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Abstract—A new class of linear multiuser receivers, referred to
as the covariance shaping multiuser (CSMU) receiver, is proposed,
for suppression of interference in multiuser wireless communica-
tion systems. This class of receivers is based on the recently pro-
posed covariance shaping least-squares estimator, and is designed
to minimize the total variance of the weighted error between the
receiver output and the observed signal, subject to the constraint
that the covariance of the noise component in the receiver output
is proportional to a given covariance matrix, so that we control the
dynamic range and spectral shape of the output noise. Some of the
well-known linear multiuser receivers are shown to be special cases
of the CSMU receiver. This allows us to interpret these receivers
as the receivers that minimize the total error variance in the ob-
servations, among all linear receivers with the same output noise
covariance, and to analyze their performance in a unified way.

We derive exact and approximate expressions for the probability
of bit error, as well as the asymptotic signal-to-interference+noise
ratio in the large system limit. We also characterize the spectral
efficiency versus energy-per-information bit of the CSMU receiver
in the wideband regime.

Finally, we consider a special case of the CSMU receiver, equiv-
alent to a mismatched minimum mean-squared error (MMSE)
receiver, in which the channel signal-to-noise ratio (SNR) is not
known precisely. Using our general performance analysis results,
we characterize the performance of the mismatched MMSE
receiver. We then treat the case in which the SNR is known to lie
in a given uncertainty range, and develop a robust mismatched
MMSE receiver whose performance is very close to that of the
MMSE receiver over the entire uncertainty range.

Index Terms—Code-division multiple access (CDMA), co-
variance shaping, mismatched minimum mean-squared error
(MMSE), multiuser detection, noise shaping, robust MMSE.

I. INTRODUCTION

I N recent years, there has been increased interest in wireless
communication systems, as is reflected by the extensive lit-

erature in the area and the merging standards for practical sys-
tems; see [1] and references therein. Intensive efforts have been
invested in developing receivers for suppressing interference in
these systems.

Direct-sequence spread-spectrum code-division multiple ac-
cess (CDMA) has many desirable features; dynamic channel
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sharing, robustness to channel impairments, graceful degrada-
tion, and more. These advantages result from the assignment
of signature waveforms with large time–bandwidth product to
every potential user of the system. Each user transmits informa-
tion by modulating a signature sequence. Multiuser receivers
for detection of CDMA signals try to mitigate both the back-
ground noise and the multiple-access interference (MAI). Since
the optimal receiver for detecting the symbols transmitted by
each of the users has exponential complexity [2], [3], several
suboptimal linear receivers based on single-user decoding have
been proposed, which are practically appealing [4], [5]. These
include the linear minimum mean-squared error (MMSE) re-
ceiver [6]–[9], the decorrelator receiver [10], [11], the matched-
filter (MF) receiver, and the orthogonal multiuser (OMU) re-
ceiver [12], [13]. Computationally efficient approximations of
the decorrelator and MMSE receivers have been developed in
[14], [15].

In this paper, we propose a broad class of linear multiuser re-
ceivers which we refer to as the covariance shaping multiuser
(CSMU) receiver. As we show in Section IV-B, this class of
receivers is very general, and includes the MMSE, decorrelator,
MF, OMU, and the Müller–Verdú [15] receivers as special cases.
The CSMU receiver is based on the recently proposed covari-
ance shaping least-squares (CSLS) estimator [16], [17], dis-
cussed in Section III. The CSLS estimator is a linear estimator
for the unknown deterministic parameters in a linear model,
and is directed at improving the performance of the traditional
least-squares estimator by choosing the estimator to minimize
the (weighted) total error variance in the observations, subject to
the constraint that the covariance of the estimation error is pro-
portional to some given covariance matrix , so that we control
the dynamic range and spectral shape of the covariance of the
estimation error. A difficulty often encountered in least-squares
estimation is that the error in the estimation can have a large
variance and a covariance structure with a very high dynamic
range. As shown in [16], the CSLS estimator can often result
in lower mean-squared error (MSE) than the least-squares esti-
mator.

To develop the class of CSMU receivers, we view multiuser
receivers as demodulators, directed at extracting good estimates
of the coded symbols of each user, which are then used as inputs
to the individual channel decoders [9]. As we show in Section
IV, the multiuser detection problem can be formulated as the
problem of estimating an unknown set of parameters observed
through a linear transformation and corrupted by additive white
noise. The CSMU receiver results from using a CSLS estimator
to estimate these parameters.

0018-9448/$20.00 © 2005 IEEE



ELDAR AND SHAMAI (SHITZ): A COVARIANCE SHAPING FRAMEWORK FOR LINEAR MULTIUSER DETECTION 2427

Three equivalent representations of the new receiver are de-
veloped in Section IV. In the first, the receiver consists of a bank
of correlators with correlating vectors with Gram matrix , that
are closest in a least-squares sense to the signature vectors. In
the second, the receiver consists of a decorrelator receiver fol-
lowed by a weighted MMSE covariance shaping transformation
[16], [17], that is designed to optimally shape the covariance of
the decorrelator outputs prior to detection, by minimizing the
weighted MSE between the vector output of the decorrelator
and the output of the shaping transformation. In the third, the re-
ceiver consists of an MF receiver followed by an MMSE shaping
transformation, which minimizes the MSE between the vector
output of the MF and the output of the shaping transformation.
These three representations are mathematically equivalent, but
they provide further insight into the CSMU receiver, and may
have different implications in terms of implementation.

In Section V, we evaluate the performance of the CSMU
receiver. We first derive exact and approximate expressions for
the probability of bit error. We then analyze the asymptotic
signal-to-interference noise ratio (SINR) at the output of the
CSMU receiver for a broad class of covariance matrices ,
assuming random Gaussian signatures and equal power users.
As we show, the output SINR converges to a deterministic
limit, for which an explicit expression is given. The known
limiting SINRs of the MMSE, decorrelator, MF, OMU, and
Müller-Verdú receivers [4], [5], [18], [19], [1], [20], [12], [15]
can be obtained as special cases of our general SINR expres-
sion. Based on the asymptotic SINR, we derive the spectral
efficiency of the CSMU receiver, which is the number of bits
per chip that can be transmitted reliably [19], [21]. In Section
V-C, we consider an application of the asymptotic results to the
problem of developing an optimal convex combination of the
MF and decorrelator receivers, that maximizes the asymptotic
SINR. Since the dependence of the resulting receiver on the
signal-to-noise ratio (SNR) is only through the convex combi-
nation, this allows us to develop a low-complexity receiver in
the presence of known SNR fluctuations.

