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Minimax Estimation of Deterministic Parameters in
Linear Models With a Random Model Matrix

Yonina C. Eldar, Member, IEEE

Abstract—We consider the problem of estimating an unknown
deterministic parameter vector in a linear model with a random
model matrix, with known second-order statistics. We first seek
the linear estimator that minimizes the worst-case mean-squared
error (MSE) across all parameter vectors whose (possibly
weighted) norm is bounded above. We show that the minimax
MSE estimator can be found by solving a semidefinite program-
ming problem and develop necessary and sufficient optimality
conditions on the minimax MSE estimator. Using these conditions,
we derive closed-form expressions for the minimax MSE estimator
in some special cases. We then demonstrate, through examples,
that the minimax MSE estimator can improve the performance
over both a Baysian approach and a least-squares method. We
then consider the case in which the norm of the parameter vector
is also bounded below. Since the minimax MSE approach cannot
account for a nonzero lower bound, we consider, in this case,
a minimax regret method in which we seek the estimator that
minimizes the worst-case difference between the MSE attainable
using a linear estimator that does not know the parameter vector,
and the optimal MSE attained using a linear estimator that knows
the parameter vector. For analytical tractability, we restrict our
attention to the scalar case and develop a closed-form expression
for the minimax regret estimator.

Index Terms—Linear models, minimax mean-squared error
(MSE), mean-squared error (MSE) estimation, random model
matrix, regret.

I. INTRODUCTION

AGENERIC estimation problem that has received much at-
tention in the estimation literature is that of estimating an

unknown, deterministic vector parameter in the linear model
, where is a linear transformation and is

a noise vector. The importance of this problem stems from the
fact that a wide range of problems in communications, array pro-
cessing, and many other areas of signal processing and statistics
can be cast in this form.

In the simplest case, it is assumed that the model matrix
is completely specified, and the goal is to estimate from
using a linear estimator. A variety of different linear estimators
have been proposed for this problem, including the celebrated
least-squares estimator, Tikhonov regularization [1], the linear
shrunken estimator [2], and the covariance shaping least-squares
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estimator [3]. In many cases of practical interest, the model ma-
trix may not be known precisely. If deviates from the as-
sumed matrix, then the performance of the estimator based on
the assumed transformation can deteriorate considerably. Var-
ious methods have been proposed to account for deterministic
uncertainties in , including the well-known total least-squares
method [4], [5]. Recently, several methods have been developed
to treat the case in which the perturbation to the model matrix

is bounded [6], [7].
Each of the estimators above can be formulated as a solu-

tion to an optimization problem that depends on the data error
, where is an estimate of , and not directly on the

estimation error, or the mean-squared error (MSE). In an esti-
mation context, we typically would like to minimize the estima-
tion error , rather than the data error. However, since no
prior statistics on are available, the estimation error will gen-
erally depend on the unknown vector , and therefore cannot
be minimized. In this case, it is desirable to design a robust es-
timator, whose performance is reasonably good across all pos-
sible values of , where in this paper we assume that is known
to satisfy a weighted norm constraint. The most common ap-
proach for designing robust estimators is the minimax MSE
approach, in which we seek the estimator that minimizes the
worst-case MSE in the region of uncertainty. This approach has
been applied both to the case in which is deterministic [8],
[9] and to the case in which is assumed to be random, but the
statistics of are not completely specified [10]–[14]. It has also
been applied to the case in which the model matrix is subject
to bounded perturbations [9] and to the case of multichannel es-
timation [15]. In [16], an alternative approach is suggested for
the case in which is known, in which the vector parameter
is chosen to minimize the worst-case regret, which is the differ-
ence between the MSE of the linear estimator which does not
know , and the smallest attainable MSE with a linear estimator
that knows . The minimax regret concept has also been applied
to the case in which is random with an unknown covariance
matrix [14], [17], [18].

