is

1
Tr (R 1C) + m*R1m

R 'm. )

WLs =

We first note that unlike the case in which a is known, the
LS approach is not equivalent to the max-SINR beamformer of
(3). Interestingly, however, the method of (9) is a scaled version
of the max-SINR beamformer when a = m. Thus, the effect
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of the uncertainty is to change the scaling of the beamformer.
It is well known in the estimation literature that scaling an esti-
mator can significantly reduce its MSE. For example, the class
of James—Stein estimators [15]—[17] are scaled versions of the
LS estimator that have provably smaller MSE.

In Section III, we illustrate, through numerical examples, that
for a wide range of signal-to-noise-ratio (SNR) values, the LS
beamformer has a smaller MSE than the principal eigenvector
solution (3) and the robust solutions [3], [5], [10]. These ob-
servations are true, even when C is not known exacLly, but is
chosen in an ad hoc manner, and R is estimated by Ry,,, with
an ad hoc diagonal loading. In particular, we choose m and C
so that our model of the random steering vector is the same in
average to the one used by the robust SINR-based method in [5].
Therefore, in terms of MSE, the LS approach appears to often
be preferable over standard and robust methods while requiring
the same prior knowledge.

III. NUMERICAL EXAMPLES

‘We now compare the performance of the LS beamformer with
other techniques.

The examples below consist of a uniform linear array of M =
10 omnidirectional sensors spaced half a wavelength apart. In
all the examples, s(t) is a complex sine wave with varying av-
erage-power P, chosen to obtain the desired average array SNR
defined as [18]

SNR = 101og,, (PS (m*m + Tr(C)))

2

e

(10)

g

where o2 is the noise power in each sensor. The noise e(t)

is a zero-mean, Gaussian, complex random vector, tempo-
rally and spatially white, with variance 2> = 1 in each
sensor. The interference is given by i(¢) = a;i(t), where a;
is the interference steering vector, and i(¢) is a zero-mean,
Gaussian, complex temporally white process. We used an
interference with DOA = —30°, interference-to-noise-ratio
INR = 20 dB, a number of training snapshots N = 30. The
signal is continuously present throughout the training data.
As in [18], we consider two scenarios for the steering vector
covariance matrix: 1) C is a diagonal matrix, where a is
drawn from a Gaussian, complex random vector with mean m
and covariance matrix C = 031; and 2) C is a nondiagonal
matrix, where a is drawn from a local scatter model given by
a=m+ (1/@2 E£=1 gra(dr), where L = 10 is the number
of scatterers, { gy } are zero-mean, independent, and identically
distributed Gaussian random variables with variance Ug, and
{6} are independent Gaussian random variables with mean 6,
and standard deviation (scatter angular spread) oy = 15°. The
covariance matrix is given by C = o2 [ _a(f,)a* (6;,)p(6)df,
where p(f) is the pdf of # [18]. In both cases, the steering
vector was independently drawn for each simulation run, m
represents the nominal steering vector with DOA 6, = 50°,
2 as well as o2 varied to obtain the desired uncertainty

and o} p
ratio (UR) defined by
Tr (C)
m*m /)’

UR = 10log,, ( (11)
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TABLE 1
BEAMFORMERS USED IN THE NUMERICAL EXAMPLES

Beamformer Expression

P { (ﬁsm + /\I) _IRS}

PEIG

SRsm+1) 'm
ROB1 a2 _ ( m —
o VM m*(6Rem+1) " Ram (6Rom+1) Tm

~ -1
ROB2 agP{(Rsm—l-)\I) (RS_@I)}
ML = ,fﬁ”ﬁn)_]a”“f —
Tr{ (Ram+A1) "' Cpost f+mp 0, (Rem+A1) ' apost
o —1
LS (Rsm+AI)" 'm

Tr{ (Rsm+A1) "' C}+m* (Rem+21) 'm

To evaluate the performance of the different methods, we used
the square root of the normalized mean-square error (NMSE).
For each experiment &, we computed the NMSE as

N
> 18k(t) — se(t)?
NMSE;, = =L

N
2 lse(®)P

where sy, (t) and $y,(¢) are the desired signal and its estimate for a
given experiment k, and K is the total number of experiments.
Each result presented below was obtained by averaging K =
500 Monte Carlo experiments.

We compared the performance of the LS beamformer to
four other beamformers: the principal eigenvector (PEIG)
beamformer [12], the robust beamformers (ROB1 and ROB2)
[5], [10], and the ML beamformer [11]. Table I summarizes
the beamformers implemented in the simulations. In the table,
R, is the estimate of the sample covariance matrix; R
is the signal correlation matrix (5); A is an ad hoc diagonal

1<k<K (12)

I-l-lSﬁsm) l’l’lH = €1,
with €; the uncertainty level on the square norm of the
steering vector error [5]; m is the nominal steering vector;
aq 1s chosen so that the corresponding beamformer satisfies
H (f{;,ll + )\I) m|| ; a3 is chosen so
that w*(Rs — eoI)w = 1 with e the uncertainty level on the
norm of the signal correlation matrix error [10]; and a5 and
Crost are the a posteriori steering vector and signal covariance,
respectively (see [11] for details on their recursive expressions).