As demonstrated in [19], CDMA systems often operate in
the wideband regime where the spectral efficiencies are rela-
tively low. In [22], it was shown that the fundamental limits of
such systems can be characterized by the minimum signal en-
ergy-per-information bit required for reliable commu-
nication, and the wideband slope of the spectral efficiency
curve, as a function of , at . In Section V-D, we de-
velop closed-form expressions for and when using
the CSMU receiver, in the large system limit.

It is well known that the linear MMSE receiver maximizes
the SINR among all linear receivers, and therefore typically
performs better than the MF, decorrelator and OMU receivers.
However, the implementation of the MMSE receiver requires
knowledge of the users’ amplitudes and the noise variance,
which in many practical scenarios may not be known. Even
when the users have equal power, the MMSE receiver requires
knowledge of the channel SNR. There are many scenarios in
which the SNR is not known, or may be changing over time.

In Section VI, we treat a special case of the CSMU receiver, in
which the output covariance is chosen to have a similar struc-
ture as the output covariance resulting from using an MMSE re-

ceiver, but does not require knowledge of the channel SNR. As
we show, the resulting receiver is equivalent to a mismatched
MMSE receiver, where the SNR is replaced by an estimated
SNR. Since the mismatched MMSE receiver is a special case of
the CSMU receiver, we can use our general results to evaluate
the exact probability of a detection error, the asymptotic SINR,
and the asymptotic and wideband slope of this re-
ceiver. Using these performance measures we show that in many
cases the MMSE-based CSMU receiver performs similarly to
the MMSE receiver, even though it does not require knowledge
of the channel SNR.

In Section VI-E, we discuss the case in which the SNR is
known to lie in a given uncertainty range, and develop a ro-
bust mismatched MMSE receiver whose performance is close
to that of the MMSE receiver that knows the SNR, over the en-
tire uncertainty region. We demonstrate through an example that
the resulting receiver can significantly improve the performance
over the decorrelator receiver.

Before proceeding to the detailed development, in the next
section we formulate our problem and present our main results.

II. PROBLEM FORMULATION

We denote vectors in ( arbitrary) by boldface lower
case letters, e.g., , where the th component of is denoted
by . Matrices in are denoted by boldface upper case
letters, e.g., . The range space and null space of the matrix
are denoted by and , respectively. denotes the

identity matrix, denotes the Hermitian conjugate
of the corresponding matrix, denotes the Moore–Penrose
pseudoinverse [23], and denotes an estimated vector or ma-
trix. The th element and the th column of a matrix are de-
noted by and respectively. denotes the orthog-
onal projection operator onto the subspace , and denotes
the orthogonal complement of . The sign of is denoted by

, and is equal to for and for . A prime
attached to a random variable or vector denotes the variable or
vector with the conditional mean given the transmitted data sub-
tracted, e.g., , where is the vector of trans-
mitted data.

Consider an -user white Gaussian synchronous CDMA
system where each user transmits information by modulating
a signature sequence. The discrete-time model for the received
signal is given by

(1)

where is the matrix of signatures
with being the signature vector of the th user,

is the matrix of received amplitudes
with being the amplitude of the th user’s signal,

is the data vector with being the th
user’s transmitted symbol, and is a noise vector whose ele-
ments are independent . We assume that all data vec-
tors are equally likely with covariance , and that the users
are transmitting with equal power so that for some

. For concreteness, we also assume that .
Based on the observed signal , we design a receiver to detect

the information transmitted by each user. The complexity of the
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Fig. 1. General linear receiver comprised of a bank of correlators with
correlating vectors qqq followed by a bank of detectors.

optimal receiver grows exponentially with , and is therefore
impractical to implement for large [2], [3]. We therefore con-
sider suboptimal linear receivers that are easier to implement.
Specifically, in this paper we develop receivers that consist of
two parts, the signal demodulator which is designed to estimate

, and a bank of single-user detectors which are com-
prised of threshold devices. We restrict our attention to linear
demodulators so that has the form for some matrix

. The th user’s symbol is then detected as
where is the th component of , and .
A receiver of this form can be implemented using a bank of cor-
relators with correlating vectors , as depicted in Fig. 1.

The observed signal is related to the unknown vector of
parameters through the linear model

(2)

Therefore, the design problem associated with Fig. 1 is equiva-
lent to the problem of estimating in the linear model (2).

Several approaches have emerged to designing linear demod-
ulators, which differ, among other factors, in their assumptions
regarding the channel parameters. If the parameters are known,
then the demodulator can be designed to maximize the output
SINR so that the receiver mitigates optimally both the white
noise and the MAI. The optimal receiver of this form is the
linear MMSE receiver [6], [7], corresponding to

.
If the channel parameters are not known, then the MMSE re-

ceiver cannot be implemented. Several linear receivers that do
not assume knowledge of the channel parameters have been pro-
posed, and differ in their strategy for estimating in the model
(2).

In the simplest approach, the MAI is ignored and the demod-
ulator is designed to optimally compensate for the white noise
on the channel. This method leads to the single-user MF, corre-
sponding to . Although the MF receiver optimally com-
pensates for the white noise, it does not take the structure of the
MAI into account.

An alternative strategy is to estimate using the least-squares
estimator [1], [24], which leads to the well-known decor-
relator receiver [10], [11], and corresponds to

. The decorrelator optimally rejects the MAI when the
signature vectors are linearly independent; however, the inverse
operation of the decorrelator may lead to an output noise

component with large variance and a covariance structure with
a very high dynamic range, resulting in degraded performance.

A third approach is to estimate by first using a least-squares
estimator, and then optimally whitening the noise component in
the output of the estimator [13], [12]. This leads to the OMU
receiver, and corresponds to choosing . This
receiver tries to mitigate both the effect of the white noise and
the MAI by optimally whitening the outputs of the decorrelator
prior to detection.

Implementing each of the receivers above involves computing
an inverse of a matrix, which depends on the signature matrix
and possibly the SNR. In cases where the signatures or the SNR
vary rapidly with time, computation of the inverse may be ex-
pensive. In such settings, it was suggested in [15] to approximate
the MMSE receiver (or the decorrelator receiver in the case in
which the SNR is not known) by a weighted polynomial matrix,
where the weights are chosen to maximize the asymptotic SINR.
Assuming equal-power users, the resulting receiver, which we
refer to as the Müller-Verdú receiver, corresponds to

where are the weights.
In this paper, we show that the MMSE, MF, decorrelator,

OMU, and Müller-Verdú receivers are actually special cases of
the more general class of CSMU receivers, which is based on
the CSLS estimator [16], [17]. The CSLS estimator is directed
at improving the performance of the traditional least-squares
estimator for the unknown parameters in a linear model, by
choosing the estimate of to minimize the (weighted) total error
variance in the observations, subject to the constraint that the
covariance of the estimation error is proportional to some given
covariance matrix , so that we control the dynamic range and
spectral shape of the covariance of the estimation error.