In this paper we consider the case in which the model matrix
is not known exactly, where the uncertainties are assumed

to be random, so that we model as a random matrix with
known second-order statistics. One example in which such a
model arises is in multiple-input multiple-output (MIMO) com-
munication channels. In this example, represents the trans-
mitted data, and represents the MIMO channel matrix, which
is often modeled as a random matrix with known second-order
statistics (see, e.g., [19]). Another example is beamforming in
which is a scalar representing a desired signal amplitude, and

is a vector that represents the steering vector, which, in many
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practical scenarios, is modeled as a random vector with known
second-order statistics (see, e.g., [20] and references therein).
Other examples include channel equalization, in which rep-
resents a linear-time invariant filter, which is estimated from
training data.

Following the popular minimax approach, in Section II, we
seek the linear estimator that minimizes the worst-case MSE
over all possible values of that satisfy a weighted norm con-
straint of the form for some positive definite ma-
trix and constant . Here the MSE is computed by averaging
over the noise and the model matrix. We first develop an ex-
plicit expression for the minimax MSE estimator in the case in
which is a scalar. We then show that in the general vector
case, the minimax MSE estimator can be found by solving a
semidefinite programming problem (SDP) [21]–[23], which is
the problem of minimizing a linear functional subject to linear
matrix inequalities (LMIs), i.e., matrix inequalities in which the
matrices depend linearly on the unknowns. The main advan-
tage of the SDP formulation is that it readily lends itself to ef-
ficient computational methods. Specifically, by exploiting the
many well-known algorithms for solving SDPs [22], [21], e.g.,
interior point methods [23], which are guaranteed to converge
to the global optimum, the optimal estimator can be computed
very efficiently in polynomial time.

In Section IV, we develop necessary and sufficient condi-
tions for optimality on the minimax MSE estimator. Although
these conditions are difficult to solve in general, they can be
used to verify a solution and lead to further insight into the op-
timal estimator. Furthermore, using these conditions, we derive
a closed-form expression for the minimax MSE estimator in the
case in which the noise vector is white, and the elements of
are uncorrelated. We also consider conditions under which the
minimax MSE estimator is equal to .

In Section V, we propose two additional (naive) estimators
for our problem and compare their performance with that of
the minimax MSE estimator. To eliminate the dependence of
the MSE on , we first assume that is random with covari-
ance , where is the length of , and design a
linear estimator that minimizes the MSE. We then consider a
least-squares approach in which the estimator is designed to
minimize the expected data error, where the expectation is taken
with respect to the model matrix. We demonstrate through sev-
eral examples that the minimax MSE approach often performs
better than both of these estimators.

We next treat the case in which there is both an upper and
lower bound on the norm of , so that
for some . The minimax MSE estimator in this
case is the same for all values of , and therefore this approach
cannot account for a lower bound. To derive an estimator that de-
pends both on and on , following the approach taken in [16],
[14], we seek the minimax regret estimator that minimizes the
worst-case difference between the MSE attainable with a linear
estimator that does not know and the minimal attainable MSE
when is assumed to be known. Note that, as shown in Sec-
tion 6, since we are restricting ourselves to linear estimators,
we cannot achieve zero MSE even in the case in which the pa-
rameters are known. Developing the minimax regret estimator
turns out to be a difficult mathematical problem. Therefore, we

restrict our attention to the case in which is an unknown
scalar and develop a closed-form expression for the scalar min-
imax regret estimator.

In the sequel, we denote vectors in by boldface lower case
letters and matrices in by boldface upper case letters.
denotes the identity matrix of appropriate dimension, de-
notes the Hermitian conjugate of the corresponding matrix, and

denotes an estimated vector or matrix. The th column of
a matrix is denoted by , the th row is denoted by ,
and the th element is denoted by . The th component of
a vector is denoted by . The inequality means that
the matrix is positive semidefinite, and the notation
means that .

