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ABSTRACT

We consider a generalized sampling scheme, for finite-dimensional
sampling and reconstruction spaces where the correcting transfor-
mation must satisfy certain structural constraints. Several criteria
are considered, which aim to minimize the squared error norm be-
tween the input signal and its approximation within the reconstruc-
tion space. By restricting the correcting transformation to a desired
form, it is possible to obtain efficient implementations of the cor-
rection stage which may be vital in real time applications.

1. INTRODUCTION

Recent approaches to sampling and reconstruction treat the sample
sequence as inner products of the input signalx in some Hilbert
spaceH with a set of sampling vectors, which form a frame for
the sampling subspaceS ⊆H . The problem then is to reconstruct
x from these samples, using a set of vectors that form a frame for
the reconstruction subspaceW ⊆H , resulting in the reconstructed
signalx̂ [1, 2, 3].

To obtain a good approximation of the signal in the reconstruc-
tion space from its samples, the samples can be processed, prior
to reconstruction, with a correcting transformation. The works
in [1, 2], propose a linear transformationHcon which achieves acon-
sistent reconstructionof x, i.e. a reconstruction ˆx with the property
that it yields the same sample sequence asx. Note, however, that
the fact thatx and x̂ yield the same samples does not necessarily
imply that x̂ is close tox in the squared norm sense. In [3], dif-
ferent objectives were considered, which are related directly to the
squared norm error betweenx andx̂. One of the main conclusions
of [3] was that the correcting transformationH, that minimizes the
worst possible squared error other all finite energy inputs, results in
the reconstruction ˆx = PW PS x. Here,PA stands for the orthogonal
projection onto the subspaceA .

We note however, that both for the consistent reconstruction
criterion, and the robust criterion of [3], the resultant correcting
transformation is not constrained to a predefined structure. In many
practical applications we seek an efficient and possibly casual cor-
recting transformationH. Hence, structured forms forH are often
required.

In this paper we treat the problem of finite dimensional sam-
pling and reconstruction spaces. Specifically, we assume that there
is a set ofm samples, which after proper processing, are used to
reconstruct a signal usingm vectors which form a frame for the re-
construction space. The structure of the correcting transformation
H is modeled by a linear combination of some predefined matrices
Fn ∈ R

m×m, i.e., H = ∑n Fnh[n], whereh[n] are the design parame-
ters andFn are the matrices which define the desired structure. As
an example, assume that a casual correcting transformation is called
upon. In this case, we wish to restrict the correcting transformation
H to have a lower triangular form. This can be achieved by choos-
ing matricesFn which are zero within their upper triangular part.
As another example, consider the case whereH is restricted to be
cyclic. The motivation for this structure is that it allows applying
the correcting stage in an efficient manner. Specifically, using the
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FFT algorithm, the correcting stage can be applied inO(mlogm)
multiplications instead ofm2, as it happens for some general un-
structuredH.

In this work we address two criteria, both aimed at minimiz-
ing an objective related to the norm of the squared error. First,
we consider a robust criterion, in which we seek the structurally
constrainedH that minimizes the norm of the squared error for the
worst possible (finite energy) inputx. Noticing that the worst pos-
sible input can be viewed as an eigenvector corresponding to the
maximal eigenvalue of the error operator, we will also consider min-
imizing the trace of that operator. The latter objective corresponds
to optimizing an average performance merit.

The outline of this paper is as follows. Section 2 describes the
notations, mathematical preliminaries and problem formulation. In
Section 3 we address the average performance objectives, and de-
velop explicit solutions to the problem. Section 4 presents some
results on the robust objectives. Specifically, we show that by opti-
mizing the worst case performance, the problem can be restated as a
semi-definite programming(SDP). Finally, in Section 5 we present
a design example.