Following [17], [25], we propose using the CSLS estimator
to estimate in (2) which leads to the class of CSMU re-
ceivers. This class is quite general since we have the freedom
of choosing the output covariance . For specific choices of

, the CSMU receiver reduces to some of the well-known
multiuser receivers. In particular, we show in Section IV-B
that the MMSE, MF, decorrelator, OMU, and Müller–Verdú re-
ceivers can all be formulated as CSMU receivers. This provides
additional insight and further optimality properties of these
receivers. However, the CSMU receiver is more general since
we are not constrained to a specific choice of covariance . By
choosing different values of we can generate a variety of dif-
ferent linear multiuser receivers, and analyze their performance
in a unified manner. Two specific examples are developed in
Sections V-C and VI.

In Section V, we extend the analysis of [12], [20] to the
analysis of the asymptotic SINR in the large system limit of the
CSMU receiver, for a general class of covariance matrices
and equal power users, which includes the covariance matrices
corresponding to the MF, decorrelator, OMU, MMSE, and
Müller–Verdú receivers. Specifically, we develop expressions
for the asymptotic SINR and asymptotic spectral efficiency in
the large system limit for Gaussian signatures and equal power
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users. These results can be used to evaluate the performance of
any linear receiver that can be formulated as a CSMU receiver
with covariance that lies in the class we consider. Therefore,
for example, this method of analysis can be used as an alterna-
tive to methods in [4], [19] for deriving the asymptotic SINR
of the MF and MMSE receivers. Our results can also be used to
characterize the energy-per-information bit required to achieve
a given spectral efficiency, in the wideband regime, for the MF,
decorrelator, OMU, and Müller–Verdú receivers.

In Sections V-C and VI, we present two examples of the
CSMU receiver. The first example, considered in Section V-C,
corresponds to a convex combination of the MF and decorre-
lator receivers, so that

for some

Since, as we show, this receiver is a special case of the CSMU re-
ceiver, its asymptotic performance can be determined from our
general asymptotic results of Section V. Specifically, we obtain
a simple expression for the asymptotic SINR of the receiver, as a
function of the coefficient . We then show that can be chosen
to maximize the asymptotic SINR, resulting in a receiver that
performs better than the MF and the decorrelator. This receiver
may be useful, for example, if the signatures are known and
fixed, however, the SNR varies with time. Since the dependence
of the proposed receiver on the SNR is only through the coef-
ficient , updating the receiver in the presence of SNR fluctua-
tions is computationally cheaper then implementing the MMSE
receiver, which involves a matrix inversion.

In Section VI, we treat the case in which the SNR is unknown
to the receiver, and propose a CSMU receiver for which the
output covariance has the same structure as the output covari-
ance of the MMSE receiver. The resulting CSMU receiver can
be viewed as an MMSE receiver in which the unknown SNR is
replaced by its estimate. Using the analysis results of Section V,
we develop exact expressions for the asymptotic performance
of this receiver and compare it with that of the MMSE receiver.
As we show, if the estimate is close to the true value, then the
performance of the proposed receiver can approach the perfor-
mance of the linear MMSE receiver. We then consider the case
in which the SNR is known to lie in a given uncertainty range,
and propose a robust receiver whose performance is uniformly
close to that of the MMSE receiver, over the entire range.

In the next section, we summarize results from [16], [17] per-
taining to the CSLS estimator. We then use these results to de-
velop the class of CSMU receivers in Section IV.

III. THE COVARIANCE SHAPING LEAST-SQUARES ESTIMATOR

Consider the linear model

(3)

where is a vector of observations, is a deterministic vector
of unknown parameters, is a known matrix, and is
a zero-mean random vector with covariance .

The CSLS estimate of , denoted , is chosen to min-
imize the total variance of the weighted error between

and , subject to the constraint that the co-
variance of the error in the estimate is proportional to a
given covariance matrix . From (3), it follows that the covari-
ance of is equal to , so that the covariance of , which
is equal to the covariance of the error in the estimate , is
given by . Thus, is chosen to minimize

(4)

subject to

(5)

where is a given covariance matrix, and
is a constant that is either specified in advance, or chosen

to minimize the error (4). Since in our detection problem the
scaling of will not affect the detector output, we restrict
our attention to the case in which is fixed.

The CSLS estimator is summarized in the following theorem.

Theorem 1 (CSLS Estimator [16], [17]): Let denote the
deterministic unknown parameters in the model ,
where is a known matrix, and is a zero-mean random vector
with covariance . Let denote the CSLS estimator of
that minimizes the error (4) subject to (5), for some and
covariance matrix with . Then

Note that if for some covariance matrix , then
choosing results in a CSLS estimator that does not depend
on which may not be known.

The CSLS estimator can alternatively be expressed as a
least-squares estimator followed by a weighted minimum
mean-squared error (WMMSE) covariance shaping transfor-
mation [17]. Specifically, suppose we estimate the parameters
using the least-squares estimator .
Since , where ,
the covariance of the noise component in is equal
to the covariance of , denoted , which is given by

. To improve the performance of the
least-squares estimator, we consider shaping1 the covari-
ance of the noise component in the estimator . Thus, we
seek a transformation such that the covariance matrix of

, denoted by , satisfies

(6)

for some . To minimize the distortion to the estimator ,
from all possible transformations satisfying (6) we choose
the one that minimizes the weighted MSE

(7)

1When we refer to shaping a random vector aaa, we explicitly mean shaping the
noise component in aaa. Equivalently, this corresponds to shaping aaa�Efaaa j bbbg.
Similarly, when we say that a random vector aaa has covarianceCCC we explicitly
mean that the noise component aaa� Efaaa j bbbg in aaa has covariance CCC .
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where and is an arbitrary weighting
matrix. The resulting shaping transformation is referred to as
a WMMSE shaping transformation. It was shown in [16], [17]
that if we choose in (7), then the resulting estimator

is equal to . Thus, the CSLS estimator can be
determined by first finding the least-squares estimator , and
then optimally shaping its covariance using a WMMSE shaping
transformation.

The CSLS estimator can also be expressed as an MF esti-
mator followed by MMSE shaping. Consider estimating the pa-
rameters using the transformation . Then
the covariance of the noise component in , which is equal
to the covariance of , is . To improve
the performance of we choose to shape its covariance, so
that we seek a transformation such that the covariance matrix
of , denoted by , satisfies

(8)

for some . To minimize the distortion to the estimator ,
among all possible transformations satisfying (8) we choose
the one that minimizes the MSE

(9)

where , which we refer to as the MMSE
shaping transformation [26]. The resulting estimator
is equal to . Thus, the CSLS estimator can also be deter-
mined by first finding the MF estimator , and then optimally
shaping its covariance using an MMSE shaping transformation.