II. MINIMAX MSE ESTIMATOR

Consider the problem of estimating the unknown determin-
istic parameters in the linear model

(1)

where is a zero-mean random vector with positive definite
covariance matrix , and is a random matrix, independent
of , with known first- and second-order statistics. Specifically

(2)

where and denote the th rows of and , respectively.
We assume that is known to satisfy the weighted norm con-
straint for some positive definite matrix and scalar

, where .
We estimate using a linear estimator so that for

some matrix . We would like to design an estimator
of to minimize the MSE, which is given by

(3)

To express the MSE in terms of and , we note that

(4)

Now, for any Hermitian matrix and any matrix

(5)

Using (5), we have that

(6)
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Substituting (4) and (6) into (3), the MSE of is given
by

(7)

Since the MSE (7) depends explicitly on the unknown vector
, we cannot choose an estimate to directly minimize the MSE.

Instead, we seek the estimator that minimizes the worst-case
MSE over all possible choices of such that . Thus,
we seek the matrix that is the solution to the problem

(8)

where

(9)

To develop the solution to (8) we first determine . To
this end we note that for any nonnegative definite matrix

(10)

where denotes the largest eigenvalue of the matrix .
Furthermore, can be expressed as the so-
lution to the problem

(11)

subject to

(12)

or, equivalently, subject to

(13)

Since for any choice of

(14)

we have that

(15)

and can be expressed as the solution to
the problem

(16)

subject to

(17)

Thus, the problem (8) reduces to

(18)

subject to

(19)

Since the objective function in (18) is strictly convex and the
constraint set defined by (19) is convex, there is a unique min-
imizer .

Although the problem of (18) and (19) is convex, in the gen-
eral case, it is difficult to find an explicit solution to the optimal
matrix . In the next section, we consider the case in which

is a scalar and develop a closed-from solution for the min-
imax MSE estimator. To develop fast numerical algorithms for
finding the minimax MSE estimator for the vector case, in Sec-
tion III, we formulate the problem of (18) and (19) as an SDP.
In Section IV, we develop necessary and sufficient optimality
conditions on the matrix and consider some special cases in
which a closed-form solution exists to the minimax MSE esti-
mator.

A. Scalar Minimax Estimator

We now develop the optimal estimator when is a scalar
and is a length- random vector with mean
and covariance .

In this case, the estimator has the form for some
length- vector , and from (7) the MSE of the estimator is

(20)

Using (18) and (19), our problem then is to choose as the
solution to

(21)

Differentiating (21) with respect to and equating to zero

(22)

Using the Matrix Inversion Lemma [24], (22) reduces to

(23)

If the covariance matrix of is equal to zero, so that
(with probability 1), then (23) becomes

(24)
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The estimator (23) is equivalent to the minimax MSE estimator
developed in [9] for the problem of estimating the scalar in
the model with .

III. SDP FORMULATION OF THE MINIMAX MSE ESTIMATOR

We now formulate the minimax MSE estimator as an SDP,
which is the problem of minimizing a linear functional subject
to LMIs. The advantage of the SDP formulation is that it readily
lends itself to fast numerical algorithms that are guaranteed to
converge to the global optimum in polynomial time within any
desired accuracy. In particular, the solution of an SDP can be
computed in Matlab using standard software packages, such as
the Self-Dual-Minimization (SeDuMi) package [25], [26].

To formulate the problem of (18) and (19) as an SDP, we first
note that this problem can be written as

(25)

subject to

(26)

(27)

The objective in (25) is linear in the unknowns. Thus, it remains
to show that (26) and (27) can be formulated as LMIs.

The constraint (26) can be converted into an LMI by ex-
ploiting the following lemma [24, p. 472]:

Lemma 1 (Schur’s Complement): Let

be a Hermitian matrix. Then with if and only if
.

Using Lemma 1, (26) is equivalent to the LMI

(28)

To express (27) as an LMI, we note that this constraint can
equivalently be written as

(29)

where is chosen such that

(30)

To develop a constraint on such that (30) is satisfied, we rely
on the following lemma.

Lemma 2: Let and be arbitrary matrices such that
, and let . Then,

.

Proof: To show that we
must show that for any vector

(31)

Denote by the matrix with th element . Then

(32)

Now, we can immediately show that . Indeed, for any

(33)

where . By assumption we also have that .
Thus, , completing the proof of the lemma.

