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ABSTRACT FFT algorithm, the correcting stage can be applie®{mlogm)

We consider a generalized sampling scheme, for finite-dimension&qultiplications instead ofr?, as it happens for some general un-
sampling and reconstruction spaces where the correcting transfortructurecH. o ) _
mation must satisfy certain structural constraints. Several criteria N this work we address two criteria, both aimed at minimiz-
are considered, which aim to minimize the squared error norm b9 an objective related to the norm of the squared error. First,
tween the input signal and its approximation within the reconstruc¥e consider a robust criterion, in which we seek the structurally
tion space. By restricting the correcting transformation to a desiregonstrained that minimizes the norm of the squared error for the
form, it is possible to obtain efficient implementations of the cor-WOrst possible (finite energy) input Noticing that the worst pos-

rection stage which may be vital in real time applications. sible input can be viewed as an eigenvector corresponding to the
maximal eigenvalue of the error operator, we will also consider min-
1. INTRODUCTION imizing the trace of that operator. The latter objective corresponds

to optimizing an average performance merit.

Recent approaches to sampling and reconstruction treat the sample The outline of this paper is as follows. Section 2 describes the
sequence as inner products of the input signal some Hilbert  notations, mathematical preliminaries and problem formulation. In
spaces” with a set of sampling vectors, which form a frame for Section 3 we address the average performance objectives, and de-
the sampling subspac® C .#. The problem then is to reconstruct velop explicit solutions to the problem. Section 4 presents some
x from these samples, using a set of vectors that form a frame faiesults on the robust objectives. Specifically, we show that by opti-
the reconstruction subspawé C .77, resulting in the reconstructed mizing the worst case performance, the problem can be restated as a
signalX|1, 2, 3]. semi-definite programmin@DP). Finally, in Section 5 we present

To obtain a good approximation of the signal in the reconstruca design example.
tion space from its samples, the samples can be processed, prior
to reconstruction, with a correcting transformation. The works 2. SAMPLING FORMULATION

in[1, 2], propose a linear transformatiblaon which achieves aon- . . ;
sistent reconstructionf x, i.e. a reconstructior With the property Ye\/ﬁefse ngﬁﬁj\Qﬁgoéfegeﬂsaé?'gagqﬂg%g ezpﬁgécﬁ])]/ Io_\l/_vr(]aécgrs)_e

that it yields the same sample sequence.ablote, however, that P
the fact thatx and X yield the same samples does not necessarilyeratorpﬂ represents the orthogonal projection onto a closed sub

) 1
imply thatx is close tox in the squared norm sense. In [3], dif- SPaces of # and.«/"is the orthogonal complement of . The

ferent objectives were considered, which are related directly to thilo0re-Penrose pseudo |nv$raed the adjoint of a bounded trans-
squared norm error betweerandxX. One of the main conclusions formationT are written asl ' andT*, respectively.M = 0 means
of [3] was that the correcting transformatieh that minimizes the  that the matrixM is positive semi-definit¢?SD). The inner prod-
worst possible squared error other all finite energy inputs, results iHCt between vectorsy € 7 is denoted by(x,y), and is linear in
the reconstruction = Py, P, x. Here,P,, stands for the orthogonal the second argumenx||2 = (x,x) is the squared norm ofanda_
projection onto the subspacg. stands for the conjugate of the numberZ (7#) represents the set
We note however, that both for the consistent reconstructio®f bounded linear operators frost” to 2. A set transformation
criterion, and the robust criterion of [3], the resultant correctingV : £2 — ¢ corresponding to frame vectofsn} € 7 is defined
transformation is not constrained to a predefined structure. In mary Va= 3 ha[n|v, for all a € £,. From the definition of the adjoint,
practical applications we seek an efficient and possibly casual coif a=\V*y, thena[n] = (vy,y). Using a set transformatiok which
recting transformatiotd. Hence, structured forms fot are often  corresponds to vectors that span the subsp#oge can write the

required. orthogonal projection operat®,, as
In this paper we treat the problem of finite dimensional sam- et s
pling and reconstruction spaces. Specifically, we assume that there Po = AA"A) A" (1)

is a set ofm samples, which after proper processing, are used to
reconstruct a signal using vectors which form a frame for the re-
construction space. The structure of the correcting transformatio
H is modeled by a linear combination of some predefined matrice
Fn € R™M, ie., H= Y ,Fh[n], whereh[n] are the design parame-
ters andr, are the matrices which define the desired structure. A
an example, assume that a casual correcting transformation is call m
upon. In this case, we wish to restrict the correcting transformationn}n=1 that form a frame for a space’, so thatc[n] = (sn,x).

