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ABSTRACT

This paper addresses the problem of bandlimiting discrete-time
signals using digital filters, which are optimal in anL1 sense. An
efficient procedure for the design of such filters is proposed and it
is shown that the resulting filters admit several desired properties.

1. INTRODUCTION

Bandlimiting a discrete-time signal is an important operation in
several sampling procedures. Examples include the decimation
and interpolation of discrete-time signals, where in the former, the
signal must be bandlimited prior to downsampling in order to pre-
vent aliasing. In the latter it is required to use a bandlimiting filter
in order to reject the images created by the upsampling process [1].

The common method for bandlimiting a discrete-time signal
to a desired bandwidth, is to filter it with a low-pass digital filter
(or a band-pass filter in the case of bandpass sampling), having the
desired bandwidth. Ideally, we would like to obtain perfect trans-
mission in the passband, and zero transmission in the stopband.
However, such ideal filters cannot be implemented in practice [2].
Instead, an approximation to the ideal filter is performed, where
different approximation schemes lead to filters having different
properties. In order for the approximating filter to be realizable as
well, further restrictions are imposed, such as stability and causal-
ity. In addition, in bandlimiting it is often important not to dis-
tort the original signal in the desired bandwidth, in which case the
choice of linear-phase filters is made, resulting in a signal which is
a time-delayed version of the original signal. Linear-phase digital
filters with real coefficients, which are casual and stable necessar-
ily have a finite impulse response (FIR) [2]. Thus, a natural choice
for a bandlimiting filter is a linear-phase FIR.

The design of linear-phase FIR filters has been thoroughly
investigated in the literature, where the essence of all methods
is to efficiently trade-off between maximum flatness in the pass-
band and stopband, and minimal transition width; see [3] and the
many references therein. On one extreme is the minimax approach,
which generates filters (known as equiripple filters) with the nar-
rowest transition band for a given number of coefficients, but re-
sults in a highly non-flat passband and stopband. On the other ex-
treme is the maximally flat method, which yields filters possessing
a high degree of flatness in certain frequencies, but have very wide
transition band. Another common approach is the least-squares,
which minimizes the energy of the error between the ideal filter
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and the approximating one. The least-squares method offers some
trade-off between the above extremes, in that it results in a flatter
response than the minimax, while having a transition band, which
is narrower than the maximally flat filters. Nonetheless, it still
admits a non-smooth behavior in the passband and stopband, and
also possesses an undesirable high overshoot around the edge of
the filter.

Motivated by the need to design filters having flat transmis-
sion in the pass bandwidth, yet maintaining a reasonable transition
band, we consider the problem of approximating the ideal ban-
dlimiting filter using anL1 criterion. TheL1 optimality criterion
is considered to be a good choice in robust applications, and there-
fore it is intuitively reasonable to expect that when applied to the
filter design problem, it would tend to smear the transition band,
while at the same time yield less ripples in the passband and stop-
band. Indeed, as will be shown, filters which are optimal in theL1

sense possess these properties, and result in a flatter response than
the least-squares, at the expense of a small increase in the transi-
tion width. Furthermore, as in the case of the least-squares and the
minimax methods, filters designed under theL1 criterion enjoy the
property of being optimal in some sense, as opposed to the win-
dow design method, which is typically ad-hoc. In addition, similar
to the other two optimal methods (the least-squares and the mini-
max),L1 filters can also incorporate a weighting function into the
design process, which allows for a more flexible design than the
window method and the maximally flat filters [2].

The design of filters under theL1 criterion has not received
much attention in the literature of filter design. We believe that
the main reason for this fact is that contrary to the minimax and
least-squares design methods, no efficient procedure for the design
of L1 filters exists. Indeed, we are aware of only one work, where
digital differentiators are designed using anL1 criterion [4]. In [4],
the optimal solution is accomplished by first sampling the desired
frequency response and then solving a discreteL1 problem, using
linear programming methods. The general method of sampling
the desired frequency response and its major disadvantages has
been investigated in the past [3]. Furthermore, as the sampling
grid becomes more dense, the computation of the filter by linear
programming becomes very slow.