It follows from Lemma 2 that if , then (30) is
satisfied. Therefore, the constraint (27) can be replaced by the
constraints

(34)

which from Lemma 1 are equivalent to the LMIs

(35)

To conclude, the minimax MSE estimator can be found as the
solution to the SDP

(36)

subject to

(37)

IV. OPTIMALITY CONDITIONS

We now use Lagrange duality theory to develop necessary
and sufficient conditions on the minimax MSE estimator [27].
Although these conditions are difficult to solve in general, they
can be used to verify a solution and, as we show, can lead to
further insight in the optimal estimator. Furthermore, in certain
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special cases, they can be used to develop a closed-form solution
for the minimax MSE estimator.

In Section IV-A, we develop necessary and sufficient condi-
tions on the minimax MSE matrix . Then, in Section IV-B,
we use these conditions to develop closed-form expressions for
the minimax MSE estimator in two special cases. In Section
IV-B-1), we consider the case in which the noise is white and
the elements of are uncorrelated, and in Section IV-B-2), we
consider the case in which is rank deficient.

A. Necessary and Sufficient Conditions

In the previous section, we have shown that the problem of
(8) can be expressed as

(38)

subject to

(39)

We have seen already that the optimal matrix is unique. Since
the objective (38) and the constraint set defined by (39) are
convex, the unique solution to (38) and (39) can be found by
forming the Lagrangian

(40)

where from the Karush–Kuhn–Tucker (KKT) conditions [27],
. Differentiating with respect to and equating to 0

(41)

Differentiating with respect to and equating to 0

(42)

where . Here, we used the fact that

(43)

Note that we can alternatively express as

(44)

where , so that
.

It follows that is optimal if and only if it is given by (42),
where is any matrix satisfying and such

that there exists a that together with satisfies (39), and the
complementary slackness condition

(45)

A sufficient condition for to be optimal is that it is given
by (42), where is any matrix satisfying
and such that there exists a that together with satisfies

(46)

Indeed, if and satisfy (46), then clearly they satisfy (39) and
(45), and therefore, from the necessary and sufficient conditions
above, is optimal.

B. Closed-Form Solution for Special Cases

We now consider two special cases in which a closed-form
solution can be obtained, using the necessary and sufficient con-
ditions derived in the previous section.

1) White Noise and Uncorrelated Elements: We first treat
the case in which , the noise is white so that
for some , and the elements of are uncorrelated, with
variance so that . We further assume that

has full column rank.
Under these assumptions

(47)

and from (44)

(48)

Substituting (47) and (48) into (42), is given by

(49)

where we defined

(50)

With given by (49), and using the Matrix Inversion Lemma
[24]

(51)

Using the sufficient conditions derived in the previous section,
it then follows that if can choose and such that

(52)
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and , then given by (49) with the corresponding
choice of is minimax optimal.

It is easy to see that if is proportional to , then
(52) will be satisfied with an appropriate choice of . Since we
also must have that , the optimal choice of is

(53)

where

(54)

With given by (53), of (49) becomes

(55)

where is the orthogonal projection onto the range space of
. Let have a singular value decomposition (SVD)

(56)

where is an unitary matrix, is an diagonal
matrix with positive diagonal elements, and is an
unitary matrix. Substituting the SVD (56) into (55), and using
the fact that

(57)

reduces to

(58)

Note that if , so that with probability 1, then
of (58) reduces to

(59)

The estimator (59) is equivalent to the minimax MSE estimator
developed in [9], for the problem of estimating the vector in
the model with , where is a white
noise vector with covariance .

2) Rank-Deficient : From the necessary and sufficient
conditions for optimality, it follows that the optimal is
only if does not have full column rank, i.e., .
Indeed, from (42) we have that only if

(60)

Since , we must have that so that (60) can
be satisfied for some only if .