2. SAMPLING FORMULATION

We denote vectors in an arbitrary Hilbert spaceH by lowercase
letters, and the elements of a sequencec ∈ `2 by c[n]. The op-
eratorPA represents the orthogonal projection onto a closed sub-
spaceA of H andA ⊥ is the orthogonal complement ofA . The
Moore-Penrose pseudo inverseand the adjoint of a bounded trans-
formationT are written asT† andT∗, respectively.M � 0 means
that the matrixM is positive semi-definite(PSD). The inner prod-
uct between vectorsx,y ∈ H is denoted by〈x,y〉, and is linear in
the second argument.‖x‖2 = 〈x,x〉 is the squared norm ofx andā
stands for the conjugate of the numbera. L (H ) represents the set
of bounded linear operators fromH to H . A set transformation
V : `2 → H corresponding to frame vectors{vn} ∈ H is defined
by Va= ∑na[n]vn for all a∈ `2. From the definition of the adjoint,
if a = V∗y, thena[n] = 〈vn,y〉. Using a set transformationA which
corresponds to vectors that span the subspaceA we can write the
orthogonal projection operatorPA as

PA = A(A∗A)†A∗. (1)

We consider a general sampling problem in a Hilbert spaceH ,
in which the goal is to reconstruct a signalx∈H from a finite set of
samplesc. Our formulation of the problem allows for a broad class
of sampling strategies where the basic constraint we impose on the
sampling process is that it is linear. The samples are modeled as
the inner products of the signalx with a set ofm sampling vectors
{sn}

m
n=1 that form a frame for a spaceS , so thatc[n] = 〈sn,x〉.

Denoting byS the set transformation corresponding to the vectors
{sn}

m
n=1, the samples can be written asc = S∗x. The problem is to

reconstructx from c, where the reconstruction ˆx has the form

x̂ = ∑
n

d[n]wn = Wd, (2)

for some coefficientsd = Hc that are a linear transformation ofc.
Here,W is the set transformation corresponding to a set of vectors



{wn}
m
n=1 that span the reconstruction spaceW . The sampling and

reconstruction scheme is illustrated in Fig. 1.

x - S∗ - H - W - x̂
c[n] d[n]

Figure 1: General sampling and reconstruction scheme.

Our problem is to choose the transformationH in Fig. 1 such
that x̂ is a good approximation ofx, in the squared norm sense. The
transformationH is restricted to a predefined structure,

H = ∑
n

Fnh[n], (3)

where the matricesFn ∈R
m×m are specified in advance, andh is the

vector of the design parameters.
Aiming to minimize the norm of the squared error, a natural

objective is
min

h
‖x−WHS∗x‖2 . (4)

Unfortunately, in the general case, perfect reconstruction is not pos-
sible1 and a solution of (4) will depend onx, which is unknown. In-
stead, we can optimize the correcting transformationH with respect
to a class of input signals. Considering the class of finite energy
signals, and assuming at first thatH is not restricted to a predefined
form, we may solve

min
H

max
‖x‖≤L

‖x−WHS∗x‖2 . (5)

This objective aims to minimize the norm of the worst squared er-
ror betweenx and the reconstruction ˆx = WHS∗x. Here,L is an
arbitrary positive constant, which does not effect the solutionH.
In [3] it was proved thatH = 0 solves (5). As such, this useless
solution is valid for our structurally constrained forms as well (as
evident from (3), by settingh = 0). Since the objective (5) is over-
conservative, it was suggested in [3] to examine the difference be-
tweenx̂=WHS∗x, andPW x which is the best approximation tox in
W , over all bounded norm signals. This leads to the regret criterion:

min
H

max
‖x‖≤L

‖PW x−WHS∗x‖2 . (6)

The minimax regret solution was shown to be given by

Hreg = (W∗W)†W∗S(S∗S)† , (7)

and the resulting reconstruction is simply the application of two or-
thogonal projections ˆx = WHregS∗x = PW PS x. The objective (6)
and its solution leads us to consider the following two structurally
constrained counterparts:
• Minimize the regret criterion, using a structurally constrained

transformation (as stated in (3)):

min
h

max
‖x‖≤L

‖PW x−WHS∗x‖2 . (8)

• Minimize the error between the unconstrained reconstruction
(which is obtained byHreg) and the one attainable with a struc-
turally constrainedH:

min
h

max
‖x‖≤L

‖PW PS x−WHS∗x‖2 . (9)

1Note that we restrict the reconstructed signal ˆx = WHS∗x to lie in the
reconstruction spaceW . If x /∈ W to begin with, perfect reconstruction is
impossible, regardless of the choice ofH.