We implemented the beamformers for a) known R, m, and C;
b) known m and C and estimated R; and ¢) known m and esti-
mated R and C. The parameters of the compared methods were
chosen according to each of the assumptions above. For example,
under assumption a), we set A\ = 0, and R,,, isreplaced by R for
the PEIG, ROB1, ML, and LS beamformers. For scenario 2), the
elements of C are obtained by numerically approximating the in-
tegral. ForROB1,wesete; = 4;forROB2, wesetes = Obecause
m and C are known; therefore, its performance is the same as the
PEIG beamformer. Under assumptions b) and c), we estimate R
using a diagonal loading approach with A = 30. For the purpose
of comparison with ROB1, assuming that there is no access to the
true C matrix [assumption c)], we set C = vI, where v is chosen

load; 6 is chosen such that H(

w*R,w =1, ay =
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Fig. 1. Square root of the normalized MSE as a function of average array SNR
assuming known values of m, C, and R.. (a) Diagonal C. (b) Nondiagonal C.
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Fig.2. Square root of the normalized MSE as a function of average array SNR
for nondiagonal C. (a) Assuming known m and C and using an estimate for
R. (b) Assuming known m and using estimates for R and C.

such that the expected value over the steering vector error equals
toer: Tr(C) = €1, where Tr(C) = Mv;hence,v = e¢;/M.In
this case, wesete; = 4and es = 1. Note that the values of €; and
€ were chosen such that the ROB1 and ROB2 beamformers have
the best average performance for all SNR ranges illustrated. For
the ML beamformer, under all assumptions, we chose the initial-
ization vector and its stopping criterion as suggestedin [11]. The
initialization is performed with the Capon beamformer, and the
stopping criterion is Hw(""'l) —w H < 0.001/\/M, where
n is the iteration number.

In all figures, we illustrate the square root of the NMSE as a
function of SNR for UR = 0 dB. Fig. 1(a) and (b) shows the
performance using the LS, PEIG, ROB1, and ML beamformers
assuming known m, C, and R for scenarios 1) and 2), respec-
tively. It can be seen that for scenario 1), the LS beamformer out-
performs the other methods for the SNR range between —5 dB to
4 dB, whereas for scenario 2), it outperforms the others methods
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Fig. 3. Square root of the normalized MSE as a function of average array SNR

for diagonal C. (a) Assuming known m and C and R estimated with three
different values for A. (b) Assuming known m, R estimated with A = 30, and
C estimated with three different values for .

throughout the SNR range illustrated. Note that for scenario 2),
the performance of the ML beamformer oscillates in all the SNR
ranges. It is observed that for some experiments, the ML algo-
rithm requires a larger number of iterations to achieve its con-
vergence. Additional numerical examples show that for both sce-
narios, the ML beamformer improves its performance relative to
the LS strategy as the values of M, N, and UR increase. From (7),
the value of the denominator gets larger as 2 or crg increases its
value; hence, for alarger UR, the elements of the LS beamformer
vector tend to zero, and the NMSE goes to one. In general, for
known m, C, and R, the LS approach outperforms the other
methods mainly for low values of M, SNR, and UR.

Next, we illustrate the performance of the beamformers for
known m and C and estimated R.. Fig. 2(a) illustrates the per-
formance using the LS, PEIG, ROB1, and ML beamformers for
scenario 2). It can be seen that the LS and ML approaches have
a similar performance for the SNR range between —5 and 8 dB.
Additional numerical examples (not shown here) show that be-
yond 15 dB, the NMSE of PEIG, LS, and ML beamformers de-
grades approaching one as SNR increases. This is because the
signal is continuously present throughout the data used to esti-
mate R. As expected, the use of a diagonal load helps to im-
prove the performance for large SNR. As an example, we il-
lustrate in Fig. 3(a) the NMSE as a function of SNR using the
LS and ML beamformers for scenario 1) with A equal to 10,
30, and 50. It can be seen that the performance deteriorates for
lower A values as SNR increases. Note that we show one curve
for the ML method since its performance does not vary much in
the SNR range illustrated; however, similar conclusions can be
drawn for larger SNR values.

Finally, we illustrate the performance of the beamformers as-
suming known m and using estimates for R and C. Fig. 2(b)
shows the NMSE using the LS, PEIG, ROB1, ROB2, and ML
beamformers for scenario 2). The LS and ML approaches show
similar NMSE in the SNR range illustrated. We also show the
performance of LS and ML beamformers for different values

of v. Fig. 3(b) shows the NSME as a function of SNR using
the LS and ML beamformer for scenario 1) with v equal to
e1/M = 0.4, 1 (current value of ag), and 5. It is observed that
for larger values of v, the NMSE improves for negative SNR
values; however, as SNR increases, the best performance is ob-
tained for the lowest value of v.

IV. CONCLUSION

We proposed a simple, linear beamformer for estimating a
signal waveform in the presence of steering vector uncertain-
ties. Our approach is based on an expected LS criterion. We
have shown through numerical examples the robustness of our
method in terms of the NMSE for random steering vectors
mainly for low SNR and UR values. The simple implementa-
tion, closed-form solution, and good performance establish this
method as an attractive alternative compared with the previ-
ously proposed ROB1, ROB2, ML, and PEIG beamformers.
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