Conversely, suppose that . Then, the optimal
choice of is if there exists a vector such that

, and is an eigenvector of with eigenvalue .
Indeed, in this case, let

(61)

We have immediately that and .
In addition, if we choose , then both (39) and
(45) are satisfied. In particular, if , then the optimal is

if and only if .

C. Summary of the Minimax MSE Estimator

We summarize our results on the minimax MSE estimator in
the following theorem.

Theorem 1 (Minimax MSE Estimator): Let denote the un-
known deterministic vector in the model , where

is an random matrix with known mean and covari-
ance where and de-
note the th rows of and , respectively, and is a length- ,
zero-mean random vector with covariance , independent of

. Then, the problem

is equivalent to the semidefinite programming problem

subject to

The matrix is minimax optimal if and only if

where with ,
and is any matrix satisfying , and such that
there exists a that together with satisfy
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In addition

1) if and , then

2) if is a scalar and is a vector with mean
and covariance , then

3) if there exists a vector such that , and is an
eigenvector of with eigenvalue , then

;
4) if , then if and only if .

V. ALTERNATIVE ESTIMATORS AND EXAMPLES

In Sections V-A and V-B, we propose two additional estima-
tors for our problem. The first estimator is based on the assump-
tion that is random, while the second estimator is based on a
least-squares criterion. In Section V- C, we compare the perfor-
mance of the minimax MSE estimator with those developed in
Sections V-A and V-B and show that in many cases the perfor-
mance of the minimax estimator is superior.

A. Minimum MSE Estimator for Random

In designing optimal estimators, one possible approach is to
minimize the MSE. However, as we have seen, in the case of
a deterministic parameter vector , the MSE depends explicitly
on and therefore cannot be minimized. We therefore proposed
seeking estimators that minimize a worst-case function of the
MSE. Alternatively, we may assume that is a random vector,
independent of and , with known second-order statistics,
and then explicitly compute the MSE.

Suppose that is a zero-mean random vector with covariance
. In this case, , which is the

stochastic equivalent of the condition
. With this choice of , the MSE is given by

(62)

Differentiating (62) with respect to and equating to 0, the
optimal is

(63)

where . For future reference,
we refer to the estimator with given by (63) as a
Wiener estimator.

Note that of (63) has the same form as the minimax MSE
estimator of (42), where the Lagrange multiplier in (42) is
replaced with in (63).

In the case in which is a scalar, ,
and (63) reduces to the minimax estimator

. However, as we demonstrate in Section
V-C, in higher dimensions the two estimators are different,
and the minimax MSE estimator often performs better than the
Wiener estimator for all values of .

B. Least-Squares Estimator

Another method for deriving optimal estimators is based on
a least-squares approach. When the matrix is known, the
(weighted) least-squares estimator seeks the estimator of
that minimizes the error

(64)

Note, that in this approach, the vector is treated as a known
vector, since no expectation with respect to is taken.

In our problem, is random with known statistics. General-
izing the least-squares approach, we may seek the estimator
that minimizes the error

(65)

where the expectation is taken only with respect to and not
with respect to the noise . Expanding (65), we have

(66)

Differentiating (66) with respect to and equating to 0

(67)

Note that if , then the estimator of (67) reduces to the
conventional least-squares estimator

(68)

C. Examples

We now present several examples illustrating the minimax
MSE estimator of Theorem 1. The purpose of these examples
is to demonstrate the performance advantage in using the min-
imax MSE estimator, rather than a detailed practical application,
which is beyond the scope of the paper. An application to beam-
forming is developed in [28]–[30].
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Fig. 1. MSE in estimating x as a function of signal-to-noise ratio (SNR)
using the minimax MSE, Wiener, and least-squares estimators for � = 1 and
U = 3. The upper curves correspond to the worst-case x and the lower curves
correspond to the best-case x.