H to have a lower triangular form. This can be achieved by choosP€nCling byS the set transformation corresponding to the vectors
ing matricesF, which are zero within their upper triangular part. 1Snin=1 the samples can be written @s- S'x. The problem is to
As another example, consider the case whtis restricted to be reconstruck from ¢, where the reconstructionhas the form

cyclic. The motivation for this structure is that it allows applying Q= Zd[n]w —Wd )

the correcting stage in an efficient manner. Specifically, using the . . ’

We consider a general sampling problem in a Hilbert sp#te

jn which the goal is to reconstruct a signat .2” from a finite set of

sample<c. Our formulation of the problem allows for a broad class

of sampling strategies where the basic constraint we impose on the

ampling process is that it is linear. The samples are modeled as
inner products of the signalwith a set ofm sampling vectors
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{wn}, that span the reconstruction spage The sampling and Problems (8) and (9) are addressed in Section 4. Defining the error

reconstruction scheme is illustrated in Fig. 1. operators
ofri d[n] & =Py —WHS; & =PyPy —WHS, (10)
X 1S H w X we can view (8) as equivalent to the spectral norm minimization of
&7 &1. Similarly, (9) is equivalent to the spectral norm minimization

of & &>. Instead of optimizing the worst case performance, we may
consider minimizing the trace of the error operaifs; andsy &>,

Figure 1: General sampling and reconstruction scheme. e, .
9 Ping mhlnTr{é"féol}, (11)
Our problem is to choose the transformatidrin Fig. 1 such
thatXis a good approximation of, in the squared norm sense. The and ]
transformatiorH is restricted to a predefined structure, mdnTr{(fz* &2} (12)
H= z Fnh[n], (3 This corresponds to an average performance measure, where the
n

input x is assumed to be in the direction of all eigenvectors, with
equal weights. Problems (11) and (12) are treated in Section 3.

Before stating results, we mention some theorems and defini-
tions, relevant to the notion of the trace.

where the matricels, € R™™ are specified in advance, ahds the
vector of the design parameters.
Aiming to minimize the norm of the squared error, a natural

objective is _ 5 Theorem 1. [4, Thr. VI.18] Let Ac (%) be a positive operator
min|[x—WHSX|". (4)  on a separable Hilbert space”. Then the trace of A is defined by
. o Tr{A} = S n{¢n,Adn) for any orthonormal basig¢n} of 2.
Unfortunately, in the general case, perfect reconstruction is net pos
sible! and a solution of (4) will depend og which is unknown. In-  Definition 1. [4, pp. 207] An operator A .%(.¢) is called trace
stead, we can optimize the correcting transformatlomith respect  ¢|ass iff Tr{ (A* A)0-5} < . The existence of the square root oper-

to a class of input signals. Considering the class of finite energytor is guaranteed for all positive linear bounded operators, by [4,
signals, and assuming at first this not restricted to a predefined Thr. v|.9].

form, we may solve
_ ) Finally, we quote a theorem which guarantees that the trace is
n?_llnmzz{ IXx—WHSX|“. (5)  unchanged under cyclic shifts, for trace class operators.
X<
Theorem 2. [4, Thr. VI.25] Tr{AB} = Tr{BA} if Ais a trace class

This objective aims to minimize the norm of the worst squared €nd Be 2 ().

ror betweernx and the reconstructior = WHSx. Here,L is an
arbitrary positive constant, which does not effect the solukion
In [3] it was proved thaH = 0 solves (5). As such, this useless 3. OPTIMIZING AVERAGE PERFORMANCE
solution is valid for our structurally constrained forms as well (asyye start by examining the trace of the operaijssy, &5 &. For
evident from (3), by setting = 0). Since the objective (5) is over- hat, we state the following result: 2
conservative, it was suggested in [3] to examine the difference be-
tweenX=WHSx, andPy x which is the best approximationtn  Theorem 3. The solutions of (11) and (12) are the same.
w , over all bounded norm signals. This leads to the regret criterion:
_ ) Proof. Note thatéy = & + Py Py.. Due to finite dimensional-
min max ||Pyx—WHSx||“. (6) ity of #, & is a trace class operators, which justifies the cyclic
Il <L shift within the trace. Hence, &) &1} = Tr{&1é&)}. Fi-
. ; i nally, since the range ofy is within .7 we have that81 &} =
The minimax regret solution was shown to be given by &5 + Py Py Py . Using the linearity of the trace we conclude
Hreg = (W*W)TW*S(S*S)T, (7 :-erri](%)ﬁgévsz Tl’{gzégz*} +Tr{PyPy,. Py}, from which the th(li‘jo-
and the resulting reconstruction is simply the application of two or- ) _ . o .
thogonal projections = W HegS'x = Py Psx. The objective (6) Theorem 3 shows that while dealing with the trace criterion, it

