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Maximum Likelihood Estimation in Linear
Models With a Gaussian Model Matrix

Ami Wiesel, Yonina C. Eldar, and Amir Beck

Abstract—We consider the problem of estimating an unknown
deterministic parameter vector in a linear model with a Gaussian
model matrix. We derive the maximum likelihood (ML) estimator
for this problem and show that it can be found using a simple
line-search over a unimodal function that can be efficiently evalu-
ated. We then discuss the similarity between the ML, the total least
squares (TLS), the regularized TLS, and the expected least squares
estimators.

Index Terms—Errors in variables (EIV), linear models, max-
imum likelihood (ML) estimation, random model matrix, total
least squares (TLS).

1. INTRODUCTION

generic estimation problem that has received much atten-
Ation in the estimation literature is that of estimating an
unknown, deterministic vector parameter x in the linear model
y = Gx + w, where G is a linear transformation, and w is
a Gaussian noise vector. The importance of this problem stems
from the fact that a wide range of problems in communications,
array processing, and many other areas of signal processing and
statistics can be cast in this form.

Most of the literature concentrates on the simplest case, in
which it is assumed that the model matrix G is completely spec-
ified. In this setting, the celebrated least squares (LS) estimator
coincides with the maximum likelihood (ML) estimator and is
known to minimize the mean squared error (MSE) among all
unbiased estimators of x [1]. In ill-posed problems, the regular-
ized LS estimator due to Tikhonov [2] can often outperform the
LS strategy in terms of MSE. An alternative approach is taken
in [3], where the minimax MSE estimator is derived.

The estimation problem when G is not completely specified
received much less attention. It can be divided into two main
categories in which G is either deterministically unknown or
random. In the standard errors in variables (EIV) model, G is
considered as a deterministic unknown matrix, and the estimate
is based on noisy observations of this matrix. The ML esti-
mator for x in this case was derived in [4] and coincides with
the well-known total LS (TLS) estimator [5], [6]. Interestingly,
the resulting estimator is a deregularized LS estimator. Thus, in
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order to stabilize the solution, regularized TLS (RTLS) estima-
tors were derived [7], [8]. An opposite strategy is the robust LS
estimator that is designed for the worst-case G within a known
deterministic set [9], [10]. When G is assumed to be random,
an intuitive approach is to minimize the expected LS (ELS) cri-
terion with respect to G [11], [12]. Finally, the minimax MSE
estimator was also generalized to the case of a deterministic G
subject to uncertainties in [3] and to the case of a random G
matrix in [12].

In this letter, we address the ML estimation of x in a linear
model, when the model matrix G is a random matrix with in-
dependent and identically distributed Gaussian elements and
known second-order statistics. The ML estimator in this case
is the solution of a multidimensional, nonlinear, and nonconvex
optimization problem. We reformulate it and solve it using a
simple line-search over a unimodal function that can be effi-
ciently evaluated. The resulting estimator may be interpreted as
a TLS estimator with a logarithmic penalty or as an approximate
ELS estimator. These results provide an important motivation to
the these well-known estimators and suggest a particular choice
of regularization function.

This letter is organized as follows. In Section II, we introduce
the problem formulation and derive the ML estimator. Next, we
compare our estimator with existing estimators in Section III.
The advantage of the ML estimator is demonstrated in Sec-
tion IV using computer simulations. Finally, in Section V, we
provide concluding remarks.

The following notation is used. Boldface uppercase letters de-
note matrices, boldface lowercase letters denote column vectors,
and standard lowercase letters denote scalars. The superscript
()T denotes the transpose, the superscripts (-)’ and ()" denote
the first and second derivatives, respectively, and the superscript
()Jr denotes the pseudoinverse. By I, we denote the identity ma-
trix. || - || is the Frobenius matrix norm, || - || is the standard
Euclidean norm, R (X) is the range of X, and A, (X) is the
smallest eigenvalue of X. Finally, X > 0 means that the matrix
X is a symmetric positive semidefinite matrix.