In 1981 Watson suggested an efficient procedure for approx-
imating continuous functions defined on an interval under theL1

criterion [5]. The algorithm is a modified version of the Newton
method for solving unconstrained minimization problems [6]. In
his paper, Watson stated specific conditions for theL1 problem,
under which a second order rate of convergence is guaranteed,
which is the same rate of convergence of the Remez exchange al-
gorithm for the minimax case [6], [7]. In contrast to the linear pro-



gramming approach, this method does not rely on sampling the ap-
proximated function. However, Watson’s algorithm is not directly
applicable to the filter design problem, since in filter design the
desired frequency response is typically approximated over a union
of disjoint closed intervals (the passbands and the stopbands). In
addition, it is also common to assign weights to the different inter-
vals.

In this paper, we propose a method for approximating a desired
bandlimiting digital filter under a weightedL1 criterion. In order
to efficiently achieve the approximated filter, we extend Watson’s
algorithm to include a union of closed intervals and a weighting
function. Similar conditions for guaranteeing second order rate of
convergence are derived. Moreover, it is stated that these condi-
tions are satisfied for the filter design problem. Thus, we obtain
an efficient algorithm whose complexity and rate of convergence
is the same as the Remez exchange algorithm.

The paper is organized as follows. In Section 2, we mathe-
matically formulate the design problem of weightedL1 measure.
In Section 3, we briefly review the mathematical background re-
quired for the development of the extended algorithm. Section 4
describes the weightedL1 algorithm. Finally in Section 5, we
demonstrate the method by simulations and discuss its advantages
over existing approaches.

2. PROBLEM FORMULATION

We consider the problem of bandlimiting a discrete-time signal to
a bandwidth[−ωc, ωc] using an orderN FIR filter with impulse
response{hn, 0 ≤ n ≤ N}. The filter is designed to approximate
the ideal response,

D(ω) =

{
1, |ω| ∈ [0, ωc],
0, |ω| ∈ (ωc, π].

(1)

The frequency response of the approximating filter,H(ω), is given
by the discrete time Fourier transform (DTFT) of its impulse re-
sponsehn:

H(ω) =

N∑
n=0

hne−jwn. (2)

For simplicity, we consider symmetric odd length filters (known
as type-1 filters), in which caseH(ω) can be written as,

H(ω) = A(ω)e−jMω (3)

whereM = (N−1)
2

, andA(ω) is the real-valued function

A(ω) = hM +

M∑
n=1

2hM−n cos(nω)

,
M∑

n=0

an cos(nω). (4)

SinceD(ω) is zero-phase, approximating it byH(ω) is equivalent
to approximating it byA(ω), and then adding a delay ofM taps to
A(ω) to make it causal. Thus, we wish to approximateD(ω) by a
linear combination ofM +1 functions,{cos(nω), n = 0, ..., M}.

Define the error of the approximation byE(ω) = D(ω) −
A(ω). The approximation process ofD(ω) by A(ω) is essen-
tially a minimization problem, where we wish to find the vector

of coefficients,a = (a0, ..., aM ), which minimizes some good-
ness criterion defined onE(ω). The two most popular criteria for
measuring the approximation error,E(ω), are

1) The weighted least-squares error:

‖E(ω)‖2 =

∫

Ω

W (ω)|D(ω)−A(ω)|2dω. (5)

2) The weighted Chebyshev error:

‖E(ω)‖∞ = max
ω∈Ω

W (ω)|D(ω)−A(ω)|. (6)

The functionW (ω) is a positive error weighting function, andΩ
stands for the union of passbands and stopbands (which are as-
sumed to be disjoint closed intervals in[0, π]). In the case of a
bandlimiting filter, Ω = [0, ωp] ∪ [ωs, π], where [0, ωp] is the
band in which we wish to perfectly transmit the original signal,
and[ωs, π] is the band we wish to perfectly reject.

