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Abstract—We consider the problem of designing an estimation filter to
recover a signal [ ] convolved with a linear time-invariant (LTI) filter

[ ] and corrupted by additive noise. Our development treats the case
in which the signal [ ] is deterministic and the case in which it is a sta-
tionary random process. Both formulations take advantage of some a priori
knowledge on the class of underlying signals. In the deterministic setting,
the signal is assumed to have bounded (weighted) energy; in the stochastic
setting, the power spectra of the signal and noise are bounded at each fre-
quency. The difficulty encountered in these estimation problems is that the
mean-squared error (MSE) at the output of the estimation filter depends
on the problem unknowns and therefore cannot be minimized.

Beginning with the deterministic setting, we develop a minimaxMSE es-
timation filter that minimizes the worst case point-wise MSE between the
true signal [ ] and the estimated signal, over the class of bounded-norm
inputs. We then establish that the MSE at the output of the minimax MSE
filter is smaller than theMSE at the output of the conventional inverse filter,
for all admissible signals. Next we treat the stochastic scenario, for which
we propose a minimax regret estimation filter to deal with the power spec-
trum uncertainties. This filter is designed to minimize the worst case dif-
ference between the MSE in the presence of power spectrum uncertainties,
and theMSE of theWiener filter that knows the correct power spectra. The
minimax regret filter takes the entire uncertainty interval into account, and
as demonstrated through an example, can often lead to improved perfor-
mance over traditional minimax MSE approaches for this problem.

Index Terms—Deconvolution, minimax mean-squared error (MSE),
regret, spectral uncertainty, Wiener filtering.

I. INTRODUCTION

Deconvolution is aimed at removing the impact of a system on an
input signal. A classical formulation of this problem is to deconvolve
a filtered, noisy signal assuming knowledge of the channel impulse re-
sponse. This problem can be cast in the framework of estimation in a
linear model in which the goal is to estimate an input signal x[n] from
corrupted observations y[n] using a linear time invariant (LTI) estima-
tion filter, where the signal is convolved with an LTI filter with impulse
response h[n], and corrupted by a stationary noise process w[n].

A possible approach to designing the estimation filter is to minimize
the mean-squared error (MSE) between the input signal x[n] and the
output of the estimation filter x̂[n]. If the signal x[n] is deterministic,
then the MSE depends on x[n] which is unknown; when x[n] is a sta-
tionary random process, the MSE depends on the power spectrum of
the signal, which may be subject to uncertainty. In both formulations
of the problem the MSE depends on signal-related functions which in
our setting are assumed to be unknown, and therefore cannot be mini-
mized. Alternatives to MSE minimization must therefore be sought for
designing the deconvolution filter.

In this correspondence, we address the filtering problem illustrated
in Fig. 1 for both the deterministic and the stochastic settings. Our ap-
proach takes advantage of prior knowledge on the class of underlying
signals and constraints the solution accordingly. In the deterministic
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Fig. 1. Linear deconvolution problem.

setting, we assume that the signal has bounded (weighted) norm; in the
stochastic setting, the power spectra of the signal and noise are bounded
at each frequency. For both scenarios, we seek a robust filtering method
which has relatively good performance over the class of input signals.

One of the major techniques for designing robust systems with re-
spect to modeling uncertainties is in the spirit of the minimax MSE
approach, initiated by Huber [1], [2], in which the goal is to optimize
the worst case performance. This approach has been applied to a variety
of different signal processing and communication problems [3]–[5], as
well as linear filtering problems in which the unknown input signal x[n]
is assumed to be random, but the statistics of x[n] and the noise w[n]
are not completely specified [6]–[12]. Recently, the minimax MSE ap-
proach has also been applied to a finite-dimensional analog of the fil-
tering problem of Fig. 1, in which the problem is to estimate a deter-
ministic parameter vector from a finite set of noisy observations [13].

Extending the minimax MSE approach to our setting, in Sec-
tion III, we develop an estimation filter that minimizes the worst case
point-wise MSE over all norm-bounded inputs. The advantage of this
strategy over the conventional inverse filtering method is demonstrated
by proving that the point-wise MSE at the output of the minimax MSE
filter is smaller than the MSE resulting from the least-squares inverse
filter, for all bounded-norm input signals.

Similar minimax approaches have also been considered in the con-
text ofH1 estimation with deterministic input signals [14]–[16]. How-
ever, while our formulation treats the estimation error as a stochastic
quantity and attempts to reduce its expectation, H1 methods in this
setting consider the estimation error as a deterministic quantity that
depends on the unknown signal and noise, and seek to minimize the
maximum energy gain from the unknown parameters to the estimation
error.

In contrast to the deterministic setting, in which the MSE depends
on x[n] and, therefore, typically, methods based on data error are em-
ployed, when x[n] is a stationary random process, the MSE is signal
independent; instead, it depends on the signal and noise power spectra.
If these power spectra are known, then the MSE can be minimized di-
rectly: the optimal solution is the well-known Wiener filter [17]. How-
ever, if the power spectra are not completely specified, then the solu-
tion minimizing the MSE cannot be obtained in general. An interesting
problem that has attracted considerable attention in the literature is that
of designing robust Wiener filters that have reasonable performance
over all possible power spectra, in some region of uncertainty. The pre-
dominant approach is to choose the filter that minimizes the worst case
MSE over an appropriately chosen class of power spectra [6]–[10].