II. ML ESTIMATION

Consider the problem of estimating an unknown deterministic
parameter vector X in the linear model

y=Gx+w (D

where G is an N x K Gaussian matrix with known mean H and
independent elements of variance U}ZL > (0, and w is a zero-mean
Gaussian vector with independent elements of variance o2 > 0.
In addition, G and w are statistically independent.
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An estimator X(y, H, 07, 02)) of x is defined as a function of
the observations vector and the given statistics that are close to
x in some sense. One of the standard approaches for desiging
X(-) is ML estimation, where the estimate is chosen as the pa-
rameter vector x that maximizes the likelihood of the observa-
tions. Mathematically, the ML estimate of x is the solution to

max logp (y; x) 2)

where p (y; x) is the probability density function of y parame-
terized by x. It is easy to see that in our model, y is a Gaussian
vector with mean Hx and covariance (o2 ||x||? + 02) L. There-
fore, the ML estimator of x can be found by solving

. lly — HXH2 2 2 2
Ir;ln{m—l—l\flog (0h||x|| +O',w)}. 3)
Problem (3) is a K-dimensional, nonlinear, and nonconvex op-
timization program and is therefore considered difficult. Our
main result is that we can transform it into a tractable form and
solve it efficiently,! as summarized in the following theorem.

Theorem 1: For any t > 0, let

f(t)= min [y - Hx|] @)

x:||x||2=t

and denote the optimal argument by x(t). Then, the ML esti-
mator of X in the model (1) is x(t*), where t* is the solution to
the following unimodal optimization problem:

: f(t) 2 2
Itnzl(rJl {m + Nlog (crht + crm) . 4)
Proof: See the Appendix . O

At first sight, Theorem 1 looks trivial. It is just a different way
of writing (3) using a slack variable ¢. However, it allows for
an efficient solution of the ML problem due to two important
observations. The first is that there are standard methods for
evaluating f(t) in (4) for any ¢ > 0. The second is that the line-
search in (5) isunimodal in ¢ > 0, and therefore any simple one-
dimensional search algorithm, such as bisection, can efficiently
find its global minima.

We will now discuss the methods for evaluating f(t) in (4).
This is a norm-constrained LS problem whose solution can be
traced back to [13].

Lemma 1 ([13], [14]): The solution of

ﬂﬂZxﬁﬁJW—HﬂF (6)
is
x@):(HTHH%aUTHTy @)

where o > — A in (HTH) is the unique root of the equation

Ix(6)]* = t. (®)

IA similar approach is taken in [8] for deriving the Tikhonov regularization
of the TLS estimator.

Using the eigenvalue decomposition of H” H, we can easily

calculate || (H'H + ozI)T H”y||? for different values of a.
The monotonicity of this squared norm in « enables us to find
the « that satisfies (8) using a simple line-search. Once this
« is found, f(t) can be evaluated by plugging the appropriate
x(t) into |ly — Hx(t)||?>. Moreover, the function can be effi-
ciently evaluated also in large-scale problems, such as those
arising in image processing applications, where the eigenvalue
decomposition is not practical. More details on this procedure
and the related “trust region subproblem” can be found in [15]
and references within.

III. COMPARISON TO SIMILAR PROBLEMS

In this section, we compare our problem with similar estima-
tion problems in statistical signal processing.

A. Comparison to the ML in the EIV Model and the TLS

One of the standard approaches in the statistical literature for
estimating x in a linear model with model matrix uncertainty is
the EIV formulation [4]. The EIV model is

{ y=Gx+w )
H=G+W
where y and H are the observed vector and matrix, w is a zero-
mean Gaussian vector of covariance U?DI, and W is a zero-mean
Gaussian matrix with independent elements of variance o;.