Here, we consider a weightedL1 criterion defined by

‖E(ω)‖1 =

∫

Ω

W (ω)|D(ω)−A(ω)|dω. (7)

Note that (5), (6) and (7) define a norm onE(ω), known as the
weightedL2, L∞ andL1, respectively. As such all three prob-
lems represent an unconstrained convex minimization problem [6].
This viewpoint will be useful later when the algorithm for theL1

problem will be discussed.
The solutions to theL2 andL∞ criteria are well understood

and algorithms for obtaining them have been extensively stud-
ied [3]. The solution to the weighted least-squares (L2) is char-
acterized by being orthogonal to the functions{cos(nω), n =
0, ..., M}, which leads to a set ofM + 1 linear equations. The
solution to the minimax criterion is characterized by the alterna-
tion theorem, and is iteratively solved via the Remez algorithm.
Although not usually presented in this way, both characterizations
can be derived from the point of view of unconstrained convex
minimization, by equating the gradient (or subgradient) of the
norm with respect toa to zero [8]. In this way, the solution to
(7) can also be analytically characterized, which gives rise to a set
of M + 1 nonlinear equations. The essence of the algorithm we
propose is to efficiently solve this set of nonlinear equations. In
the next section we describe the characterization of the solution to
(7), followed by the method which achieves the optimal solution.

3. MATHEMATICAL BACKGROUND

3.1. Notations

Let Ω denote the set[0, ωp] ∪ [ωs, π]. The weightedL1 norm of a
functionf(ω) onΩ is defined by

‖f‖1 =

∫

Ω

W (ω)|f(ω)|dω. (8)

For a vectora = (a0, ..., aM ) ∈ RM+1 we denote the approxima-
tion error by

E(ω, a) =

M∑
n=0

an cos(nω)−D(ω), (9)

and the set of its zeros byZ(a):

Z(a) = {ω ∈ Ω|E(ω, a) = 0}. (10)



The sign function ofE(ω, a) is defined as,

sign(E(ω, a)) =

{
1 E(ω, a) > 0
0 E(ω, a) = 0

−1 E(ω, a) < 0.
(11)

We denote the inner product between two continuous functions on
Ω, f andg, by

〈f, g〉 =

∫

Ω

W (ω)f(ω)g(ω)dω. (12)

3.2. Characterization of theL1 Optimal Solution

We shall now show that a minimum of (7) is characterized by the
property thatsign(E(ω, a)), defined in (11), is orthogonal to the
functions{cos(nω), n = 0, ..., M}. In order for that character-
ization to be valid, one has to make the assumption that the set
of zeros ofE(ω, a), Z(a) in (10), has zero measure. Such is the
case, when for example, the number of zeros ofE(ω, a) is finite.
Fortunately, this is also the case in our problem too, since we ap-
proximate a piecewise constant function,D(ω), by a trigonometric
polynomial of degreeM , A(ω), and therefore the number of zeros
in each interval ofΩ cannot exceedM , unlessA(ω) is a constant.
We can therefore assume thatZ(a) is of zero measure.

Theorem 1. Suppose thatZ(a) has zero measure. Then, a vector
a ∈ RM+1 minimizes (7) if and only if

gn(a) , 〈cos(nω), sign(E(ω, a))〉 = 0, n = 0, ..., M. (13)
The unweighted version of the theorem may be found in [9].

Proof. Since Z(a) is of zero measure for everya, then
‖E(ω, a)‖1 is differentiable for everya. Therefore, as‖E(ω, a)‖1
is convex with respect toa, we can compute the gradient of
‖E(ω, a)‖1 and equate it to zero to obtain a necessary and suf-
ficient condition for minimum. Computation of the gradient of
‖E(ω, a)‖1 shows that,

∇‖E(ω, a)‖1 = g(a), (14)

whereg(a) is anM + 1-dimensional vector, whose components,
gn(a), are defined in (13).