IV. THE COVARIANCE SHAPING MULTIUSER RECEIVER

We now propose a class of multiuser receivers, referred to as
the CSMU receiver, that results from estimating in the model
(2) using a CSLS estimator with chosen such that

. This class of receivers provides a unified framework
for developing a variety of different linear multiuser receivers,
and analyzing their performance.

With , the CSLS estimator of follows from
Theorem 1 as

(10)

where

(11)

for some covariance matrix . Note, that the scaling of
will not effect the detector output and therefore can be chosen
arbitrarily. In our derivation, we assume that so that the
estimator of (10) does not depend on , which may be
unknown. Henceforth we denote .

We conclude that the CSMU receiver can be implemented
using the bank of correlators of Fig. 1 with where

, and is given by (11). We refer to the vectors
as the CSMU vectors.

From the properties of the CSLS estimator, the CSMU de-
modulator minimizes the total error variance in the received
signal subject to the constraint that the covariance of the noise

component in the output of the demodulator of Fig. 1 is pro-
portional to a given covariance matrix , so that we control the
dynamic range and spectral shape of the noise at the output of
the demodulator. The particular shaping can be tailored to the
specific set of signatures.

A. Equivalent Representations of the CSMU Receiver

We now develop several representations of the CSMU re-
ceiver, based on the properties of the CSLS estimator and the
CSMU vectors.

1) Correlation Demodulator Representation: We first show
that the CSMU receiver can be represented as a correlation de-
modulator of the form of Fig. 1 with correlating vectors with
Gram matrix that are closest to the signature vectors , in a
least-squares sense.

To this end, we note that the Gram matrix of inner products
of the CSMU vectors is equal to . Indeed

(12)

where we used the fact that for any two matrices and such
that , we have that
[17].

Among all vectors with Gram matrix , the CSMU vec-
tors have the property that they are the closest in a least-squares
sense to the vectors . This follows from [17, Ch. 8] where it
is shown that given a set of vectors and a Gram matrix
such that , where is the matrix of columns

, the vectors with Gram matrix that minimize the error

(13)

are given by

2) Decorrelator Followed by MMSE Shaping: Since the
output of the decorrelator demodulator is equal to , from
the discussion in Section III it follows that the CSMU receiver
can equivalently be implemented as a decorrelator receiver
followed by a WMMSE covariance shaping transformation

with weighting , as depicted in Fig. 2. Here is
the covariance of the noise component in the output of the
decorrelator, and the shaping transformation is designed to
optimally shape this covariance prior to detection, and is given
from [16] by .

3) MF Followed by MMSE Shaping: From the representa-
tion of the CSLS estimator of Section III, it follows that the
CSMU receiver can also be implemented as an MF demodu-
lator followed by an MMSE covariance shaping transformation

, as depicted in Fig. 3. The transformation is designed to
optimally shape the covariance of the noise component in
the MF output prior to detection, and is given by

[26].
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Fig. 2. Representation of the CSMU demodulator in terms of a decorrelator
demodulator followed by WMMSE covariance shaping, where zzz =
[SSS(SSS SSS) ] .

Fig. 3. Alternative representation of the CSMU receiver in terms of an MF
demodulator followed by MMSE covariance shaping.

B. Connection With Other Multiuser Receivers

As we now show, many previously proposed multiuser re-
ceivers can be formulated as CSMU receivers with an appro-
priate choice of .

Let be the output of an arbitrary linear receiver. To
determine whether the receiver can be formulated as a CSMU
receiver, we first compute the output covariance of the receiver,
which is given by . We then compute the CSMU
receiver with covariance . If is
equal to , then the original linear receiver can be formulated as
a CSMU receiver with output covariance . In particular,
we have the following proposition.

Proposition 1: Let denote signature
vectors, and let denote the correlating
vectors of a linear multiuser receiver. Let and denote the
matrices of columns and , respectively. If for
some matrix satisfying the conditions

(14)

then the receiver is a CSMU receiver with

(15)

Proof: The CSMU vectors corresponding to of (15) are
given from (11) by

(16)

To prove the proposition we therefore need to show that

(17)

We first note that . We also note
that . This follows from the fact that

, and since by assumption, ,
we have that . Combining these two observa-
tions, . Finally, since ,
we have that , establishing (17).

Using Proposition 1, we can show that the MMSE, decor-
relator, MF, OMU, and Müller–Verdú receivers can be formu-
lated as CSMU receivers. Indeed, each of these receivers can be
written in the form for some satisfying the condi-
tions of the proposition. Specifically,
for the MMSE receiver, for the decorrelator re-
ceiver, for the MF receiver, for the
OMU receiver, and for the Müller–Verdú
receiver.

We summarize our results regarding the CSMU demodulator
in the following theorem.

Theorem 2 (CSMU Demodulator): Let
denote signature vectors, and let denote
the correlating vectors of the CSMU demodulator. Let and
denote the matrices of columns and , respectively. Then

where is any nonnegative definite Hermitian matrix with
. In addition,

1. any linear receiver with correlating vectors that are the
columns of where for some matrix with

and can be formulated as a
CSMU receiver with ;

2. the vectors are the closest vectors with Gram matrix
to the signature vectors , in the least-squares sense;

3. the CSMU demodulator can be realized by a decorrelator
demodulator followed by a WMMSE covariance shaping
transformation ;

4. the CSMU demodulator can be realized by an MF demod-
ulator followed by an MMSE covariance shaping transfor-
mation .

V. PERFORMANCE ANALYSIS OF THE CSMU RECEIVER

In this section, we discuss the theoretical performance of the
CSMU receiver. We first derive exact and approximate expres-
sions for the probability of detection error for any choice of
shaping . We then derive the asymptotic SINR and the spec-
tral efficiency (total capacity per chip) [19], [21] at the output
of the CSMU receiver for a certain class of covariance ma-
trices , in the large system limit. Using these results, we de-
velop closed-from expressions for the minimal energy-per-in-
formation bit required for reliable transmission and the wide-
band slope [22], using the CSMU receiver.

A. Exact Probability of Detection Error

The detector input of the CSMU receiver is

(18)
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Each component of the detector input vector can be decomposed
into

(19)

where the terms

(20)

represent the desired signal, the MAI, and the noise, respec-
tively. Conditioned on , the decision statistic is Gaussian
with mean and variance . Taking into con-
sideration all possibilities of , the resulting probability of de-
tection error for the th user is

(21)

where

(22)

From (21), we see that the probability of detection error of
the CSMU detector for the th user goes to zero as if
and only if the argument of each of the -functions is positive.

