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Robust Competitive Estimation With Signal and
Noise Covariance Uncertainties
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Abstract—Robust estimation of a random vector in a linear
model in the presence of model uncertainties has been studied
in several recent works. While previous methods considered the
case in which the uncertainty is in the signal covariance, and
possibly the model matrix, but the noise covariance is assumed
to be completely specified, here we extend the results to the case
where the noise statistics may also be subjected to uncertainties.
We propose several different approaches to robust estimation,
which differ in their assumptions on the given statistics. In the
first method, we assume that the model matrix and both the signal
and the noise covariance matrices are uncertain, and develop a
minimax mean-squared error (MSE) estimator that minimizes the
worst case MSE in the region of uncertainty. The second strategy
assumes that the model matrix is given and tries to uniformly
approach the performance of the linear minimum MSE estimator
that knows the signal and noise covariances by minimizing a worst
case regret measure. The regret is defined as the difference or ratio
between the MSE attainable using a linear estimator, ignorant of
the signal and noise covariances, and the minimum MSE possible
when the statistics are known. As we show, earlier solutions follow
directly from our more general results. However, the approach
taken here in developing the robust estimators is considerably
simpler than previous methods.

Index Terms—Covariance uncertainty, linear estimation, min-
imax mean-squared error (MSE), minimax regret, robust estima-
tion.

I. INTRODUCTION

ROBUST methods for dealing with model uncertainties
have been applied to a variety of problems in communi-

cations, signal processing, and statistics (see, e.g., [1], [2] and
references therein). It is well known that in many cases the
performance of signal processing methods that are designed
for a nominal model may deteriorate considerably if the actual
model deviates from the one assumed.

Here, we develop methods for robust linear estimation in
the presence of model uncertainties. Specifically, we consider
a finite-dimensional analogue of the classical Wiener filtering
problem [3], [4], in which the goal is to estimate a random
vector that is observed through a linear transformation
and corrupted by additive noise , where the signal and noise
covariance matrices, as well as the model matrix , may not
be known precisely.
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When and the signal and noise covariance matrices
are completely specified, the estimator minimizing the
mean-squared error (MSE) is the minimum MSE (MMSE)
estimator [5]. It is well known that the MMSE estimator is
sensitive to the exact knowledge of the signal and noise statis-
tics, as well as the model matrix. However, in many practical
scenarios, the actual covariances and the model matrix may not
be specified exactly. In such cases, it is desirable to design a
robust estimator whose performance is reasonably good across
all possible covariances and model matrices, in the region of
uncertainty.

The minimax approach, initiated by Huber [6], [7], is the most
common method for handling uncertainties. In this strategy, an
estimator is designed to minimize the worst case MSE over a
given uncertainty class [2], [8]–[12]. However, as demonstrated
in the context of concrete examples in [13]–[15] and in Sec-
tion VI, the minimax approach may lead to poor performance
in situations other than the worst case.

To partially compensate for the conservative character of the
minimax MSE method, a new competitive approach to robust
estimation was developed in [13], [14]. In this strategy, we seek
a linear estimator whose performance is uniformly close, in the
region of uncertainty, to that of the optimal estimator that knows
the exact model. Two competitive design criteria were proposed:
In the first, developed in [13], a linear estimator was designed
to minimize the worst case difference regret, which is the worst
case difference between the MSE of a linear estimator, igno-
rant of the exact model, and the MSE of the optimal linear esti-
mator based on complete knowledge of the model. The second
approach [14] is based on minimizing the worst case ratio re-
gret, which is the worst case ratio of the estimator’s MSE and
the optimal MSE. The rationale behind these strategies is that
the resulting methods perform uniformly close to the linear op-
timal estimator across the uncertainty region, and since the min-
imax criterion is applied to the difference or ratio of MSEs,
rather than the total MSE, it is not as pessimistic as the ordi-
nary minimax approach. Similar competitive methods have also
been applied in [15] for the case where the unknown desired
vector is deterministic rather than stochastic. As noted in earlier
work [13]–[15], the concept of competitive minimax methods is
by no means new, and has been used extensively in a variety of
other problem areas, such as universal source coding [16] and
hypothesis testing [17], among others.