and its solution leads us to consider the following two structurallyiS sufficient to obtain solutions for (12). We note that by using (1)
constrained counterparts: and (7),62 = W(Hreg— H)S". The last expression also suggests a

e Minimize the regret criterion, using a structurally constrained"/®Y to solve (12):
transformation (as stated in (3)): mijnTr{é’g*é”z} _ mhinTr{(Hreg —H)YWAW(Hreg H)S*S} @3)

mrjn‘mlg{HPWx—WHS*xH? ®) o | | _

- As the objective in (13) is convex in, a closed form solution can

e Minimize the error between the unconstrained reconstructioff® obtained by differentiating and equating to zero. This results in
(which is obtained byHreg) and the one attainable with a struc- the following set of equations:
turally constrained:

y=Mh, (14)
min max ||Py Py x— WHSX|2. 9)
h x| <L where
INote that we restrict the reconstructed signat WHSx to lie in the y[i] - Tr {F*W*W HregS*S} (15)
- I

reconstruction spac¥’. If x ¢ # to begin with, perfect reconstruction is
impossible, regardless of the choicerbf M = Tr{R'W'WFRS'S}



are thei'th element ofy and thei, j'th element of them x m matrix

M. Note that (13) is convex i, but might not be strictly con-
vex2. Thus, a solution of (14) exists, but is not necessarily unique.
Choosing the minimal norm solution, leadshg: = MTy. We note
however, that regardless of the choice of the coefficianigich
solve (14), the resulting transformatigviHS is unique. A proof

of this can be found in Appendix A.

3. Calculate theliscrete-time Fourier transfordDTFT) of v[n] at
angles?™ k=0,...,m- 1 using
> (K],

where DFT(f[n]) k] stands for theliscrete Fourier transform
; m-1 — j Zmk

of f[n],i.e, Y5 f[nje™!™m.

Let ryw be the first row of the matri¥vV*W. Similarly, define

rssto be the first row of the matrig*S. Calculate the DTFT of

rww andrss at the same angles using

Rww[k] = DFT (ruw[n]) [K],  Rsk] = DFT (rsgn]) [K].

V[k =DFT < % vin+Im|
I="1

3.1 Design Examples

Example 1: Diagonal matrix. Consider a simple special case
where we restricH to be a diagonal matrix. This might be vi-
tal in real time applications, if the digital correcting stage must be
maintained very simple. Assuming th@¥/*W) and (S*S) are of

full rank, it can be shown that (14) takes the form:

4.

5. The optimal coefficients are given by
Wors VK
C | = W'W).x(S79)h, hn] = IDFT (m) [nl,
(W*é)m,m where IDFT(AK])[n] stands for the inverse DFTj.e.,
where (W*W). x (S*S) stands for the element-wise multiplication %ka:_OlA[k]ejom'

of these two matrices. Accordingly, when in addition we have or-Note that as a special case, whéffW = S'S= 1| (and thus

thogonal systems, the optimal coefficients are Ruw[K] = Rsgk] = 1VK) we have an algorithm for obtaining the best
(in the Frobenius norm sense) cyclic approximation of some gen-

eral matrixW*S. This approximation can be seen as a two stage
procedure; first project the matrix into the subspace of Toeplitz ma-
trices by calculating the mean value along each diagonal. Then,
Note that this solution corresponds to Frobenius norm minimizatiodurther project into the smaller subspaces of cyclic matrices (this is
of Hreg — H. In fact, regardless of the choice of the structure matri-obtained by the multiplication with the triangular window and the
ces{Fn}, if in additionW*W = S'S=1, problem (13) is always the Summation, as stated within steps 2 and 3 of the algorithm).
Frobenius norm minimization dfireg — H.