Note the close resemblance of the weightedL1 characteriza-
tion to the weighted least-squares one, where for the latter the
solution is characterized by the property thatE(ω, a) (instead
of sign(E(ω, a))) is orthogonal to the functions{cos(nω), n =
0, ..., M}. However, while the orthogonality condition in the least-
squares case leads to a set of linear equations, the orthogonality
condition in (13) describes a set ofM + 1 nonlinear equations in
M + 1 unknowns, the components ofa.

The next section describes a descent algorithm for solving (7).
A general unconstrained minimization algorithm of a convex func-
tion aims to solve the set of usually nonlinear equations defined by
the optimality condition that the gradient equals zero. In our case,
this set of equations is given by (13). It starts with an initial vector
a1, determines according to a fixed rule a descent direction and a
suitable step size, and moves along that direction to a new point,
determined by the step size. At the new point a new direction and
step size are chosen and the process is repeated [6].

4. THE WEIGHTED L1 ALGORITHM

A simple algorithm for solving an unconstrained minimization
problem is the Newton method, for which second order rate of
convergence is guaranteed if the Hessian matrix of the function to
be minimized is positive definite in the neighborhood of the so-
lution. Newton’s method for unconstrained minimization can be
regarded as a version of the Newton method for solving nonlinear
equations (which describe the condition that the gradient of the
function equals zero), with the requirement that the value of the
function decreases with each iteration [6]. Therefore, we can apply
Newton method (for unconstrained minimization) to our problem
as well, in which case the set of nonlinear equations are given by
(13).

Directly applying the Newton method to our problem would
yield a sequenceak given by,

ak = ak−1 − [∇g(ak−1)]
−1g(ak−1), (15)

where,g(ak−1) is given by (13), and∇g(ak−1) is the Jacobian
matrix of g(ak−1). However, in our case it is not guaranteed that
the Jacobian matrix of the system of equations will be nonsingular
for everyak.

Several modifications of the Newton method were suggested
to include the case where the Jacobian matrix is singular. How-
ever, in order to guarantee a second order rate of convergence,
the requirement for the positive definiteness of the matrix in the
neighborhood of the solution still remains. Watson suggested to
use one of the modified versions of Newton’s method to solve the
L1 approximation of functions defined on an interval by a finite
number of linearly independent functions. Watson stated a the-
orem, which gives explicit conditions on the optimal solution of
theL1 problem, which guarantees the positive definiteness of the
Jacobian matrix, and therefore a second order rate of convergence.

The theorem of Watson, however, is not suitable for our prob-
lem, as we consider a union of closed intervals instead of a single
one, and a weightedL1 norm. A close inspection on the proof
of Watson’s theorem suggests that the conditions on the optimal
solution can be modified to our case as well in such a way that
the second order rate of convergence is preserved. The main re-
sult concerns the computation of the Jacobian matrix ofg(a) in
(13). The components ofg(a), gn(a), are explicit functions of
the zeros ofE(ω, a), Z(a), which are themselves functions ofa.
Thus, by the chain rule, the computation of the Jacobian matrix in-
volves knowing the derivatives ofgn(a) with respect to the zeros
in Z(a), in addition to the derivatives of the zeros with respect to
a. The result of this computation, i.e. the differentiation ofgn(a)
with respect toa is given by the following lemma.

Lemma 1. Let a ∈ RM+1, andZ(a) = {z1, ..., zt} be the set
of zeros ofE(ω, a), and assume that each zero is simple. The
Jacobian matrix ofg(a) in (13) is given by,

∇g(a) = AT D−1A (16)

where A is a t × (M + 1) matrix whose ijth element is√
W (zi) cos((j − 1)zi), andD = diag{d1, . . . , dt} with di =

1
2
| ∂E(ω,a)

∂ω
|ω=zi |.