In Section IV, we consider the case in which x[n] is a stationary
random process, independent of the noise process w[n], and the power
spectra of the signal and noise conform to a band uncertainty model in
which the signal and noise power spectra lie between frequency-depen-
dent known lower and upper bounds. As we show in Section IV-A, for
this model, the standard minimax MSE filter is a Wiener filter matched
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to the upper bound on the power spectra, and is therefore too conserva-
tive. It also does not take the complete uncertainty region or the impulse
response of the filter into account, since it depends only on the upper
bound of the uncertainty region.

Based on the estimation framework developed in [12], [18], [19]
for the problem of estimating a finite-dimensional parameter vector
from finitely many observations, we develop a competitive robust filter
whose performance is uniformly close to that of the Wiener filter, for
all possible values of the unknown power spectra. Specifically, in Sec-
tion IV-B, we design a filter to minimize the worst case regret, which is
the difference between the MSE of the filter, ignorant of the signal and
noise power spectra, and the smallest attainable MSE with a filter that
knows the power spectra. By considering the difference between the
MSE and the optimal MSE rather than the MSE directly, we can coun-
terbalance the conservative character of the minimax MSE approach
for this problem.

Before proceeding to the detailed development, in Section II, we
provide an overview of our problem and summarize the main results.

In the sequel, capital letters are used to denote the discrete-time
Fourier transform, e.g., H(!) denotes the Fourier transform of the
sequence h[n]. The correlation sequence and power spectrum of a
random process x[n] are denoted byRx[n] and Sx(!), respectively, so
that Sx(!) is the Fourier transform of Rx[n]. The complex conjugate
is denoted by (�)�, and (̂�) denotes an estimated variable.

II. PROBLEM FORMULATION

We consider the basic deconvolution problem of recovering a signal
x[n] from observations y[n], where, as depicted in Fig. 1(a), the se-
quence y[n] is a filtered, noisy version of x[n]

y[n] = h[n] � x[n] + w[n]: (1)

Here h[n] is a known filter with frequency response H(!), and w[n]
is a second-order wide-sense-stationary noise process with zero-mean,
correlation sequence Rw[n], and power spectrum Sw(!). Our objec-
tive is to design a linear estimator x̂[n] = g[n] � y[n] of x[n], as de-
picted in Fig. 1(b), where g[n] is the impulse response of the estimation
filter.

Two formulations of the problem are treated: the deterministic set-
ting, in which x[n] is a fixed signal, and the stochastic setting, in which
x[n] is a zero-mean stationary random process independent of w[n],
with correlation sequence Rx[n], where in this case Rx[n] and Rw[n]
may not be known precisely.

To design an estimator x̂[n] of x[n] that is close to x[n], we may seek
the filter g[n] that minimizes the MSE. Since the noise is stationary, the
total MSE

1

n=�1

E jx̂[n] � x[n]j2

is unbounded; instead, we consider the point-wise MSE at some time
index n0, which is given by E jx̂[n0] � x[n0]j

2 . Our development
of the filter minimizing the worst case point-wise MSE considers sep-
arately the case in which x[n] is a deterministic signal, and the case in
which x[n] is a stationary random process.

A. Deterministic Signals

If x[n] is deterministic then, as we show in Section III, the point-
wise MSE of x̂[n] depends generally on x[n], and therefore cannot be
minimized directly. Furthermore, the MSE is a function of n0, so that
a different filter may be optimal for different values of n0.

A common design strategy that does not depend on n0 and x[n], is
to minimize the (weighted) least-squares error

�LS =
1

2�

�

��

S
�1
w (!) Y (!)� Y (!)

2

d! (2)

where Y (!) andX(!) are the Fourier transforms of the data y[n] and
the estimated signal x̂[n], respectively, and Y (!) = H(!)X(!) is the
estimated data. Assuming for simplicity that H(!) 6= 0 for all !, the
minimizing x̂[n] is given in the Fourier domain by

X(!) =
1

H(!)
Y (!) (3)

and the resulting estimation filter, denoted by GINV(!), is the inverse
filter

GINV(!) =
1

H(!)
: (4)

Although this approach is very simple, its drawback is that the inverse
filter can lead to noise enhancement, resulting in large MSE values.
Indeed, the least-squares error measures the data error between y[n]
and ŷ[n] but it does not guarantee that x[n] is close to x̂[n].

The least-squares approach is completely data driven. To improve
its performance, we take advantage of some a priori knowledge on the
class of input signals by assuming that the signal x[n] has bounded
(weighted) norm. Thus, we consider the class T of signals x[n] defined
by

T = x[n] :
�

��

T (!)jX(!)j2d! � 2�L2 (5)

for some weighting function T (!) > 0 and scalar L > 0. Throughout
our derivations, we assume that L is given; however, the estimator we
develop can also be applied to problems in which the norm-bound L is
unknown, by first estimating it from the data; see [20]–[22].