Models (1) and (9) are very similar. In both, we have access
to the observations y and to H, and the true channel G is equal
to H plus some Gaussian noise. In model (1), the matrix H is a
deterministic parameter, whereas in (9), it is a random observa-
tion matrix. Practically, though, its value is known in both cases.
In our view, the main difference is that in model (1), the matrix
G is random, whereas in (9), it is a deterministically unknown
matrix that must be estimated as well. Thus, the ML estimator
in (9) estimates both x and G by solving

maxlogp (y,H;x, G) (10)
x,G
where p (y, H; x, G) is the joint probability density function of
y, and H parameterized by x and G. Now, due to the Gaussian
assumption, (10) is equivalent to

— Gx|?
mm{ny x|

11
x,G 012” ( )

||H—G||%},

2
Oh,

In our context, we are not really interested in the nuisance pa-
rameter G. Instead, we eliminate it by minimizing (11) over G
first and find that the ML estimate of x in (9) is the solution to

 ly — Hx|]?
I+ o -
Comparing (3) and (12), we see that the ML in (3) can be con-
sidered as the ML of (12) with an additional logarithmic penalty.

In the signal processing literature, (12) is usually known as
the TLS estimator [6]. The TLS is a generalization of the LS so-
lution for the problem y ~ Hx when both y and H are subject
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to measurement errors. It tries to find x and G that minimize
the squared errors in y and in H as expressed by (11). Thus, our
ML estimator can also be interpreted as a regularized (or penal-
ized) TLS estimator.

Interestingly, the concept of regularizing the TLS estimator
is not new [7], [8]. It is well known that the TLS solution is not
stable when it is applied to ill-posed problems. In such cases,
a regularization of some sort is required. Two standard regular-
ization methods are

|y - Hx|? )
————> s.t. < 13
R
{ [ly — Hx|? )
—_—— . 14
“13“{0,%||x||2 o7, T HI (9

It has been shown that in many applications, these heuristic reg-
ularizations may significantly improve the performance of the
TLS estimator in terms of MSE. Our new ML estimator pro-
vides a statistical reasoning to this phenomena and suggests an
inherent logarithmic penalty scheme. Furthermore, using

log(l14+a)<a (15)

which is tight for sufficiently small a, we obtain the following
upper bound on our ML criterion in (3):

— Hx|? No?
||2y - “ 5 + 2h ||X||2
th”X” + Ow Ow

min (16)
which is exactly the RTLS estimator in (14) with u = No3 /o2,
Thus, (16) is a reasonable approximation of our ML estimator

when (No2/a2)||x||? is sufficiently small.

B. Comparison to Expected LS

The ML estimator is also related to the ELS estimator derived
in[11]and [12]. The ELS criterion is the most intuitive approach
for generalizing the LS estimator to the case where G is random.
It optimizes the expected value of the data error

min Eg{|ly — Gx|?} (17)
where Eg{-} denotes the expectation with respect to the dis-
tribution of G. Straightforward evaluation of the expectation in
our model yields

min {|ly — Hx||* + Noj||x|*} (18)
Examining (18) reveals that the standard LS objective should
be penalized by Noj|x||> when G is random. We will now
show that (18) is equivalent to minimizing a lower bound on the
objective of our ML estimator. Again, we apply

log (a + b) < log (a) + g (19)

and obtain the following bound:

Nlog (|ly — Hx||* + Noj||x||* + Noy,)
ly — Hx||?

< —m——"0— 4 Nlog (07||x||* + ¢2) + const. (20)
o llx|® + o3, ( )

w
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Fig. 1. Comparison of the ML, LS, ELS, and TRLS estimators for o7 = 0.05.

This, along with the monotonicity of the logarithm, proves our
claim. Thus, the ELS estimator can also be considered as an
approximation of the ML estimator.