Note thatD is invertible because we assume that the zeros are
simple. The lemma is of great importance, as it provides us with
an analytic expression of the Jacobian matrix, and circumvents the



numerical computation of the second derivatives of‖E(ω, a)‖1,
which is required in the general case of Newton’s algorithm.

The following steps describe the algorithm for computing the
best weightedL1 approximation toD(ω) on Ω. The difference
from Watson’s algorithm is in the choice of the matrixAk in step
2. Note that these steps follow the general structure of descent
algorithms for unconstrained minimization problems [6].

Step 1.- Initialization. Determine an initial vectora1 ∈
RM+1,ε > 0, 0 < σ < 1/2, 0 < β < 1. Setk = 1.

Step 2.- Positive-definite matrix determination. Form the
matricesAk andDk, as defined in lemma 1, and determine a pos-
itive definite(M + 1)× (M + 1) matrixHk according to one of
the following cases.

If t = 0 or Dk is singular, then setHk = I. In this case, the
corresponding directiondk will be the steepest descent direction.
If t ≥ M + 1, Dk is non-singular, andrank(Ak) = M + 1,
then setHk = AT

k D−1
k Ak. If t > 0, Dk is non-singular and

rank(Ak) < M + 1, then setHk = AT
k D−1

k Ak + λkI, where
λk > 0 is given. The determination rule ofλk is given in [5].

Step 3 - Descent Direction. Compute the(M + 1)-
dimensional vectorgk = gk(ak) whosen component is given
by (13). Determinedk, the current descent direction, which is the
unique solution of

Hkdk = −gk. (17)

The directiondk corresponds to the Newton direction when the
Jacobian matrix∇gk is non-singular.

Step 4 - A Stopping Criterion. If |dT
k gk| < ε then stop.

Step 5- Step Size. Determine the step sizeγk to be
max{1, β, β2, ...} such that

T (ak, γk) ≥ σ, (18)

where

T (ak, γk) =
‖E(ω, ak + γkdk)‖1 − ‖E(ω, ak)‖1

γkdT
k gk

. (19)

Note that the step size is selected in such a way that the weighted
L1 norm of the error is decreased.

Step 6 - Updating.Setak+1 = ak + γkdk, k = k + 1, go to
Step 2.

The following theorem, which is a generalization of the con-
vergence theorem proved in [5], states conditions under which the
algorithm has a second order rate of convergence.

Theorem 2. Leta∗ be the unique minimizer of (7) , and letZ(a∗)
be the set of zeros corresponding toa∗. Define thet × (M + 1)
matrix A∗ and thet × t diagonal matrixD∗ as in Step 2 above.
Assume thatt ≥ M + 1, rank(A∗) = M + 1, and each zero is
simple. Then, eventually (18) is satisfied withγk = 1, and the rate
of convergence is second order.

It can be shown that for the design of our bandlimiting filter, all
the conditions of the theorem are satisfied, and thus the algorithm
will have a second order rate of convergence. In fact, at the optimal
solutiont = M + 1, i.e. the approximation error changes sign at
exactlyM + 1 points.

The theorem above guarantees a good local convergence rate,
but says nothing about the computational load associated with each
step of the algorithm. Indeed, in its most general form, certain

steps of the algorithm may be computationally demanding. How-
ever, in our case, it is possible to facilitate the computational com-
plexity of several stages of the algorithm. Specifically, the inner
products which definegn(a) in (13) of step 2, may be computed
analytically, without resorting to numerical integration. In addi-
tion, the elements of the diagonal matrixDk are the absolute value
of the derivative ofE(ω, ak) with respect toω. In general, this
derivative is computed using numerical methods, however, in our
case the(i, i) element ofDk can be analytically computed to yield
Dk(i, i) = 1

2
|∑M

l=1 lak(l) sin(lzi)|. Step 3 requires solving a
system of linear equations and one of the many efficient methods
for factorizing a positive definite matrix may be used for that pur-
pose [10]. Thus, it is the solution of the linear system in step 3 and
the step size selection in step 5 that comprise the computational
complexity of one iteration of the algorithm. Note that the com-
putational complexity of the Remez exchange algorithm is also
determined by the solution of a linear system, and therefore each
step of the proposed algorithm is comparable with that of Remez.