In this paper, we treat the same finite-dimensional model as
that considered in [13], [14], however, in contrast to [13], [14]
in which the noise covariance was completely specified, here
we assume that the noise statistics may also be subjected to un-
certainties. We develop a general framework for robust linear
estimation under this model, which generalizes all of the pre-
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vious results of [13], [14] to the case in which the noise covari-
ance may not be known exactly. Although the problem we deal
with here is more general than that discussed in [13], [14], the
approach we take to developing the robust estimators is much
simpler than previous methods.

Following the popular minimax approach, in Section III we
consider the case in which and the signal and noise covari-
ances are subjected to uncertainty, and seek the linear estimator
that minimizes the worst case MSE over the uncertainty region.
In our development, we treat both structured and unstructured
uncertainty models. In the structured case, the minimax MSE
estimator can be derived in closed form. The minimax MSE es-
timator in the unstructured setting is shown to be a solution to a
semidefinite programming (SDP) problem [18]–[20].

In Sections IV and V, we develop the competitive minimax
regret estimators. For analytical tractability, we restrict our at-
tention to the case in which is completely specified, and the
signal and noise covariance matrices obey a structured uncer-
tainty model. In Section IV, we derive a closed-form solution for
the minimax difference regret estimator, and show that it can be
interpreted as an MMSE estimator corresponding to a specific
choice of the unknown covariance matrices that depend on the
uncertainty region. Besides adding further insight into the differ-
ence regret solution, this interpretation offers a general method
for estimating the unknown covariance matrices, which may be
useful in other contexts. In Section V, we develop the minimax
ratio regret estimator, and present the optimal estimator under
this criterion in two ways: The first representation is as a solu-
tion to a second-order cone program (SOCP), which is a convex
optimization problem that can be solved very efficiently, e.g.,
using interior point methods [20]–[22]. The second is as a sim-
pler SOCP together with a line search algorithm. Using this al-
ternative description, we develop an explicit expression for the
minimax ratio regret estimator for the case in which the signal
covariance is known exactly.

The purpose of this paper is to extend the previous results of
[13], [14] to the case in which the noise covariance is also sub-
ject to uncertainties, and to introduce a simpler method of proof,
which, as we show, can also be used to derive the minimax MSE
estimator for the structured case. Therefore, our main focus is
on the theoretical derivations. In Section VI, we briefly discuss
guidelines for choosing an estimator in a specific problem. A
more detailed performance analysis can be found in [13], [14].

In Section II, we provide an overview of our problem before
proceeding to the detailed development.

II. PROBLEM FORMULATION AND UNCERTAINTY MODELS

In the sequel, we denote vectors in by bold-face lower
case letters and matrices in by bold-face upper case
letters. The matrix is the identity matrix of appropriate
dimension, and are the Hermitian conjugate and the
pseudo-inverse, respectively, of the corresponding matrix, and

denotes an estimated vector or matrix. We use the notation
for an diagonal matrix with

diagonal elements ;

denotes a square, size diagonal matrix with diagonal ele-
ments . The covariance matrix of is written as . Finally,

means that is positive semidefinite.
We consider the generic linear estimation problem of esti-

mating the random vector in the model

(1)

where is an matrix with rank , is a zero-mean,
length- random vector with covariance matrix , and is
a zero-mean, length- random vector with covariance , un-
correlated with . Our objective is to design a linear estimator

of to minimize the MSE, which is given by

(2)

If and are known, then the linear estimator minimizing
(2) is the MMSE (Wiener) estimator [5]

(3)

where we assume that is invertible.
If , , or are not completely specified, then we cannot

implement the MMSE estimator (3). To reflect our incomplete
knowledge of and , we consider two different models
of uncertainty which resemble the “band model” widely used
in the continuous-time case [2], [9], [23], [24]. Depending on
the optimality criteria, a particular model may be mathemati-
cally more convenient. As we detail further below, in the first
model, we impose a particular structure on the eigenvectors of
the matrices and therefore we refer to this case as structured
uncertainty. In contrast, the second model does not assume any
structure, and is consequently referred to as the unstructured un-
certainty model.