In the examples below, we assume that ,
and . Under these assumptions, the minimax
MSE estimator , the Wiener estimator , and the
least-squares estimator are given by

(69)

Clearly, the performance of each of the estimators will de-
pend on the choice of and the true parameter vector . In the
simulations below, we compute the MSE averaged over random
choices of the mean matrix . Specifically, we consider 1000
random choices of , where for each choice of we compute
the MSE by averaging the error over 1000 noise realiza-
tions. The elements of are chosen as zero-mean, independent
Gaussian random variables with unit variance.

For each choice of and estimator , the value of the MSE
will depend on the choice of . The best-case (lowest) MSE is
attained when . The worst-case (highest) MSE is attained
when is a vector with norm in the direction of the eigen-
vector of that corresponds to the largest
eigenvalue. For any other choice of , the value of the MSE will
lie between these two bounds. Therefore, to evaluate the perfor-
mance of the estimators of (69), we compute the best-case and
worst-case MSE of each of the estimators.

In Fig. 1, we plot the MSE of the minimax MSE, Wiener,
and least-squares estimators as a function of the SNR defined
by , for , and . In
the figure, the lower and upper curves correspond to the best-
case MSE and the worst-case MSE, respectively, of each of the
estimators.

In Fig. 2, we plot the MSE of the minimax MSE, Wiener,
and least-squares estimators as a function of the SNR for

and .

Fig. 2. MSE in estimating x as a function of SNR using the minimax MSE,
Wiener, and least-squares estimators for � = 1 and U = 1. The upper
curves correspond to the worst-case x and the lower curves correspond to the
best-case x.

As we expect, for the worst-case choice of , the performance
of the minimax MSE estimator is significantly better than that
of the Wiener and least-squares estimators. The interesting ob-
servation is that even in the best case, we do not lose much by
using the minimax MSE estimator, and in fact, in some cases,
the minimax MSE estimator has the best performance even for
the best-case choice of .

VI. MINIMAX REGRET ESTIMATOR

In the development of the minimax MSE estimator, we as-
sumed that an upper bound on the (weighted) norm of is avail-
able, so that is known to satisfy the constraint . In
some applications, we may also have a lower bound on the norm
of so that satisfies

(70)

It is easy to see that the minimax MSE estimator that min-
imizes the worst-case MSE subject to (70) for any
is the same as the minimax MSE estimator corresponding to

. This follows from the fact that the worst-case satisfies
. Therefore, the minimax MSE approach cannot take

a lower bound into account. To develop a minimax estimator
that depends both on and on , we may consider a minimax
regret approach in which we seek the linear estimator that min-
imizes the worst-case regret [16], [14], [17], [18]. It turns out
that finding the linear minimax regret estimator in the case of a
random model matrix is a difficult problem. Therefore, in this
section, we restrict our attention to the case in which is
a scalar, and is a length- vector with mean and co-
variance . In this case, the estimator has the form for
some length- vector .

Thus, we now design an estimator to minimize the worst-case
regret , which is defined as the difference between the
MSE using an estimator and the smallest possible
MSE attainable with an estimator of the form when
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the parameter is known, which we denote by . To de-
velop an explicit expression for , we first determine the es-
timator that minimizes the MSE when is known.
To this end, we differentiate the MSE of (20) with respect to
and equate to 0, which results in

(71)

Note that is equal to the minimax estimator of (23). Thus,
we can view the minimax estimator as an approximation of the
optimal estimator, where the unknown norm is replaced by
its upper bound . Substituting back into (20), is
given by

(72)

where

(73)

Since is unknown, we cannot implement the optimal esti-
mator (71). Instead, we seek the estimator that min-
imizes the worst-case regret subject to ,
with

(74)

where we defined

(75)

Thus, we seek the vector that is the solution to

(76)

To solve (76), we first consider the inner maximization

(77)

were we denoted . Lemma 3 below asserts that is
convex in , which immediately implies that the maximum value
of over the closed interval is attained at
or .

Lemma 3: Let be defined as in (75) for some given
and . Then, is convex in .

Proof: The first term in is linear, and therefore
convex, in . Thus, to prove the lemma it remains to show that

(78)

is convex in . To this end, let have an eigende-
composition

(79)

where is an unitary matrix, and is an diag-
onal matrix with diagonal elements . Using (79), we can
express as

(80)

where , and is the th component of . Since
each of the terms is convex in is convex,
completing the proof of the lemma.