Example 2. Cyclic matrix. Another interesting case is when
H is constrained to be a cyclic matrix. In such circumstances, th

(W*S)nn

hopt = Wi (S Smn

4. OPTIMIZING WORST-CASE PERFORMANCE
fn this section we consider objectives (8) and (9). As mentioned

transformed samples= Hc can be calculated efficiently, requiring
only O(mlogm) multiplications. Though the system (14) defines
a way to obtain the solution, it provides no insight. Instead, w
will further assume thatV*W andS*Sare full rank cyclic matrices,
and present an efficient algorithm for obtaining the coefficiénts
Though we assume cyclic structure W andS'S, we assume
nothing for the structure aV*S. Before showing an algorithm for
computing a cyclidd, which minimizes the trace objective, we note
that in such circumstancelleq itself can be efficiently computed
as well. This is since the inversion of the cyclic matrigé8VN and
S*Scan be accomplished using the FFT algorithm.

Let {F}, i=1,...,m be the appropriate structure matrices.
Specifically, we sefF; = I, and set, by shifting the columns of
Fn_1 upwards in a cyclic manner. For example, whana= 3, we
have

1 00 01 0 0 0 1
F1:<o ! o> Fzz(o 0 1) F3:<1 0 o>.
0 0 1 1 00 0 1 0

The following algorithm finds the proper coefficietits

1. Setqg[n], n=—(m—1),...,(m—1) to be the mean value along
then'th diagonal ofW*S. Here,n = 0 corresponds to the main
diagonal,n = 1 to one diagonal above it, while= —1 to the
diagonal below it, etc.

2. Multiply the sequencq by a triangular windovg[n]

v[n] = q[n|g[n],
where

m—n[.

gn = ———;

n=—(m-1),....m-—1
= (m-1),...,

2Strict convexity can be assuredW*W and S*'S are of rankm. The
latter holds when the sampling and reconstruction vectars Riesz bases
for . and#/, respectively.

previously, these problems are equivalent to minimizing the maxi-
mal eigenvalue of the operatofg &1 and&y &». First, we wish to

€elate the two problems. For that we state the following lemma.

Lemma 1. Let AB € £ (). The non zero point spectrum of the
operator AB is equal to that of the operator BA.

Proof. AssumeBAx= Ax for some 0# x € 5. Definey = Ax.
Assumey # 0 (else, we would havé = 0). SinceABy= A(AX) =
AAx= Ay we established thakt is also an eigenvalue &{B. |

We can use Lemma 1 to claim thihax(&} 1) = Amax(6167)
and similarly foré,. Here we implicitly assume that the maximal
eigenvalue is not zerag., that&; andé> are not the zero operators,
which is true in the general case.

Since 5167 = 65 + Py Py Py we conclude that

Amax(67 61) < Amax(65 62) + Amad Py Py Py ).

Furthermore, sinC&maxPy Py Py) = AmaPyPy1) < 1, we
have
Amax(éoféal) S )\max(éaz*g%) + 1

As aresult, the value of the objective (9) can be used to upper bound
(8). Yet, the question remains, how to solve the two problems at
hand. The next theorem shows that an efficient numerical solution
can be obtained by recasting each objective as an SDP problem.

Theorem 4. 1 The solution ofargmim, Amax(é5 &2) can be ob-
tained by solving the following convex optimization problem:

argmin t (16)
| B
st. ( Bt ) =0
where ) )
B= (W'W)2(Hreg—H)(S'9)2. 17)



2 The solution ofirg mirh Amax(&7 é1) can be obtained by solving
the following convex optimization problem:

arg rt?tln t (18)
| B*
st. ( B tI-C >i0
where B is defined by (17) and
C _ £3 1 * T % T * 1
— (W'W)3 ((W W)T = HiegSWW*W) ) (W*W)Z. (19)

Proof. 1 Sinced> = W(Hreg— H)S*, we have thalmax(&5 &%) =
Amax(S(Hreg — H)*W*W(Hreg — H)S"). Using Lemma 1 and
taking square roots, we also obtalifax(&5 &2) = Amax(B*B),
whereB is given by (17). By introducing a slack varialig
we can write an equivalent problem of minimizing the maximal
eigenvaluej.e.,

t

i 20
argmin (20)

st. tI—-B*Bx>0. (21)
Using the lemma of Schur [5, Lemma 4.2.1] we obtain (16).

2 Since Amax(6761) = Amax(6167) and usingé16y = 6285 +
Py P.. Py we obtain that

Amax(61 €1) = Amax( 6265 + Py — Py Py Py ).