The constraint set T can be incorporated into the least-squares de-
sign method by adding a regularization term to the data fitting error.
The optimal solution, known as the Tikhonov regularizer, minimizes
the least-squares error (2) subject to the constraint that x̂[n] 2 T , and
is given in the frequency domain by (6) at the bottom of the page. The
constant � > 0 depends on the data y[n], and is chosen such that

�

��

T (!)jX(!)j2d! =
�

��

T (!)jGTIK(!)Y (!)j2d! = 2�L2:

(7)

As can be seen from (6) and (7), the Tikhonov filter is a nonlinear filter,
which does not have an explicit solution; the parameter � does not have
a closed form, but is rather determined as the solution to the nonlinear
data-dependent equation in (7).

To improve the performance over the least-squares inverse filter,
without requiring a data-dependent estimator, we develop an estimator
that minimizes the worst case MSE over all signals x[n] 2 T . The min-
imax MSE filter is derived in Section III, and is a linear filter that has

GTIK(!) =
H�1(!);

�

�
T (!)jY (!)H�1(!)j2d! � 2�L2

�T (!)H (!)

S (!)+�T (!)jH(!)j
; otherwise.

(6)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005 2923

the same form as GTIK(!) given by (6), where the nonlinear param-
eter � is replaced by the constant L2. Thus, in contrast withGTIK(!),
the minimax MSE filter has an explicit closed-form solution, that is
independent of the data. In Section III-B, we show that the MSE of
the minimax MSE filter is smaller than that of the inverse filter, for all
x[n] 2 T . Therefore, this filter is guaranteed to result in better MSE
performance than the inverse filter at every time-instance n0, assuming
that the input has bounded norm.

B. Stochastic Signals

When x[n] is a zero-mean, stationary random process independent
of the noise w[n], the error x̂[n] � x[n] is also a stationary process,
so that the MSEE jx̂[n0] � x[n0]j

2 does not depend on x[n] or n0.
For a given estimation filter g[n] with frequency response G(!), the
MSE in this case is given by [17], [14]

E jx̂[n] � x[n]j2

=
1

2�

�

��

j1�G(!)H(!)j2Sx(!) + jG(!)j2Sw(!) d!

E(G; Sx; Sw) (8)

where Sx(!) and Sw(!) are the power spectra of x[n] and w[n], re-
spectively. If Sx(!) and Sw(!) are known, then the filter minimizing
the MSE of (8) is the Wiener filter [17]

GW(!) =
H�(!)Sx(!)

Sw(!) + Sx(!)jH(!)j2
: (9)

The smallest attainable MSE, which is equal to the MSE of the Wiener
filter, is

E(GW; Sx; Sw) =
1

2�

�

��

Sw(!)Sx(!)

Sw(!) + Sx(!)jH(!)j2
d!: (10)

Note that the Wiener filter has a similar form as the Tikhonov filter (6),
where �(!)T�1(!) in the Tikhonov filter is replaced by Sx(!) in the
Wiener filter.

In many practical applications, Sx(!) and Sw(!)may not be known
precisely, in which case the Wiener filter of (9) cannot be implemented.
One possible approach in this case is to use a Wiener filter matched to
the estimated power spectra. However, if the true power spectra de-
viate from the ones assumed, then the performance of the Wiener filter
may deteriorate considerably [9]. Therefore, there is a need for a robust
Wiener filter whose performance is reasonably good across all possible
power spectra, in the region of uncertainty.

To reflect the uncertainty in our knowledge of Sx(!) and Sw(!),
we consider an uncertainty model, illustrated in Fig. 2, that resembles
the “band model” which has been widely used in previous approaches
to robust Wiener filtering [7], [9], [23], [24]. In this model, the power
spectra of the signal and noise satisfy

l(!) �Sx(!) � u(!)

L(!) �Sw(!) � U(!) (11)

where the bounds l(!), u(!), L(!), and U(!) are known, and
l(!);L(!) � 0. To ensure that Sx(!)jH(!)j2 + Sw(!) is invertible
in the region of uncertainty, we further assume that

l(!) + L(!) > 0: (12)

The model (11) is reasonable when the power spectra are estimated
from the data. Specifically, suppose we estimate the signal power
spectrum as S0x(!). We may then assume that the true power spectrum
Sx(!) lies in an uncertainty level of length 2�(!) around S0x(!),
where �(!) = (u(!)� l(!))=2. The interval specified by �(!) can be
regarded as a confidence interval around our estimate S0x(!) and may
be chosen to be proportional to the standard deviation of the estimate

Fig. 2. Band uncertainty model. (a) Signal power spectrum. (b) Noise power
spectrum.

S0x(!). The same interpretation holds for the uncertainty interval
around Sw(!).

Given an uncertainty interval, the most common approach for devel-
oping robust Wiener filters is to seek a filter that minimizes the worst
case MSE in this region, as in the deterministic case [6]–[11]. How-
ever, as shown in Section IV-B, in the stochastic case the minimax
MSE approach tends to be too conservative and often does not lead
to satisfactory performance. Indeed, for the band uncertainty model of
(11), the minimax MSE filter turns out to be a Wiener filter matched
to the worst possible choice of power spectra, i.e., Sx(!) = u(!) and
Sw(!) = U(!). Thus, the filter does not take the complete uncertainty
interval into account, or the frequency response of the filter h[n]. To
improve the performance over the minimax MSE approach under the
model (11), we consider, in Section IV-B, a competitive approach, sim-
ilar to that suggested in [12], [18] for a finite-dimensional analog of the
Wiener filtering problem. Instead of minimizing the worst case MSE,
we suggest minimizing the worst case regret with respect to the optimal
linear filter without uncertainty, where the regret is defined as the dif-
ference between the MSE of a filter ignorant of the true power spectra,
and the optimal MSE attainable using a filter that knows the true power
spectra. The minimax regret filter is again a Wiener filter matched to
a “least favorable” pair of power spectra, which depend explicitly on
the uncertainty interval and on the frequency response of the filter. We
then demonstrate through an example that the minimax regret approach
can often lead to improved performance over traditional minimax MSE
methods for this problem.