For example, in the special case in which where
and all cross correlations of the signature vectors

are identically equal to , it can be shown that

if
if

(23)

where and .
In this case, the probability of detection error of the CSMU de-
tector for the th user goes to zero as when

(24)

B. SINR and Asymptotic Large System Performance

From (20), the terms and are mutually indepen-
dent and zero-mean, and have variances

(25)

The SINR at the detector for the th user is therefore

(26)

where

(27)

is the received SNR. An alternate form for (26), which will be
more convenient for the analysis that follows, is

(28)

Assuming is Gaussian, the probability of error can
then be approximated as

(29)

where is defined in (22). At low SNR, the Gaussian ap-
proximation is acceptable because Gaussian noise is the domi-
nant impairment. However, at high SNR, the discrete distribu-
tion of the MAI is poorly approximated by a Gaussian distribu-
tion, especially at the tails of the distribution where the bit-error
rate (BER) is determined. Thus, we do not expect (29) to be par-
ticularly accurate at high SNR. In Section VI, we compare the
accuracy of the Gaussian approximation and that of the exact
BER expression, in the context of a concrete example of the
CSMU receiver.

In the remainder of this section, we focus on the large-system
performance of the CSMU receiver for a class of output covari-
ance matrices , assuming equal power users.

Theorem 3 below characterizes the SINR and the spectral ef-
ficiency of the CSMU receiver in the large system limit with

held constant, when random Gaussian signatures
and accurate power control are used. For analytical tractability,
we focus on output covariance matrices that have the same
eigenvector matrix as . Thus, if has an eigendecom-
position , where is an unitary matrix
and is an diagonal matrix with diagonal elements ,
then , where is an diagonal matrix with
diagonal elements . We further assume that the eigenvalues

of can be represented as where is a
continuous function on an interval where and

, with

(30)

Theorem 3: Let the elements of the signature matrix
be independent , and let the matrix of amplitudes

. Let where is a diagonal matrix
with diagonal elements , let be a covariance
matrix with eigenvalues where is a continuous
function on an interval with and , where

and are defined by (30), and . Then in

the limit, as with held constant we have
the following.

1. The SINR for each user at the CSMU receiver output con-
verges almost surely to where
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is the received SNR, and the expectation
is evaluated according to the probability density function
(pdf)

(31)

with .
2. The spectral efficiency of the CSMU receiver converges

almost surely to .
Proof: To prove part 1 of Theorem 3 we need to deter-

mine the limits of and
as with held constant.

Using the eigendecomposition of and

(32)

where is the th column of . To determine the limit of
(32) when with held constant, we invoke Lemma
1 below on Wishart matrices which have the form with
the elements of being independent . The lemma
relies on the concepts of isotropically distributed vectors and
matrices [27].

An -dimensional complex random vector is isotropically
distributed if its pdf is invariant to all unitary transformations;
i.e., for all such that . If, in addi-
tion, is constrained to be a unit vector, then is conveniently
generated by , where is an -dimensional vector
of independent random variables. An com-
plex random matrix is isotropically distributed if its pdf is un-
changed when premultiplied by an unitary matrix; i.e.,

for all such that . The column
vectors of are isotropically distributed vectors.

Lemma 1 ([20], [28]): Let the elements of an matrix
be independent . Then the eigenvector matrix of

is isotropically distributed unitary and independent of the
eigenvalues.

From Lemma 1 it follows that in (32) is an isotropi-
cally distributed unit vector, independent of and . Conse-
quently, has the same distribution as , where is an

-dimensional vector of independent random vari-
ables. With denoting the components of , it follows that

has the same distribution as

(33)

To evaluate the limit of (33) we rely on the following series of
lemmas.

Lemma 2 ([29]): If , then
the percentage of the eigenvalues of that lie below

converges to the cumulative distribution function of the pdf
of (31).

Lemma 3: Let be a sequence of Hermitian matrices,
such that as for some con-
stant , and such that the spectral radius of is uniformly
bounded. Then, with denoting a sequence of random vectors
with independent and identically distributed (i.i.d.), zero mean,

unit variance complex elements with finite eighth moment, we
have that2 as .

Lemma 4: Let be a sequence of diagonal matrices
with diagonal elements , where is the th eigen-
value of a Wishart matrix, and is a function that is continuous
on an interval where

and

Then

We now apply Lemmas 3 and 4 to (33). Specifically, we con-
dition on and use the fact that is independent of . Since,
almost surely, for all large and all [29], we have

(34)

as , where is evaluated according to
the pdf of (31). Similarly

(35)

which completes the proof of part 1. The expression for the
asymptotic spectral efficiency then follows immediately by
noting that is upper-bounded by the MF single-user bound.

Theorem 3 can be used to determine the asymptotic per-
formance of any linear receiver which can be formulated as
a CSMU receiver, with covariance matrix that satisfies the
constraints of the theorem. In Section VI and in [12] and [20],
we show that the asymptotic SINR of the MMSE, OMU, and
decorrelator receivers, respectively, can be obtained as special
cases of Theorem 3.

We have seen in Section IV-B (Proposition 1) that the MF
receiver can be formulated as a CSMU receiver with .
Since this choice of satisfies the conditions of Theorem 3 with

, the asymptotic SINR is given by

(36)

where we used the fact that [1] and
[30]. The SINR (36) agrees with the asymptotic limit derived in
[19], [4].

Similarly, from Proposition 1 it follows that the Müller–Verdú
receiver can be formulated as a CSLS receiver with

(37)

This choice of also satisfies the conditions of Theorem 3, with

(38)

2We use the notation �! to denote almost sure convergence.
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From the theorem, the asymptotic SINR is then given by

(39)

where is a length- vector with th element given by
, and is an matrix with th element

given by , where [15]

(40)

From (39), the weights that maximize the asymptotic SINR are
proportional to , which agrees with the optimal
weights derived in [15].

C. Example: The MFD Receiver

We now present an example demonstrating the applicability
of Theorem 3.

Suppose we wish to design a linear receiver to operate in a
rapidly changing noise environment, so that the SNR changes
with time. If the SNR is known at each time instance, then we
can design an MMSE receiver matched to the SNR at any given
time. However, computing the MMSE receiver at each SNR re-
quires a matrix inverse. To save in computations, we may in-
stead seek a linear receiver whose dependence on the SNR is
computationally simple. For example, we may consider a re-
ceiver that is a convex combination of the MF and decorrelator
receivers, where the coefficient in the combination is chosen to
maximize the SINR. Since the MF and decorrelator are both in-
dependent of the SNR, the dependence of the resulting receiver
on the SNR is only through the scalar coefficient. Specifically,
assuming for simplicity that the signatures are linearly indepen-
dent, we choose a receiver of the form , where

(41)

and is chosen to maximize the asymptotic SINR. We
refer to this receiver as an MFD MF Decorrelator receiver.