Problems (8) and (9) are addressed in Section 4. Defining the error
operators

E1 = PW −WHS∗; E2 = PW PS −WHS∗, (10)

we can view (8) as equivalent to the spectral norm minimization of
E ∗

1 E1. Similarly, (9) is equivalent to the spectral norm minimization
of E ∗

2 E2. Instead of optimizing the worst case performance, we may
consider minimizing the trace of the error operatorsE ∗

1 E1 andE ∗
2 E2,

i.e.,
min

h
Tr{E ∗

1 E1} , (11)

and
min

h
Tr{E ∗

2 E2} . (12)

This corresponds to an average performance measure, where the
input x is assumed to be in the direction of all eigenvectors, with
equal weights. Problems (11) and (12) are treated in Section 3.

Before stating results, we mention some theorems and defini-
tions, relevant to the notion of the trace.

Theorem 1. [4, Thr. VI.18] Let A∈L (H ) be a positive operator
on a separable Hilbert spaceH . Then the trace of A is defined by
Tr{A} = ∑n〈ϕn,Aϕn〉 for any orthonormal basis{ϕn} of H .

Definition 1. [4, pp. 207] An operator A∈ L (H ) is called trace
class iff Tr

{

(A∗A)0.5
}

< ∞. The existence of the square root oper-
ator is guaranteed for all positive linear bounded operators, by [4,
Thr. VI.9].

Finally, we quote a theorem which guarantees that the trace is
unchanged under cyclic shifts, for trace class operators.

Theorem 2. [4, Thr. VI.25] Tr{AB}= Tr{BA} if A is a trace class
and B∈ L (H ).

3. OPTIMIZING AVERAGE PERFORMANCE

We start by examining the trace of the operatorsE ∗
1 E1, E ∗

2 E2. For
that, we state the following result:

Theorem 3. The solutions of (11) and (12) are the same.

Proof. Note thatE1 = E2 + PW PS ⊥ . Due to finite dimensional-
ity of W , E1 is a trace class operators, which justifies the cyclic
shift within the trace. Hence, Tr

{

E ∗
1 E1

}

= Tr
{

E1E
∗
1

}

. Fi-
nally, since the range ofE ∗

2 is within S we have thatE1E
∗
1 =

E2E
∗
2 + PW PS ⊥PW . Using the linearity of the trace we conclude

Tr
{

E1E
∗
1

}

= Tr
{

E2E
∗
2

}

+ Tr{PW PS ⊥PW }, from which the theo-
rem follows.

Theorem 3 shows that while dealing with the trace criterion, it
is sufficient to obtain solutions for (12). We note that by using (1)
and (7),E2 = W(Hreg−H)S∗. The last expression also suggests a
way to solve (12):

min
h

Tr{E ∗
2 E2}= min

h
Tr
{

(Hreg−H)∗W∗W(Hreg−H)S∗S
}

. (13)

As the objective in (13) is convex inh, a closed form solution can
be obtained by differentiating and equating to zero. This results in
the following set of equations:

y = Mh, (14)

where

y[i] = Tr
{

F∗
i W∗WHregS∗S

}

(15)

Mi, j = Tr
{

F∗
i W∗WFjS

∗S
}



are thei’th element ofy and thei, j ’th element of them×m matrix
M. Note that (13) is convex inh, but might not be strictly con-
vex2. Thus, a solution of (14) exists, but is not necessarily unique.
Choosing the minimal norm solution, leads tohopt = M†y. We note
however, that regardless of the choice of the coefficientsh which
solve (14), the resulting transformationWHS∗ is unique. A proof
of this can be found in Appendix A.