III. MINIMAX MSE FILTER FOR DETERMINISTIC SIGNALS

We first consider the deterministic setting, in which x[n] is a deter-
ministic signal. In Section III-A, we derive the minimax MSE filter,
and in Section III-B, we analyze its performance.

A. Minimax MSE Filter

In this setting the MSE at time n0 is given by

E (x[n0] � x̂[n0])
2 = jx[n0] � (g[n] � h[n] � x[n])jn=n j2

+E j(g[n] �w[n])jn=n j2 : (13)

Using the relation

z[n0] =
1

2�

�

��

Z(!)ej!n d! (14)

for any signal z[n] with Fourier transform Z(!)

jx[n0] � (g[n] � h[n] � x[n]) jn=n j2

=
1

(2�)2

�

��

(1�G(!)H(!))X(!)ej!n d!
2

: (15)

Next, since w[n] is stationary, so is the sequence b[n] = g[n] � w[n],
so that

E b2[n0] = Efb2[n]g =
1

2�

�

��

jG(!)j2Sw(!)d!: (16)
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Combining (15) with (16), we conclude that the MSE of (13) is given
by

E jx̂[n0]� x[n]j2

=
1

(2�)2

�

��

(1�G(!)H(!))X(!)ej!n d!

2

+
1

2�

�

��

jG(!)j2Sw(!)d!: (17)

Since the MSE (17) depends on X(!) which is unknown, it cannot
be minimized directly. Instead, we propose minimizing the worst case
MSE over all possible (weighted) bounded energy signals x[n] 2 T ,
where T is defined by (5). Thus, we seek the filter g[n] that is the
solution to (18) at the bottom of the page. To derive the minimax filter
we first consider the inner maximization problem. To this end we rely
on the following lemma.

Lemma 1: Let T be the set of signals defined by (5). Then for any
function Z(!)

max
X(!)2T

�

��

Z(!)X(!)ej!n d!

2

=2�L2
�

��

T
�1(!)jZ(!)j2d!:

Proof: To prove the lemma we note that
�

��

Z(!)X(!)ej!n d!

2

�
�

��

T
�1=2jZ(!)jT 1=2(!)jX(!)jd!

2

�
�

��

T
�1(!)jZ(!)j2d!

�

��

T (!)jX(!)j2d!

� 2�L2
�

��

T
�1(!)jZ(!)j2d! (19)

where the second inequality follows from applying Cauchy–Schwarz,
and the last inequality holds for any x[n] 2 T . We have equality in
(19) if

X(!) =

p
2�LT�1(!)Z�(!)e�j!n

�

��
T�1(!)jZ(!)j2d!

(20)

which satisfies the constraint �

��
T (!)jX(!)j2d! � 2�L2, com-

pleting the proof.

From Lemma 1, we have that

max
X(!)2T

�

��

(1�G(!)H(!))X(!)ej!n d!
2

= 2�L2
�

��

T
�1(!)j1�G(!)H(!)j2d!: (21)

Substituting (21) into (18), our problem becomes

min
G(!)

�

��

jG(!)j2Sw(!) + L
2
T
�1(!)j1�G(!)H(!)j2 d!

(22)
or equivalently

min
G(!)

jG(!)j2Sw(!) + L
2
T
�1(!)j1�G(!)H(!)j2 : (23)

Since the objective of (23) is convex for each !, the optimal filter can
be found by setting the derivative to zero, which results in

G(!) Sw(!) + L
2
T
�1(!)jH(!)j2 = L

2
T
�1(!)H�(!): (24)

The optimal filter is then given by

GMX(!) =
L2T�1(!)H�(!)

Sw(!) + L2T�1(!)jH(!)j2 : (25)

The minimax MSE filter has the same form as the Tikhonov filter of
(6), where the nonlinear, data-dependent parameter � is replaced by the
constant L2. Thus, in contrast with the Tikhonov filter that needs to be
determined iteratively and is data dependent, the minimax MSE filter
has an explicit, data-independent expression. Comparing (25) with (9),
we can also interpret the minimax MSE filter as a Wiener filter matched
to a signal power spectrum of Sx(!) = L2T�1(!). It is also inter-
esting to note that the optimal filter (25) does not depend on n0 so that
the same solution is optimal for any time index n0.

B. MSE Analysis

We now compare the MSE performance of the minimax MSE filter
GMX(!) of (25) with that of the inverse filter GINV(!) of (4).