From Lemma 3, it follows that the problem (76) is equivalent
to

(81)

which can be expressed as

(82)

subject to

(83)

(84)

To find the optimal , we form the Lagrangian

(85)

where from the KKT conditions, . Differentiating
with respect to and equating to 0

(86)

Differentiating with respect to and equating to 0

(87)

where we used the fact that

(88)

Since , it follows from (87) that

(89)

where we denoted

(90)
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and , and we used the eigendecomposition
(79). Since , it follows from (90) that .

With given by (89), of (75) becomes

(91)

which, after some algebraic manipulations, can be shown to be
equal to

(92)

In the case , it follows from (90) that . To
determine for , we now use the KKT conditions. If

so that and , then from the KKT conditions
it follows that (84) must be satisfied with equality, so that

. To satisfy (83) in this case, we must have that
. For every , let

(93)

Using (92), it can be shown that

(94)

It follows from (94) that if , then , which
violates (83). Similarly, if , then and , which
implies from the KKT conditions that (83) must be satisfied with
equality so that . To satisfy (84) in this case,
we must have that . However, from (94) with

, which violates (84). We therefore
conclude that for , which implies from the
KKT conditions that both (83) and (84) must be satisfied with
equality. Thus, must be chosen such that , or
equivalently, such that , defined by (94), is equal to zero.

We now show that there is exactly one value
such that . Indeed, it can easily be seen from (94) that

is monotonically decreasing in . In addition, we have seen
already that and . It therefore follows that
there is a unique such that .

We conclude that the minimax regret estimator is equal to
, where

(95)

and is the unique root of defined by (94) in
the interval .

A. Special Case

We now consider a special case in which we can obtain
a closed-form expression for the minimax regret estimator.
Specifically, we assume that the covariance of is propor-
tional to the covariance of so that

(96)

for some . One example in which (96) is satisfied is when
the noise is white so that for some , and
the elements of are uncorrelated, in which case for
some . Another case is when so that (with
probability one).

Under the assumption (96), , and

(97)

Therefore, we can choose the eigenvector matrix of
such that its first column is equal to

, and its remaining columns are a set
of orthonormal vectors that are orthogonal to .
The eigenvalues of are then given by

(98)

and . With this choice of

(99)

where is the vector whose first element is equal to 1 and
whose remaining elements are equal to 0. Since

, it follows from (94) that

(100)

where is given by (98). Therefore, if and only if

(101)

or

(102)

The optimal value of then follows from (95) and (98), as

(103)
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where .
In the case that and , the vector of

(103) becomes

(104)

where . Finally, if with probability one
so that , then of (103) is

(105)

Note that in this case our problem reduces to finding the min-
imax regret estimator for the model . The solution
to this problem was developed in [28] and is equal to (105).

We summarize our results in the following theorem.
Theorem 2: Let denote an unknown parameter in the model

, where is an unknown, length- , random vector
with mean and covariance matrix , and is a length- ,
zero-mean random vector with covariance , independent of

. Then, the solution to the problem

is

where is the unique root of defined by

Here, is the th component of is the
unitary matrix in the eigendecomposition of

, and is the th eigenvalue of . In addition, if
, then

where .

VII. CONCLUSION

We treated the problem of estimating a random vector in the
linear model , where is a random matrix with
known second-order statistics. We first considered the minimax
MSE estimator which minimizes the worst-case MSE across

all bounded vectors satisfying . We showed that
the minimax MSE estimator can be computed very efficiently
in polynomial time using standard software packages. We then
derived necessary and sufficient optimality conditions and used
these conditions to develop a closed-form expression for the
minimax MSE estimator for some special cases. For the scalar
case, we also developed the minimax regret estimator that min-
imizes the worst-case regret over all parameters .
As we demonstrated, the minimax MSE approach can increase
the performance over other more straightforward methods.
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