3.1 Design Examples

Example 1: Diagonal matrix. Consider a simple special case
where we restrictH to be a diagonal matrix. This might be vi-
tal in real time applications, if the digital correcting stage must be
maintained very simple. Assuming that(W∗W) and (S∗S) are of
full rank, it can be shown that (14) takes the form:









(W∗S)1,1
(W∗S)2,2

...
(W∗S)m,m









= (W∗W).∗ (S.∗S)h,

where(W∗W). ∗ (S.∗S) stands for the element-wise multiplication
of these two matrices. Accordingly, when in addition we have or-
thogonal systems, the optimal coefficients are

hopt[n] =
(W∗S)n,n

(W∗W)n,n(S∗S)n,n
; n = 1, . . . ,m.

Note that this solution corresponds to Frobenius norm minimization
of Hreg−H. In fact, regardless of the choice of the structure matri-
ces{Fn}, if in additionW∗W = S∗S= I , problem (13) is always the
Frobenius norm minimization ofHreg−H.

Example 2. Cyclic matrix. Another interesting case is when
H is constrained to be a cyclic matrix. In such circumstances, the
transformed samplesd = Hc can be calculated efficiently, requiring
only O(mlogm) multiplications. Though the system (14) defines
a way to obtain the solution, it provides no insight. Instead, we
will further assume thatW∗W andS∗Sare full rank cyclic matrices,
and present an efficient algorithm for obtaining the coefficientsh.
Though we assume cyclic structure forW∗W andS∗S, we assume
nothing for the structure ofW∗S. Before showing an algorithm for
computing a cyclicH, which minimizes the trace objective, we note
that in such circumstances,Hreg itself can be efficiently computed
as well. This is since the inversion of the cyclic matricesW∗W and
S∗Scan be accomplished using the FFT algorithm.

Let {Fi} , i = 1, . . . ,m be the appropriate structure matrices.
Specifically, we setF1 = I , and setFn by shifting the columns of
Fn−1 upwards in a cyclic manner. For example, whenm = 3, we
have

F1 =

(

1 0 0
0 1 0
0 0 1

)

F2 =

(

0 1 0
0 0 1
1 0 0

)

F3 =

(

0 0 1
1 0 0
0 1 0

)

.

The following algorithm finds the proper coefficientsh.
1. Setq[n], n = −(m−1), . . . ,(m−1) to be the mean value along

then’th diagonal ofW∗S. Here,n = 0 corresponds to the main
diagonal,n = 1 to one diagonal above it, whilen = −1 to the
diagonal below it, etc.

2. Multiply the sequenceq by a triangular windowg[n]

v[n] = q[n]g[n],

where

g[n] =
m−|n|

m
; n = −(m−1), . . . ,m−1.

2Strict convexity can be assured ifW∗W andS∗S are of rankm. The
latter holds when the sampling and reconstruction vectors form Riesz bases
for S andW , respectively.

3. Calculate thediscrete-time Fourier transform(DTFT) of v[n] at
angles2πk

m ,k = 0, . . . ,m−1 using

V[k] = DFT

(

0

∑
l=−1

v[n+ lm]

)

[k],

where DFT( f [n]) [k] stands for thediscrete Fourier transform

of f [n], i.e.,∑m−1
n=0 f [n]e− j 2πnk

m .
4. Let rww be the first row of the matrixW∗W. Similarly, define

rss to be the first row of the matrixS∗S. Calculate the DTFT of
rww andrss at the same angles using

Rww[k] = DFT(rww[n]) [k], Rss[k] = DFT(rss[n]) [k].

5. The optimal coefficients are given by

h[n] = IDFT

(

V[k]
Rww[k]Rss[k]

)

[n],

where IDFT(A[k]) [n] stands for the inverse DFT,i.e.,
1
m ∑m−1

k=0 A[k]ej 2πnk
m .

Note that as a special case, whenW∗W = S∗S = I (and thus
Rww[k] = Rss[k] = 1∀k) we have an algorithm for obtaining the best
(in the Frobenius norm sense) cyclic approximation of some gen-
eral matrixW∗S. This approximation can be seen as a two stage
procedure; first project the matrix into the subspace of Toeplitz ma-
trices by calculating the mean value along each diagonal. Then,
further project into the smaller subspaces of cyclic matrices (this is
obtained by the multiplication with the triangular window and the
summation, as stated within steps 2 and 3 of the algorithm).