If Sw(!) = 0 for all !, then GMX(!) = GINV(!). Therefore, we
assume that Sw(!) > 0 over some interval of frequencies !. With
G(!) = GINV(!), the MSE at time n0 is given from (17) by

E jx̂[n0] � x[n]j2 =
1

2�

�

��

jH(!)j�2Sw(!)d! EINV (26)

which is independent of n0 and x[n0]. On the other hand, if G(!) =
GMX(!) is the minimax MSE filter of (25), then the resulting MSE of
(17) will depend on n0 and x[n0]. However, from the development of
the previous section we have that for any x[n] 2 T

EMX =E jx̂[n0] � x[n]j2

� 1

2�

�

��

jGMX(!)j2Sw(!) + L
2
T
�1(!)

� j1�GMX(!)H(!)j2 d!

=
1

2�

�

��

L2T�1(!)Sw(!)

Sw(!) + L2T�1(!)jH(!)j2d!: (27)

Since

L2T�1(!)Sw(!)

Sw(!) + L2T�1(!)jH(!)j2

=
Sw(!)

jH(!)j2
L2T�1(!)jH(!)j2

Sw(!) + L2T�1(!)jH(!)j2

� Sw(!)

jH(!)j2 (28)

with strict inequality if Sw(!) > 0, we conclude that EMX < EINV

for all x[n] 2 T , as long as Sw(!) > 0 over some frequency interval.
We summarize our results on minimax MSEfiltering in the following

theorem.

Theorem 1: Let x[n] be the unknown deterministic signal in the
model y[n] = h[n]�x[n]+w[n] where h[n] is a known filter andw[n]
is a zero-mean stationary noise process with power spectrum Sw(!).
Let x̂[n] = g[n] � y[n] denote an estimate of x[n] where g[n] is a
discrete-time filter, and let T = fx[n] : �

��
T (!)jX(!)j2d! � L2g

for some T (!) > 0 and L > 0. Then the minimax filter that is the
solution to the problem

min
g[n]

max
x[n]2T

E jx̂[n0] � x[n0]j2

min
g[n]

max
x[n]2T

E jx̂[n0] � x[n0]j2 = min
G(!)

1

2�

�

��

jG(!)j2Sw(!)d!+
1

(2�)2
max

X(!)2T

�

��

(1�G(!)H(!))X(!)ej!n d!
2

: (18)
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is independent of n0, and is given in the Fourier domain by

GMX(!) =
L2T�1(!)H�(!)

Sw(!) + L2T�1(!)jH(!)j2
:

In addition, we have the following.

1. The filterGMX(!) can be interpreted as a Wiener filter matched
to a signal power spectrum Sx(!) = L2T�1(!).

2. At every time index n0, the MSE E jx̂[n0]� x[n0]j
2 using

GMX(!) is smaller than the MSE using the inverse filter
GINV(!) = H�1(!) for all x[n] 2 T .

IV. DECONVOLUTION OF STOCHASTIC SIGNALS

A. Minimax MSE Wiener Filter

We now consider the case in which x[n] and w[n] are independent,
zero-mean, stationary random processes, with power spectra specified
by the uncertainty region defined in (11). Our problem is to design a
robust filter with good performance for all Sx(!) and Sw(!) in the
region of uncertainty.

A popular approach to robust filtering is to seek the solution that
minimizes the worst case MSE over all possible values of Sx(!) and
Sw(!) in the region of uncertainty. For the model (11), the minimax
MSE filter reduces to a Wiener filter matched to Sx(!) = u(!) and
Sw(!) = U(!). To see this, we note that for all ! and for all power
spectra in the set D defined by

D = fSx(!); Sw(!) : l(!) � Sx(!) � u(!);

L(!) � Sw(!) � U(!)g (29)

we have that

j1�G(!)H(!)j2Sx(!)+ jG(!)j2Sw(!)

� j1�G(!)H(!)j2u(!)+ jG(!)j2U(!): (30)

Therefore, with E(G;Sx; Sw) denoting the MSE E jx[n] � x̂[n]j2

defined by (8) using a filter with frequency response G(!)

min
G

max
S ;S 2D

E(G;Sx; Sw) = min
G

E(G;u; U); (31)

and from (9) the optimal filter is

G(!) =
H�(!)u(!)

u(!)jH(!)j2+ U(!)
: (32)

We see that the minimax MSE filter is too conservative, since it min-
imizes the MSE for the worst possible choice of parameters. It also
does not take the full uncertainty region into account, but rather con-
siders only the upper bound of the uncertainty region. To try and com-
pensate for the conservative nature of the minimax MSE approach, in
Section IV-B we develop a minimax regret estimation filter, whose per-
formance is as close as possible to that of the optimal Wiener filter for
all values of Sx(!) and Sw(!) satisfying (11).

B. Minimax Regret Wiener Filter

If the power spectra Sx(!) and Sw(!) are known, then the filter
G(Sx; Sw) which depends on Sx(!) and Sw(!) minimizing the MSE
is the Wiener filter of (9), and the smallest attainable MSE is given by
(10). Note that the optimal MSE is a function of the unknown power
spectra Sx(!) and Sw(!). When the power spectra are not known, the
minimal MSE is not achievable. The regret R(Sx; Sw; G) is defined
as the difference between the MSE using a filterG(!) and the smallest
possible MSE

R(Sx; Sw; G) =
1

2�

�

��

j1�G(!)H(!)j2Sx(!)

+jG(!)j2Sw(!)�
Sw(!)Sx(!)