From Proposition 1 it follows that the MFD receiver can be
expressed as a CSMU receiver with

(42)

With this choice of , the eigenvalues are given by

(43)

To compute the asymptotic SINR using Theorem 3, we first
note that we can express as

(44)

Using the fact that , we have

(45)

Next, using (43) and the expectations , and
for , we have that

(46)

The asymptotic SINR of the MFD receiver then follows from
Theorem 3 as

SINR (47)

To maximize the SINR we seek the that is the solution to

(48)

Differentiating with respect to and equating to , the optimal
value of is

(49)

Note, that for high SNR, , and . In this case, the
receiver reduces to the decorrelator, as we expect. For low SNR,

and , in which case the receiver reduces to the
MF.

The asymptotic BER for using the MFD receiver
with the optimal choice of is illustrated in Fig. 4. For com-
parison, we also plot the BER resulting from the MMSE, MF,
and decorrelator receivers, as well as the Müller–Verdú receiver
with , which has the same computational cost as the MFD
receiver, assuming that the matrix is stored in memory,
and does not vary with time. The optimal weights for are

and .
As can be seen from the figure, with the same computational

cost, our receiver performs significantly better at high SNR than
the Müller–Verdú receiver, with only a negligible loss in per-
formance in the low-SNR regime. We note, however, that our
receiver requires storage of the matrix . If the signa-
ture matrix varies with time then the Müller–Verdú receiver will
have smaller computational cost since it does not require com-
putation of a matrix inverse.

In the next section we use Theorem 3 to analyze the en-
ergy-per-information bit required to achieve a desired spectral
efficiency, in the wideband regime, using the CSMU receiver.

D. Spectral Efficiency in the Wideband Regime

CDMA systems often operate in the wideband regime where
the spectral efficiencies are relatively low [19], [21]. As shown
in [22], in this regime the energy-per-information bit, , re-
quired to achieve a desired spectral efficiency, can be approxi-
mated up to the first order as

(50)

where denotes the minimum signal energy-per-informa-
tion bit required for reliable communication, and is the slope
of the spectral efficiency curve as a function of at ,
and is referred to as the wideband slope. From (50), it follows
that to a first order approximation, and characterize
the required of a given system, in the wideband regime.

With denoting the spectral efficiency, we have that [22]

(51)
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Fig. 4. Probability of bit error as a function of SNR, in the large-system limit, with equal-power users, random signatures, and � = 0:8.

where denotes the derivative of with respect to
, evaluated at . The slope of the spectral

efficiency at the point is given by

(52)

where denotes the second derivative of with respect to
, evaluated at .

Theorem 4 below characterizes and in the large
system limit, when using a CSMU receiver.

Theorem 4: Let the elements of the signature matrix
be independent , and let the matrix of amplitudes

. Let where is a diagonal matrix
with diagonal elements , and let be a covariance
matrix with eigenvalues where is a continuous
function on an interval where and ,
and and are defined by (30). Then in the limit, as

with held constant

and

Proof: From Theorem 3, we have that for the CSMU re-
ceiver, , where , and

(53)

Therefore,

(54)

with

(55)

so that

(56)

Differentiating (54)

(57)

with

(58)

so that

(59)

Substituting the expressions for and into (51) and (52), com-
pletes the proof of the theorem.

Since from Theorem 4, both and are positive, it
follows from (50) that to ensure that the energy per bit required
for transmission in the wideband regime is minimal, we need

to be as small as possible and to be as large as pos-
sible.

Using Theorem 4, we can compute and for the MF
and decorrelator receivers. For the MF receiver, so
that

(60)

and

(61)

where we used that fact that [1] and
[30].
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Fig. 5. The exact and Gaussian approximated probability of bit error for the MMSE-based CSMU receiver, with 10 equal-energy users and identical cross
correlations � = 0:2.

For the decorrelator receiver with and
[1]. Therefore,

(62)

and

(63)

For

(64)

It was shown in [20] that , and
. Therefore,

(65)

and

(66)

In the next section, we consider a specific choice of covari-
ance matrix that does not depend on the channel parameters,
and analyze the performance of the resulting CSMU receiver.
As we show, over a wide range of the channel parameters the
loss in performance using this receiver in comparison with the
MMSE receiver is marginal, even though the channel parame-
ters are not known.

VI. MMSE-BASED CSMU RECEIVER

We now focus on the special case in which is chosen to
have the same form as the output covariance matrix when using
the linear MMSE receiver.

In the case of equal power users, the output covariance using
the MMSE receiver is with

(67)

If the SNR, or equivalently , is not known, then we cannot im-
plement the CSMU receiver with covariance . Instead,
we propose using a CSMU receiver with output covariance

(68)

for some parameter , where we can think of as an estimate
of the SNR. Substituting (68) into (11), the resulting CSMU
receiver multiplies by the matrix with

(69)

The CSMU receiver described by (69) is simply an approxima-
tion to the MMSE receiver where the unknown SNR is replaced
by an estimate. The advantage of formulating this receiver as a
CSMU receiver is that we can now use Theorems 3 and 4 to an-
alyze its performance.

An important issue is how to choose the value of in (69). In
Section VI-E, we propose a robust method for choosing in the
case in which the SNR changes over a given SNR range. As we
show, using the robust MMSE-based receiver, the performance
is very close to that of the MMSE receiver over the desired SNR
range, so that we almost do not loose anything by not knowing
the SNR.

A. Probability of Bit Error

The exact probability of error using the CSMU receiver of
(69) is given by (21), with given by (68). As discussed in
Section V-B, the probability of error can be approximated as

, where is given by (22), and is given
by (28).

In Fig. 5, we compare the accuracy of the Gaussian approx-
imation to the exact BER expression in (21), for the MMSE-
based CSMU receiver, with 10 equal-energy users and identical
cross correlations . As expected, the approximation is
useful at low SNR, but becomes less so at high SNR.
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B. Asymptotic Spectral Efficiency

The asymptotic SINR of the MMSE-based CSMU receiver
given by (69) follows from Theorem 3, and is given in the fol-
lowing theorem.

Theorem 5: Let the elements of the signature matrix
be independent , and let the matrix of amplitudes
be expressible as . Then in the limit as with

held constant, the SINR for each user at the MMSE-
based CSMU receiver output given by (69) is given in (70) at
the bottom of the page, where

(71)

and are defined by (30), and is the received
SNR.