Finally, a good guess of the initial vectora1 may accelerate the
convergence of the algorithm. For our initial guess, it is common
to choosea1, such that the correspondingA(ω) interpolates the
desired response,D(ω), at the points

zi =
(2i− 1)π

2(M + 1)
, i = 1, ..., M + 1 (20)

see [11]. If some of the points happen to lie in the transition band
[ωp, ωs], then some intermediate values between zero and one are
chosen as the value of the desired response,D(ω).

5. SIMULATIONS RESULTS

In this section, we compare our method forL1 filters with existing
methods. TheL1 algorithm was coded in Matlab, and simulations
show that its running time may be compared with the Remez ex-
change algorithm. The traditional design procedure requires spec-
ifying the passband and the stopband regions along with the maxi-
mum deviations in these regions. The equiripple filters (optimal in
the minimax sense) leads to the smallest filter order. Nevertheless,
the equiripple filters, by their definition, spread the maximal error
over the entire passbands and stopbands. This property may not be
desirable in several applications. For example, it may be accept-
able to have a larger deviation in certain regions of the passband
at the expense of a better transmission in the rest of the passband.
This might be the case when bandlimiting low-pass signals, such
as speech signals.

We consider the design of a low-pass filter

D(ω) =

{
1, ω ∈ [0, 0.63π]
0, ω ∈ (0.63π, π],

(21)

by approximating it with a type 1 linear-phase FIR filter of order
N = 42. We define the passband region to be[0, 0.6π] and the
stopband region as[0.66π, π], with the weighting function equal
one. The ideal response together with its approximation using var-
ious methods are shown in Figs. 1-3. The approximating filters are
shown in a logarithmic scale.

The figures suggest that theL1 filters have the following at-
tractive properties. In most of the passband and stopband region it
admits a higher degree of flatness than the least-squares method,
and much higher than the minimax approach, see Fig. 4 for the
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Fig. 1. An example of a desired frequency response.

magnified passband. The maximum deviations in both the stop-
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Fig. 2. Low-pass filters withN = 42 (a) Kaiser window (b) least-
squares (c) minimax (d) maximally-flat.
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Fig. 3. L1 low-pass filter,N = 42.

band and passband regions is slightly higher than that of the least-
squares and the minimax, and is much smaller than that of the
maximally flat filter, whose transition band is very wide. In addi-
tion, the maximum deviation occurs very close to the discontinu-
ity without resulting in large ripples as in the least-squares filter.
Thus, theL1 filter may be a suitable tradeoff between the minimax
and maximally flat filters, in applications where flat passbands and
stopbands are required (corresponding to maximally flat filters),
and still a reasonable transition region should be kept (the mini-
max result in the narrowest transition band).
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Fig. 4. Enlarged passbands forN = 42 (a) least-squares (b) mini-
max (c)L1.

6. CONCLUSIONS

An efficient algorithm for the design of linear-phase FIR bandlim-
iting filters, which are optimal in theL1 sense, has been proposed
in this paper. The method is simple, and based on Watson’s algo-
rithm for approximation of functions defined on an interval, which
is a Newton type algorithm. It enjoys the fast convergence of the
Newton method, i.e. a second order rate, which is the same rate
of convergence of the Remez exchange algorithm for the design
of equiripple filters. It contrast to the Newton method, however, it
does not require the computation of second derivatives, and can be
made very efficient in the case of filter design. Simulation results
have been demonstrated, showing that theL1 filters may be a good
choice when, for example, bandlimiting low-pass signals.
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