Sx(!)jH(!)j2+ Sw(!)
d!: (33)

To try and uniformly approach the optimal MSE in the presence of
power spectrum uncertainties, we seek an estimator that minimizes the
worst case regret, i.e., it is the solution to the problem

min
G

max
S ;S 2D

R(Sx; Sw; G) (34)

where D is defined by (29). The form of the minimax regret filter is
given in the following theorem.

Theorem 2: Let x[n] be an unknown zero-mean, stationary random
signal with power spectrum Sx(!) in the model y[n] = h[n] � x[n] +
w[n], where h[n] is a known filter and w[n] is a zero-mean stationary
noise process, independent of x[n], with power spectrum Sw(!). Let
x̂[n] = g[n] � y[n] denote an estimate of x[n] where g[n] is a discrete-
time filter, and letD denote the set of power spectra satisfying u(!) �
Sx(!) � l(!) and U(!) � Sw(!) � L(!). Then the minimax regret
filter GREG(!) that is the solution to the problem

min
G(!)

max
S (!);S (!)2D

R(Sx; Sw; G)

is given by

GREG(!)=
H�(!)

U(!)+l(!)jH(!)j2+ L(!)+u(!)jH(!)j2

�
l(!)

U(!)+l(!)jH(!)j2
+

u(!)

L(!) + u(!)jH(!)j2
:

Before proving the theorem we note that if L(!) = U(!) and
l(!) = u(!) so that there is no uncertainty in Sx(!) and Sw(!) then,
as we expect GREG(!) reduces to the Wiener filter of (9).

Proof: We develop the minimax regret filter by first expressing
G(!) as jG(!)jej�(!), and noting that the regret R(Sx; Sw; G) de-
pends on �(!) only through the expression

j1�G(!)H(!)j2

= 1 + jG(!)H(!)j2 � 2jG(!)H(!)jcos(�(!) +  (!)) (35)

where H(!) = jH(!)jej (!). Since cos(�(!) +  (!)) � 1 with
equality for �(!) = � (!), we have that

j1�G(!)H(!)j2 � 1 + jG(!)H(!)j2 � 2jG(!)H(!)j

=(1� jG(!)H(!)j)2: (36)

Therefore, for any choice of �(!)

max
S ;S 2D

R(Sx; Sw; G)

� max
S ;S 2D

1

2�

�

��

M(jG(!)j; Sx(!); Sw(!))d! (37)

where

M(jG(!)j; Sx(!); Sw(!))

= (1� jG(!)H(!)j)2Sx(!)+ jG(!)j2Sw(!)

�
Sw(!)Sx(!)

Sx(!)jH(!)j2 + Sw(!)
(38)

with equality for

�(!) = � (!): (39)

It remains to determine the optimal value of jG(!)j, which is the
solution to

min
jGj

max
S ;S 2D

1

2�

�

��

M(jG(!)j; Sx(!); Sw(!))d!: (40)

Since the constraint set D is separable in !

min
jGj

max
S ;S 2D

1

2�

�

��

M(jG(!)j; Sx(!); Sw(!))d!

=
1

2�

�

��

min
jGj

max
S ;S 2D

fM(jG(!)j; Sx(!); Sw(!))g d!:

(41)
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For a fixed !, let g = jG(!)j, h = jH(!)j, �x = Sx(!), and �w =
Sw(!). Then, our problem becomes

min
g�0

max
l�� �u;L�� �U

(1� gh)2�x + g2�w � �w�x
�xh2 + �w

(42)

where h � 0, l = l(!), u = u(!), L = L(!), and U = U(!).
The solution to (42) follows from [18], and is given by the following
lemma.

Lemma 2: The solution to the problem

min
g�0

max
l�� �u;L�� �U

(1� gh)2�x+ g2�w � �w�x
�xh2 + �w

(43)

is

g =
hp

U + lh2 +
p
L+ uh2

lp
U + lh2

+
up

L+ uh2
: (44)

Proof: We first consider the case in which h = 0. In this case,
the problem (43) becomes

min
g�0

max
l�� �u;L�� �U

g2�w (45)

and clearly, the solution is g = 0. Next, suppose that h > 0. The
proof of (44) in this case is based on a similar result developed in [18].
Specifically, in the proof of Theorem 4 in [18] it is shown that the value
of d that is the solution to

min
d

max
l���u;L���U

(1� d)2� +
�d2

�2
� ��

��2 + �
(46)

where �2 > 0 is given by

d =
�2p

U + l�2 +
p
L+ u�2

lp
U + l�2

+
up

L+ u�2
: (47)

It is immediate to see that our problem (43) is equivalent to that of (47)
with �x = �; �w = �; h = � and g = d=h. Since the optimal solution
d satisfies d > 0, the result follows.

The proof of the theorem then follows from combining Lemma 2
with (39).