Proof: For the covariance matrix of (68)

(72)

It therefore follows from Theorem 3 that , where

(73)

We first evaluate the numerator of (73). Expressing

(74)

we have that

(75)

where is given by (71). Here we used the identity ([1,
p. 303])

(76)

To evaluate the denominator of (73), we consider separately
the expectations and . The first
expectation can be expressed as

(77)

where we used (75). Using the fact that

it follows that

(78)

Substituting (78) into (77)

(79)

To evaluate , we note that

(80)

where

(81)

Combining (81), (80), (77), and (76)

(82)

and

(83)

Therefore,

(84)

and the asymptotic SINR is given in (85) at the bottom of the
following page. Using the identity ([1, p. 304])

(86)

we have that

(87)

and reduces to (70) at the bottom of the page, completing the
proof of the theorem.

(70)
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Fig. 6. Probability of bit error as a function of SNR, in the large-system limit, with equal-power users, random signatures, and � = 0:95. The CSMU receiver is
given by (69) with 1=� = 10 [dB].

Since the MAI is asymptotically Gaussian in the infinite-user
limit [31], we expect the Gaussian approximation (29) to be an
accurate approximation to the bit-error rate at all SNR, where

is given by Theorem 4. We will use this approximation to
compute the bit-error rate for the remainder of this section.

In Fig. 6, the BER in the infinite-user limit for the MMSE-
based CSMU receiver with 10 [dB], is compared to the
MF, the decorrelator, and the MMSE receiver, for . For
the SNR range shown, the CSMU receiver performs better than
the decorrelator and the MF, and its performance is close to that
of the MMSE receiver.

In Fig. 7, we plot the probability of bit error3 in the infinite-
user limit as a function of , with 6 [dB] and
10 [dB]. As can be seen from the figure, the performance of the
MMSE-based CSMU receiver is very close to that of the MMSE
receiver.

C. Spectral Efficiency

From Theorem 5, the spectral efficiency of the CSMU re-
ceiver of (69) converges almost surely as to (88) at
the bottom of the page.

3The asymptotic large system performance of the decorrelator for the case
� > 1 is derived in [20].

We now consider the loss in spectral efficiency using the
CSMU receiver of (69), which does not rely on knowledge of
the channel parameters, with respect to the MMSE receiver,
which assumes knowledge of these parameters.

The spectral efficiency of the MMSE receiver in the large
system limit follows from (88) with ,
and is given by

(89)

Note that this expression agrees with the asymptotic limit de-
rived in [19].

From (88) and (89), the loss in spectral efficiency using the
CSMU receiver of (69) with respect to the MMSE receiver is

(90)

where we define

(91)

Here

(92)

(85)

(88)
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Fig. 7. Probability of bit error as a function of � in the large-system limit, with equal-power users, random signatures, and 1=� = 6 [dB]. The CSMU receiver is
given by (69) with 1=� = 10 [dB].

and

(93)

To analyze the loss in spectral efficiency using the CSMU
receiver of (69), we examine the behavior of for different
values of the parameters and . In our development, when
we refer to the CSMU receiver we explicitly mean the CSMU
receiver of (69).

1) Fixed and : We first consider the behavior of as a
function of , for fixed and .

For fixed we have that

(94)

Therefore, from (93)

(95)

and from (92)

(96)

Substituting (95) and (96) into the expression for of
(91)

or (97)

We conclude that for fixed and for high and low
values of . The spectral efficiency of the CSMU and MMSE
receivers as a function of are illustrated in Fig. 8, for
10 [dB] and 7 [dB]. As is evident from the figure, for

fixed SNR the loss in capacity using the CSMU receiver of (69)
for all values of is very small.

2) Fixed : We now discuss the behavior of for fixed
in the limits of high and low SNR.

For low SNR values, , and for high
SNR values,

(98)

From (93) and (92) we then have that for
and . For

(99)

and

(100)

We also have that for

(101)

Using these limits

or (102)

and . Thus, for fixed , when or
so that there is no loss in spectral efficiency using

the CSMU receiver in place of the MMSE receiver.
3) Fixed and : We now treat the case in which both and
are fixed.
For low SNR , and .
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Fig. 8. Spectral efficiency of the CSMU and MMSE receivers as a function of �, for 1=� = 10 [dB] and 1=� = 7 [dB].

Fig. 9. Spectral efficiency of the CSMU and MMSE receivers as a function of SNR, for � = 0:7 and 1=� = 10 [dB].

Next, suppose that . For and
. For

(103)

and

(104)

We conclude that if and are fixed, then for low to interme-
diate SNR so that there is no loss in spectral efficiency.
For high SNR, if then grows without bound as a

function of SNR. This is because in this regime, the spectral ef-
ficiency of the CSMU receiver tends to a limit while the spectral
efficiency of the MMSE receiver grows with increasing SNR, as
can be seen in Fig. 9. Note, however, from Fig. 9 that for low to
intermediate SNR values, the loss in spectral efficiency is very
small.

If , then for high SNR converges to the limit given
by (103) and (104). As we show, this limit is typically small.
This can also be seen in Fig. 10 in which we plot the spectral
efficiency of the CSMU and MMSE receivers as a function of
SNR, for and 10 [dB].
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Fig. 10. Spectral efficiency of the CSMU and MMSE receivers as a function of SNR, for � = 3 and 1=� = 10 [dB].

We now consider the high SNR limit (103) for different values
of and fixed . For , and

so that

(105)

and . For and
. Therefore,

(106)

and . The behavior of as a function
of is illustrated in Fig. 11. As can be seen from the figure,
this limiting difference is very small so that for typical values of
, there is essentially no loss of capacity.

For fixed and and
so that

(107)

and .
To summerize, for fixed , when both and are much

greater or much smaller than , then there is no loss in spectral
efficiency. When both and are fixed, then for low to inter-
mediate values of SNR there is almost no loss in spectral effi-
ciency. For high SNR values, if is large or , then again
there is essentially no loss in spectral efficiency, as can be seen
in Fig. 10. For , the loss in spectral efficiency over a wide
range of SNR values will be small if we choose to be small.
In particular, we can always choose so that the loss in spec-
tral efficiency with respect to the MMSE receiver over an SNR
range of interest is small, as illustrated in Fig. 12. In some cases,
this will entail a larger loss in other SNR regimes. However, it

seems reasonable that although the receiver may be operating in
a changing environment, so that the SNR will fluctuate, there is
a range of SNR values over which fluctuations will occur. Over
this range, the parameters can be chosen to achieve essentially
the same capacity as the MMSE receiver.