After rewriting the orthogonal projections using the set transfor-

mationsSandW, applying cyclic shifts and taking square roots,
it is easy to show that

whereB andC are given by (17) and (19), respectively. We

note that the matrixC has the same eigenvalues as the SP€Cm

trum points of the operatd?y P, Py . Applying the lemma of
Schur to the equivalent problem

argmin t
9 hit

)

(22)

st. tl—(BB*+C) >0,
results in (18).
O

Surely, if Hreg is obtainable by a linear combination ¢F },
then the values of (8) and (9) alhax(Py P 1) and zero, respec-
tively. We also note that the value of (11) can be used as an upp
bound forAmax(&;61). Similarly, the value of (12) upper bounds

Amax(&5 &). As a result, an easy way to obtain a bound for the

worst case performance (without actually solving the SDP prob
lems), is by evaluating (13) first.

In the next section we present an example which illustrates th
use of a correcting matrild, constrained to a cyclic form.

5. EXAMPLE

Suppose we sample a continuous-time speech sighalsing a
non-ideal sampler, so that the sampifg are equal to the average
of the signal over intervals of length

1 nT

C[n] - E nT—A

x(t)dt. (23)

The samplesg[n] can be obtained by filtering the signdt) with a
filter whose impulse responsé) is given by

1, o<t<n

,  otherwise

s(t) (24)

1r

0.8

0.6

-0.2

-0.4

Input
CH=1
—#— Hreg
—&— Cyclic
0.8 I I I I )
0 20 25
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Figure 2: The original speech fragmetiih] and the reconstructed
signal using three different methods: not applying correction at all,
Hreg @s a correcting transformation, and a correction with a cyclic
matrix.

and then sampling the output at times: nT. The filters(t) can

be viewed as a (non-ideal) low-pass filter (LPF). In the simulations
below, we usél = 4000 's andA = 1.125ms. The reconstructed
outputx(t) is obtained from the transformed sequedeeHc using
an interpolation kernel(t), i.e., X(t) = Spd[nw(t —nT). Specif-
ically, we considem(t) to be a non-ideal LPF with support on
t € [0,1.75ms which approximates an ideal LPF with cutoff fre-
quency of 2kHz.

For the purpose of simulation we approximate the continuous-
e signalx(t) with a discrete sequencén] on a fine grid. The
signal was chosen as a speech fragment, taken from the Timit
database [6], at a sample rate of 8kHz. The continuous time in-
tegration kernes(t) is approximated by the discrete filter

s[n]:{ é’

with N = 10 samples. The ideal sampling is implemented by down-
sampling the filter output with a decimation factor of 2. The (non-

ideal) LPF followed by decimation can be described by proper con-
é}ruction of the sampling matrig‘.

To implement the reconstruction we use a linear-phase FIR fil-
ter of order 14 (with cutoff frequency 2kHz) as the interpolation
kernel. Here as well, the discrete-time interpolation kernel sim-
Ulates the continuous-time interpolation kernel, by constructing it
over the 8kHz fine grid and up-sampling the input sequehiog a
factor of 2, prior to filtering. The up-sampling followed by the filter-
ing operation can be described by properly constructing the matrix
W. Figure 2 shows an example of an input sequedigeand 3 dif-
ferent reconstructed signals, correspondinig te | (that s, no cor-
recting transformation is applied at all, = Hreg and structurally
constrainedH to a cyclic form. SpecificallyH was optimized as a
solution of (13).

The motivation behind the cyclic structure, is that the multipli-
cationHc can be obtained in an efficient manner (requiring only
mlog, m+ m complex multiplications, instead of?).

As can be seen from the figure, when no correcting transforma-
tion is applied, the results are poor. On the other hand, the recon-
structions obtained bireg and the cyclidd are much closer to the
original speech fragment. Furthermore, and at least for this exam-
ple, it seems that there is no meaningful increase in the approxima-
tion error despite the structural constraint which were imposed on

0<n<N-1;

otherwise (25)



H. On the other hand, we have gained an efficient implementation
of the correcting stage.

A. APPENDIX
Proof. Let hy andhy be two vectors which solve (14). Lét =
SnFnhi[n], i = 1,2 be the corresponding matrices. We will show

thatWH,S"* — W H; S* must be the zero transformation. It easy to
show thatA is the zero transformation if and only if JA*A} = 0.
Accordingly, we will prove

J=Tr{(Hz —Hp)*"W*W(H; —H;)S'S} =0,
where we used a cyclic shift within the trace. Since

we can use the linearity of the trace and the orthogonality principle,
as imposed by (14), to show that

J=Tr{(Hz — H1)"W*W(H; — Hreq)S'S} = 0; i = 1,2,

which completes the proof. O
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