C. Minimum MSE Interpretation of the Regret Filter

Substituting the power spectra

Sx(!) =�(!)l(!)+ (1� �(!))u(!);

Sw(!) =�(!)L(!)+ (1� �(!))U(!) (48)

where

�(!) =
L(!) + u(!)jH(!)j2

L(!) + u(!)jH(!)j2+ U(!) + l(!)jH(!)j2 (49)

into the expression for the Wiener filter (9), results in the minimax re-
gret filter of Theorem 2. Therefore, we can interpret the regret filter
as a Wiener filter matched to the power spectra (48), which can be
viewed as estimates of the true, unknown power spectra. Specifically,
the signal spectrum Sx(!) at a given frequency !0 is estimated as
a weighted combination of the bounds u(!0) and l(!0), where the
weights depend explicitly on the signal and noise uncertainty level
at !0, and on the magnitude of the frequency response of the filter

jH(!0)j. The same holds true for the noise spectrum Sw(!). Thus,
in contrast with the minimax MSE filter, which is matched to power
spectra that are equal to the upper bound, the minimax regret filter takes
both the upper and lower bounds into account, as well as the frequency
response H(!). Since the minimax regret filter minimizes the regret
for the power spectra given by (48), we may view these power spectra
as the “least favorable” power spectra in the regret sense.

We therefore have the following corollary to Theorem 2.

Corollary 1: Consider the setup of Theorem 2. The minimax regret
filter GREG(!) can be viewed as a Wiener filter matched to the power
spectra

Sx(!) = �(!)l(!)+ (1� �(!))u(!)

and

Sw(!) = �(!)L(!)+ (1� �(!))U(!)

where

�(!) =
l(!) L(!) + u(!)jH(!)j2

L(!) + u(!)jH(!)j2+ U(!) + l(!)jH(!)j2 :

Some insight into the least favorable power spectra can be gained
by considering the low and high signal-to-noise ratio (SNR) regions. If
l(!)jH(!)j2 � U(!), then

Sx(!) � l(!) u(!)jH(!)j2+ u(!) l(!)jH(!)j2
u(!)jH(!)j2+ l(!)jH(!)j2

=
u(!)l(!) u(!)jH(!)j2+ l(!)jH(!)j2

u(!)jH(!)j2+ l(!)jH(!)j2
= u(!)l(!): (50)

The least favorable signal spectrum is thus the geometric average of the
lower and upper bounds. If, on the other hand, u(!)jH(!)j2� L(!),
then

Sx(!) � l(!) L(!) + u(!) U(!)

L(!) + U(!)
: (51)

Similarly

Sw(!) �
L(!)(!)

p
l(!)+U(!)

p
u(!)p

l(!)+
p

u(!)
; U(!)� l(!)jH(!)j2

U(!)L(!); L(!)� u(!)jH(!)j2.
(52)

D. Difference Regret Estimator for Known Sx(!) or Sw(!)

We now consider two special cases of Theorem 2, in which either
Sx(!) or Sw(!) are completely specified, so that the uncertainty is
only in one of the power spectra.

Suppose first that there is no uncertainty in the noise power spectrum,
so that U(!) = L(!) = Sw(!). From Theorem 2, we get (53) at the
bottom of the page, which can be interpreted as a Wiener filter matched
to a signal power spectrum

Sx(!) =
1

jH(!)j2 Sw(!) + l(!)jH(!)j2

� Sw(!) + u(!)jH(!)j2� Sw(!) : (54)

GREG(!) =
1

H(!)
1� Sw(!)

Sw(!) + l(!)jH(!)j2 Sw(!) + u(!)jH(!)j2 (53)
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Fig. 3. Frequency response magnitude jH(!)j of the filter given by (61).

From (50) and (51)

Sx(!) =
1

2
(u(!) + l(!)); u(!)jH(!)j2 � Sw(!)

u(!)l(!); l(!)jH(!)j2� Sw(!)
(55)

so that for low SNR, Sx(!) is equal to the arithmetic average of the
upper and lower bounds, and for high SNR, Sx(!) is equal to the geo-
metric average.

It is interesting to note that while the minimax MSE filter of (32) is
matched to a power spectrum u(!) � (u(!) + l(!))=2, the minimax
regret filter is matched to a power spectrumSx(!) � (u(!)+l(!))=2.
This follows from the inequality that

p
ab � (a+ b)=2.

We next consider the case in which u(!) = l(!) = Sx(!) so that
the power spectrum of the signal is known, and the uncertainty is only
in the noise power spectrum. In this case, the minimax regret filter is

GREG(!) =
Sx(!)H

�(!)

L(!) + Sx(!)jH(!)j2 U(!) + Sx(!)jH(!)j2
(56)

which can be viewed as a Wiener filter matched to a noise power
spectrum

Sw(!) = L(!) + Sx(!)jH(!)j2 U(!) + Sx(!)jH(!)j2
� Sx(!)jH(!)j2

� U(!) + L(!)

2
: (57)

In analogy with (55)

Sw(!) =
1

2
(U(!) + L(!)); U(!)� Sx(!)jH(!)j2
L(!)U(!); L(!)� Sx(!)jH(!)j2. (58)

E. Example

In this subsection, we illustrate the performance of the minimax
MSE and the minimax regret filters. Clearly, the performance of these
filters depends on the values of the unknown power spectra. If, for ex-
ample, the true values of Sx(!) andSw(!) are equal to Sx(!) = u(!)
and Sw(!) = U(!), then the minimax MSE filter will provide the

best performance, since it minimizes the MSE for this choice of power
spectra. As suggested in [18], one possible way of assessing the per-
formance of the filters, is to compute the MSE at the output of the each
of the filters for the best possible choice of power spectra, the worst
possible choice, and the nominal (average) choice. Obviously, the min-
imax MSE filter will optimize the performance for the worst choice of
power spectra. However, as we will see in the example below, the min-
imax regret filter often performs only slightly worse than the minimax
MSE filter in the worst case, but can provide a substantial performance
improvement for the best choice of power spectra.