D. Wideband Regime

We now consider the energy-per-information bit required in
the wideband regime as a function of the spectral efficiency
using the MMSE-based CSMU receiver, and compare it with
that of the MMSE receiver.

We have seen in Section V-D that energy-per-information bit
is characterized by and the wideband slope , which
for the CSMU receiver, are given by Theorem 4. We now calcu-
late these expressions for the special case of the MMSE-based
CSMU receiver, in which is given by (72).

To evaluate and we need to compute the expecta-
tions

(108)

which are given by (79), (75), and (82), respectively. From The-
orem 4 we then have that and for the MMSE-based
CSMU receiver of (69) are given by

(109)

and

(110)
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Fig. 11. � of (104) as a function of 1=� for � = 3.

Fig. 12. Spectral efficiency of the CSMU and MMSE receivers for � = 0:75 and 1=� = 15 [dB].

respectively. We now compare these expressions with the
and when using the MMSE receiver.

For the MMSE receiver, where

(111)

so that

(112)

It is easy to see that for , both the derivative of
and are equal to zero. Therefore,

and

(113)

Differentiating (112) with respect to

(114)
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Fig. 13. D(�; �) of (117) as a function of �, for 1=� = 7 [dB].

where it can be shown that for

so that , which results in

(115)

Combining (109) with (113), we conclude that of the
MMSE-based CSMU receiver can be expressed as

(116)

where

(117)

The function captures the loss in using the MMSE-
based CSMU receiver, with respect to the MMSE receiver.

Similarly, combining (110) with (115), of the MMSE-
based CSMU receiver can be expressed as

(118)

where

(119)

and captures the loss in the wideband slope using the MMSE-
based CSMU receiver, with respect to the MMSE receiver.

Ideally, we would like and to be close to .
As we now show, for certain choices of the parameters and

and , so that in these cases there is
essentially no loss in with respect to the MMSE receiver.

To this end, we analyze the behavior of and
for different values of and .

For fixed

(120)

so that

(121)

The function as a function of is illustrated in Fig. 13,
for 10 [dB].

Similarly, from (120) it follows that

(122)

For , so that since is finite, .
We conclude that for fixed , there is no loss in and
for high and low values of .

We now consider the behavior of and for fixed
. In this case, for we have that

(123)

so that

(124)

and

(125)

For fixed and and

(126)

Here we used the fact that from (75)

(127)
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Fig. 14. D(�; �) of (117) as a function of 1=� [dB], for � = 3.

Fig. 15. G(�; �) of (119) as a function of 1=� [dB], for � = 3.

The functions and as a function of are
illustrated in Figs. 14 and 15 respectively, for .

E. Robust MMSE-Based Receiver

Using Theorem 5 we now propose a robust CSMU receiver
in the case in which the SNR is not known exactly, whose per-
formance is very close to that of the MMSE receiver that knows
the SNR.

Suppose that the SNR, or equivalently, , is not known ex-
actly, but is known to lie in an interval . Since

the MMSE receiver depends explicitly on , it cannot be imple-
mented if is not known. One approach in this case is to imple-
ment the MMSE-based receiver of Theorem 5 with a specific
choice of . The simplest method is to choose
as the average of in the uncertainty regime. However, as we
now show, we can improve the performance and approach the
performance of the MMSE receiver by choosing in a robust
way.

Specifically, given a value of , we may compute the loss
in SINR performance, or the SINR regret, with respect to the
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Fig. 16. SINR as a function of SNR, in the large-system limit, with equal-power users, random signatures, and � = 0:8.

Fig. 17. Probability of bit error as a function of SNR, in the large-system limit, with equal-power users, random signatures, and � = 0:8.

MMSE receiver for each value of . From Theorem 5, the regret
is given by (128) at the bottom of the page. Clearly,

, so that when the regret is . For all other values of
. A receiver for which the regret is small across

the uncertainty range in will perform similarly to the MMSE
receiver. To design such a receiver, we propose choosing such

that the regret at both of the endpoints of the uncertainty region
are equal. Since, in addition, the regret is equal to at some
point in the uncertainty region (the point for which ), this
will ensure that at any point in the uncertainty range the regret
is not too large. Thus, we suggest choosing such that

(129)

(128)
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We refer to the resulting receiver as the Robust MMSE-based
receiver (MMSER). Using (129), the value of can be computed
numerically.

In Figs. 16 and 17, we plot the asymptotic SINR and the
asymptotic BER, respectively, for using the MMSER
receiver with 15 [dB] and 5 [dB]. For compar-
ison, we also plot the SINR and the BER using the MMSE-based
receiver corresponding to , which we denote by
MMSEN, and the MMSE receiver that knows . As can be seen
in the figures, the performance of the robust MMSE receiver is
very close to that of the MMSE receiver that knows the SNR,
over the uncertainty interval. In contrast, choosing as the av-
erage value can deteriorate the performance, particulary at high
SNR values.

We note, that a similar robust approach can be taken with
respect to the MFD receiver of Section V-C in the case in which
the SNR is not known completely.

VII. CONCLUSION

In this paper, we developed a new class of linear multiuser re-
ceivers for CDMA channels, referred to as the CSMU receiver,
which is based on a CSLS estimate of the users’ coded sym-
bols. The MMSE, decorrelator, MF, OMU, and Müller–Verdú
receivers are all shown to be special cases of the CSMU re-
ceiver. Based on the properties of the CSLS estimator, we de-
veloped several different interpretations of the CSMU receiver,
which provide further insight into its properties. We then ana-
lyzed the large system performance of this receiver, for a broad
class of output covariance matrices . Specifically, we devel-
oped closed-form expressions for the output SINR, the minimal
energy-per-information bit required to transmit information re-
liably, and the wideband slope of the CSMU receiver.

We then considered a special case of the CSMU receiver, in
which the channel SNR is not known precisely, and the receiver
is matched to an output covariance which has a structure similar
to that of the output covariance of the MMSE receiver. The re-
sulting receiver is shown to be a mismatched MMSE receiver, in
which the actual channel SNR is replaced by an estimated SNR.
Analysis of this receiver demonstrates that without knowledge
of the channel SNR, the performance of the mismatched MMSE
receiver is often very close to that of the MMSE receiver. We
then suggested a robust receiver whose performance is close to
that of the MMSE receiver over an uncertainty range in the SNR.

In this paper we analyzed the performance of the CSMU re-
ceiver in the case of accurate power control, and for covariance
matrices that commute with . An interesting direction for
future research is to generalize the performance analysis to un-
equal-power users, and a broader class of covariance matrices

. It would also be of interest to investigate the performance
analysis with binary symbols.
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