4. OPTIMIZING WORST-CASE PERFORMANCE

In this section we consider objectives (8) and (9). As mentioned
previously, these problems are equivalent to minimizing the maxi-
mal eigenvalue of the operatorsE ∗

1 E1 andE ∗
2 E2. First, we wish to

relate the two problems. For that we state the following lemma.

Lemma 1. Let A,B∈ L (H ). The non zero point spectrum of the
operator AB is equal to that of the operator BA.

Proof. AssumeBAx= λx for some 06= x ∈ H . Definey = Ax.
Assumey 6= 0 (else, we would haveλ = 0). SinceABy= A(λx) =
λAx= λy we established thatλ is also an eigenvalue ofAB.

We can use Lemma 1 to claim thatλmax(E
∗
1 E1) = λmax(E1E

∗
1 )

and similarly forE2. Here we implicitly assume that the maximal
eigenvalue is not zero,i.e., thatE1 andE2 are not the zero operators,
which is true in the general case.

Since,E1E
∗
1 = E2E

∗
2 +PW PS ⊥PW we conclude that

λmax(E
∗
1 E1) ≤ λmax(E

∗
2 E2)+λmax(PW PS ⊥PW ).

Furthermore, sinceλmax(PW PS ⊥PW ) = λmax(PW PS ⊥) ≤ 1, we
have

λmax(E
∗
1 E1) ≤ λmax(E

∗
2 E2)+1.

As a result, the value of the objective (9) can be used to upper bound
(8). Yet, the question remains, how to solve the two problems at
hand. The next theorem shows that an efficient numerical solution
can be obtained by recasting each objective as an SDP problem.

Theorem 4. 1 The solution ofargminh λmax(E
∗
2 E2) can be ob-

tained by solving the following convex optimization problem:

argmin
h,t

t (16)

s.t.

(

I B
B∗ tI

)

� 0

where
B = (W∗W)

1
2 (Hreg−H)(S∗S)

1
2 . (17)



2 The solution ofargminh λmax(E
∗
1 E1) can be obtained by solving

the following convex optimization problem:

argmin
h,t

t (18)

s.t.

(

I B∗

B tI−C

)

� 0

where B is defined by (17) and

C = (W∗W)
1
2

(

(W∗W)†−HregS
∗W(W∗W)†

)

(W∗W)
1
2 . (19)

Proof. 1 SinceE2 = W(Hreg−H)S∗, we have thatλmax(E
∗
2 E2) =

λmax(S(Hreg−H)∗W∗W(Hreg−H)S∗). Using Lemma 1 and
taking square roots, we also obtainλmax(E

∗
2 E2) = λmax(B∗B),

whereB is given by (17). By introducing a slack variablet,
we can write an equivalent problem of minimizing the maximal
eigenvalue,i.e.,

argmin
h,t

t (20)

s.t. tI −B∗B� 0. (21)

Using the lemma of Schur [5, Lemma 4.2.1] we obtain (16).
2 Since λmax(E

∗
1 E1) = λmax(E1E

∗
1 ) and usingE1E

∗
1 = E2E

∗
2 +

PW PS ⊥PW we obtain that

λmax(E
∗
1 E1) = λmax(E2E

∗
2 +PW −PW PS PW ).

After rewriting the orthogonal projections using the set transfor-
mationsSandW, applying cyclic shifts and taking square roots,
it is easy to show that

λmax(E
∗
1 E1) = λmax(BB∗ +C)

whereB andC are given by (17) and (19), respectively. We
note that the matrixC has the same eigenvalues as the spec-
trum points of the operatorPW PS ⊥PW . Applying the lemma of
Schur to the equivalent problem

argmin
h,t

t (22)

s.t. tI − (BB∗ +C) � 0,

results in (18).

Surely, if Hreg is obtainable by a linear combination of{Fi},
then the values of (8) and (9) areλmax(PW PS ⊥) and zero, respec-
tively. We also note that the value of (11) can be used as an upper
bound forλmax

(

E ∗
1 E1

)

. Similarly, the value of (12) upper bounds
λmax

(

E ∗
2 E2

)

. As a result, an easy way to obtain a bound for the
worst case performance (without actually solving the SDP prob-
lems), is by evaluating (13) first.