IV. NUMERICAL EXAMPLE

We now provide a numerical example illustrating the be-
havior of our new estimator. The purpose of this example is to
demonstrate its performance advantage, rather than a detailed
practical application, which is beyond the scope of this letter.
The parameters in our simulation were N = 10 -4 and K = 4.
The matrix H was chosen as a concatenation of ten 4 x 4
matrices with unit diagonal elements and 0.5 off-diagonal
elements. At each realization, x was randomly generated with
independent, equiprobable +1 Bernoulli random variables. We
estimated the MSEs of each estimator using 10000 computer
simulation. For comparison, we provide the results for the ML
estimator of (3), the standard LS estimator, the expected LS
estimator of (18), and the RTLS estimator of (16). The results
of the TLS estimator were significantly worse than the other
estimators and are therefore omitted. The results are presented
in Figs. 1 and 2 for variances o7 = 0.05 and 07 = 0.2,
respectively. It is easy to see the advantage of the ML estimator
over the existing estimators. As expected, when o2 is relatively
high, the RTLS estimator is a good approximation for the ML
estimator and may even result in lower MSEs. In addition,
when the uncertainty is low (see Fig. 1), then LS works pretty
well but gets worse as the uncertainty grows.

V. CONCLUSION

In this letter, we considered the problem of estimating x in
the model y = Gx + w when G is Gaussian. We derived
the ML estimator and provided an efficient method for finding
it. We discussed the similarity of the ML estimator with other
estimation algorithms and showed that it can be expressed as
a logarithmic regularization of the well-known TLS estimator.
This result provides a statistical justification for the RTLS that
is usually derived based on heuristic considerations.
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Fig. 2. Comparison of the ML, LS, ELS, and TRLS estimators for O',ZL =0.2.

Our results motivate the continuing research on this seem-
ingly simple estimation problem. There are still many open
questions. The method presented here can be readily extended
to the case in which G has independent rows with a common
covariance matrix or the case in which some of the columns in
G are known. The more general case cannot be handled directly
using our techniques and is therefore an interesting topic for
further research. Another important extension is to consider the
problem of estimating x in a model with multiple observations,
i.e., when we observey; = Gx; + wy fort =1,...,T and G
is random.

APPENDIX

In this Appendix, we provide the proof of Theorem 1. The
main argument of the theorem is obtained by introducing a slack
variable ¢ = ||x||? and rewriting (3) as in (5) with f(#) defined
in (4). It remains to prove that (5) is unimodal in ¢ > 0.

First, we will show that f(t) is convex in ¢ > 0. In [14] and
[16], it was shown that strong duality holds in this special case
and that f(t) is equal to the value of its dual program

max, y'y—y H(HTH+ ozI)]L HTy — at
s.t. H'H+ol>0
H'y c R (HTH + aI) .

ft) =

(21)
Thus, f(¢) is the pointwise maximum of a family of affine func-
tions of ¢ and therefore is convex in ¢ > 0.
Next, we will show that

r(t) = /) 5 + Nlog (ort+02)

B ot + o2

(22)

is unimodal in ¢ > 0. We use the following result from [16]. If
r’'(t) = 0 implies "/ (¢) > 0 forany ¢ > 0, then r(¢) is unimodal
in ¢ > 0. The condition 7/(¢) = O states that
vy SO Nep
oit+on (02t +02)  Oit+oy

w

(23)

Multiplying by o7 /(c3t + o2) yields

o f(t)

(o3t +02)°

LNk i,
T2 22 2 212"
(o5t +02) (o5t +02)

The second derivative is

r”(t) _ f”(t) B U%f’(t) U}%f’(t>
R+ oE (oFt+02)  (oft+02)
4 4
20,4 () Noh - s)

(02t +02)°  (o2t+02)

Plugging in the left-hand side of (24) yields

f"(t)

2 2
U}Lt + Ow

4
Noj,

(02t + 02)

(1) = (26)

when 7/(t) = 0. Now, f(¢) is convex, which means that f”'(¢) >
0. Therefore, the first term of 7'/ (¢) is non-negative. The second
term is positive since 02, > 0 and o7 > 0. This concludes the
proof.
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