Consider the estimation problem in which

y[n] = h[n] � x[n] + w[n]; (59)

where x[n] is a zero-mean stationary first-order autoregressive (AR)
process with power spectrum

SOx (!) =
1

j1� �ej!j2 (60)

for some parameter �, and w[n] is a zero-mean, uncorrelated random
process with variance �2, where we assume for simplicity that �2 is
known. The filter h[n] is a finite impulse response (FIR) filter with taps

h[1] = 1; h[�1] = �7=16; h[n] = 0; jnj > 1: (61)

The frequency response magnitude of the filter is depicted in Fig. 3. We
assume that the signal spectrum Sx(!) is not known exactly, however,
we know that l(!) � Sx(!) � u(!) with l(!) = (1� �)Sx(!) and
u(!) = (1 + �)Sx(!), where 0 < � < 1 is a parameter that defines
the size of the uncertainty set.

For an arbitrary estimation filter G(!) we can find the worst choice
of Sx(!), denoted SWCx (!), that maximizes the MSE, and the best
choice of Sx(!), denoted SBCx (!), that minimizes the MSE. Since for
any l(!) � Sx(!) � u(!) we have that

j1�G(!)H(!)j2Sx(!)+ jG(!)j2Sw(!)
� j1�G(!)H(!)j2u(!)+ jG(!)j2Sw(!) (62)
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Fig. 4. MSE in estimating x[n] as a function of SNR using the minimax regret filter and the minimax MSE filter, for S (!) equal to S (!), S (!), and
S (!).

Fig. 5. Frequency response magnitude of the minimax regret, minimax MSE, and inverse filters.

and

j1�G(!)H(!)j2Sx(!) + jG(!)j2Sw(!)

� j1�G(!)H(!)j2l(!) + jG(!)j2Sw(!) (63)

the MSE defined by (8) is minimized when Sx(!) = l(!) and is max-
imized when Sx(!) = u(!), so that SWC

x
(!) = l(!) and SBC

x
(!) =

u(!), regardless of the filter G(!).
In Fig. 4, we plot the MSE of the minimax MSE filter (MX) of (32)

and the minimax regret filter (RG) of Theorem 2 as a function of the
SNR defined by �10 log �2 for � = 0:9, and � = 0:9. The MSE
of each of the filters is plotted for three different choices of Sx(!):

the worst case Sx(!) = SWC
x

(!), the best case Sx(!) = SBC
x

(!),
and the nominal (true) value Sx(!) = SO

x
(!). As we expect, when

Sx(!) = SWC
x

(!), the minimax MSE filter has the best performance.
On the other hand, when Sx(!) = SBC

x
(!), the performance of the

minimax MSE filter deteriorates considerably. In this example, we may
prefer using the minimax regret filter over the minimax MSE filter since
the loss in performance of the minimax MSE filter in the best case is
much more significant then the loss in performance of the minimax
regret filter in the worst case.

In Fig. 5, we plot the magnitude of the frequency responses of the
minimax regret filter, the minimax MSE filter, and the inverse filter
G(!) = 1=H(!) for an SNR of 0 dB.
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V. CONCLUSION

We considered the problem of deconvolving a signalx[n] fromnoisy,
filtered observations y[n] = x[n] � h[n] + w[n], both for the case
in which x[n] is a deterministic, bounded energy signal, and for the
case in which x[n] is a stationary random process independent ofw[n],
with unknown power spectrum. In both settings, we designed an LTI
estimation filter to minimize some measure of the worst case point-wise
MSE.

In the case in which x[n] is deterministic, we developed a min-
imax MSE filter that minimizes the worst case point-wise MSE over
all bounded energy signals. We showed that the resulting filter has a
similar form to the Wiener filter, and its MSE is always smaller than
that of the least squares inverse (zero-forcing) filter, regardless of the
value of the true signal x[n].

We then treated the case in which x[n] is a random process and the
power spectra of x[n] and w[n] obey a band uncertainty model. We
showed that for this uncertainty model, the minimax MSE approach is
too pessimistic, and does not take the full uncertainty region into ac-
count. Thus, in contrast with the deterministic case in which the min-
imax MSE approach results in a filter that has some nice properties,
such as resemblance to the Wiener filter and smaller MSE than the in-
verse filter, in the stochastic case, the minimax MSE approach is too
conservative, and often does not lead to satisfactory performance. As
an alternative to the minimax MSE approach, we considered a minimax
regret approach in which we developed an estimation filter whose MSE
is uniformly close to that of the Wiener filter that knows the power
spectra. As we showed, the regret filter can also be viewed as a Wiener
filter matched to a pair of least favorable power spectra, that explic-
itly take the uncertainty region as well as the frequency response of the
filter h[n] into account.

In future work, it would also be interesting to develop a minimax
regret filter for the deterministic case, by first finding the optimal
filter that minimizes the point-wise MSE, assuming that X(!) is
known, and then seeking the estimator that minimizes the worst case
difference, over all bounded energy signals, between the MSE and
the best possible MSE attainable when we allow the filter to depend
on X(!).
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