In the next section we present an example which illustrates the
use of a correcting matrixH, constrained to a cyclic form.

5. EXAMPLE

Suppose we sample a continuous-time speech signalx(t) using a
non-ideal sampler, so that the samplesc[n] are equal to the average
of the signal over intervals of length∆:

c[n] =
1
∆

∫ nT

nT−∆
x(t)dt. (23)

The samplesc[n] can be obtained by filtering the signalx(t) with a
filter whose impulse responses(t) is given by

s(t) =

{

1
∆ , 0≤ t ≤ ∆;
0, otherwise,

(24)
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Figure 2: The original speech fragmentx[n] and the reconstructed
signal using three different methods: not applying correction at all,
Hreg as a correcting transformation, and a correction with a cyclic
matrix.

and then sampling the output at timest = nT. The filter s(t) can
be viewed as a (non-ideal) low-pass filter (LPF). In the simulations
below, we useT = 4000−1s and∆ = 1.125ms. The reconstructed
outputx̂(t) is obtained from the transformed sequenced = Hc using
an interpolation kernelw(t), i.e., x̂(t) = ∑nd[n]w(t −nT). Specif-
ically, we considerw(t) to be a non-ideal LPF with support on
t ∈ [0,1.75]ms which approximates an ideal LPF with cutoff fre-
quency of 2kHz.

For the purpose of simulation we approximate the continuous-
time signalx(t) with a discrete sequencex[n] on a fine grid. The
signal was chosen as a speech fragment, taken from the Timit
database [6], at a sample rate of 8kHz. The continuous time in-
tegration kernels(t) is approximated by the discrete filter

s[n] =

{

1
N , 0≤ n≤ N−1;
0, otherwise,

(25)

with N = 10 samples. The ideal sampling is implemented by down-
sampling the filter output with a decimation factor of 2. The (non-
ideal) LPF followed by decimation can be described by proper con-
struction of the sampling matrixS∗.

To implement the reconstruction we use a linear-phase FIR fil-
ter of order 14 (with cutoff frequency 2kHz) as the interpolation
kernel. Here as well, the discrete-time interpolation kernel sim-
ulates the continuous-time interpolation kernel, by constructing it
over the 8kHz fine grid and up-sampling the input sequenced by a
factor of 2, prior to filtering. The up-sampling followed by the filter-
ing operation can be described by properly constructing the matrix
W. Figure 2 shows an example of an input sequencex[n] and 3 dif-
ferent reconstructed signals, corresponding toH = I (that is, no cor-
recting transformation is applied at all),H = Hreg and structurally
constrainedH to a cyclic form. Specifically,H was optimized as a
solution of (13).

The motivation behind the cyclic structure, is that the multipli-
cation Hc can be obtained in an efficient manner (requiring only
mlog2m+m complex multiplications, instead ofm2).

As can be seen from the figure, when no correcting transforma-
tion is applied, the results are poor. On the other hand, the recon-
structions obtained byHreg and the cyclicH are much closer to the
original speech fragment. Furthermore, and at least for this exam-
ple, it seems that there is no meaningful increase in the approxima-
tion error despite the structural constraint which were imposed on



H. On the other hand, we have gained an efficient implementation
of the correcting stage.

A. APPENDIX

Proof. Let h1 andh2 be two vectors which solve (14). LetHi =
∑nFnhi [n], i = 1,2 be the corresponding matrices. We will show
thatWH2S∗−WH1S∗ must be the zero transformation. It easy to
show thatA is the zero transformation if and only if Tr{A∗A} = 0.
Accordingly, we will prove

J = Tr{(H2−H1)
∗W∗W(H2−H1)S

∗S} = 0,

where we used a cyclic shift within the trace. Since

J = Tr
{

(H2−H1)
∗W∗W(H2−Hreg+Hreg−H1)S

∗S
}

,

we can use the linearity of the trace and the orthogonality principle,
as imposed by (14), to show that

J = Tr
{

(H2−H1)
∗W∗W(Hi −Hreg)S

∗S
}

= 0; i = 1,2,

which completes the proof.
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