Structured Uncertainty: In this model, we assume that
and have the same eigenvector matrix , and that

and have the same eigenvector matrix . Thus,
and are constrained to have the form

(4)

where , ,
, and the diagonal values satisfy

(5)

where the bounds are known,
and . For brevity, we will denote by and the length-
vectors of components and , respectively, with ,
and by the length- vector of components , . Note
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that in deriving the minimax regret estimator we assume that
is known so that , .

The assumption (4) is made for analytical tractability. If and
are stationary random vectors and represents convolution

of with some filter, then , , and will be Toeplitz ma-
trices and are therefore approximately diagonalized by a Fourier
transform matrix [25], so that in this general case (4) is approx-
imately satisfied. As we discuss further in Section IV, in many
cases, our general approach can still be used even if (4) does not
hold.

The model (4) is reasonable when the covariance matrices are
estimated from the data. Specifically considering, for example,
the eigenvalues of , and denoting ,

for , the conditions (5) can equivalently
be expressed as

(6)

so that each of the eigenvalues of lies in an interval of length
around some nominal value which we can think of as an

estimate of the th eigenvalue of from the data vector . The
interval specified by may be regarded as a confidence interval
around our estimate and can be chosen to be proportional to
the standard deviation of . The same interpretation may be
given to the eigenvalues of and the singular values of .

Unstructured Uncertainty: In this model

(7)

where , , and are known, denotes the spectral
norm [26], i.e., the largest singular value of the corresponding
matrix, and and are chosen such that
for all and for all .
Here, the singular vectors of , , and are not constrained.
As a consequence, we can no longer restrict each of the corre-
sponding singular values but rather we bound the largest sin-
gular value, or equivalently, the spectral norm.

In Section III, we develop the linear minimax MSE estimator
that minimizes the worst case MSE in the region of uncertainty,
for both the structured and the unstructured models. The un-
structured minimax MSE estimator was developed in [13] for
the case in which is completely specified; the minimax MSE
approach for the structured model was not previously treated.
In Sections IV and V, we develop a competitive estimation ap-
proach in which we seek linear estimators that minimize a worst
case regret. In this case, for analytical tractability, we consider
only the structured uncertainty model and further assume that

is known.

III. MINIMAX MSE ESTIMATOR

A. Structured Uncertainty

We begin by developing the minimax MSE estimator for the
structured uncertainty model. Thus, we consider the problem

(8)

where from (2) the MSE is given by

(9)

and is the set of matrices defined by (4) and (5).
The minimax MSE estimator under this model is given by the

following theorem.

Theorem 1: Let denote the unknown parameters
in the model , where is a zero-mean
random vector with covariance and is a zero-mean
random vector with covariance , uncorrelated with

. Let be the set of matrices , , such that
, , and where

and are unitary matrices, with
, with ,

and with . Then the
solution to

(10)

is

where is the matrix defined by
and with

.
(11)

Proof: The proof of Theorem 1 is comprised of three parts.
First, we show that the optimal minimizing the worst case
MSE has the form for some matrix .
We then prove that must be a diagonal matrix. Finally, we
establish that the diagonal elements of are given by (11).

Lemma 1: Let be the solution to (10). Then
for some matrix .

Proof: We first note that the MSE of
(9) depends on only through and . Now,
for any choice of

(12)

where

(13)

is the orthogonal projection onto the range space of . In addi-
tion, since . Therefore,

Since is strictly convex in (because
in the uncertainty region), the minimizing is unique, so that

the optimal solution must satisfy

(14)

for some matrix . Denoting , completes the
proof.
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Substituting , , , and
of Lemma 1 into (9), we can express the MSE as

(15)

Our problem then is to find that minimizes

(16)

where

(17)

Lemma 2: The matrix that minimizes of (16) is di-
agonal.

Proof: : Since is strictly convex in (be-
cause in the uncertainty region), so is , and
consequently, has a unique global minimizer. Now, let

be any diagonal matrix with diagonal elements equal to .
Then using the facts that , for any diagonal matrix

we have , and and are diagonal
matrices, we can immediately show that

. Since has a unique minimizer, we con-
clude that the minimizing satisfies for any diag-
onal matrix with diagonal elements equal to , which in turn
implies that must be diagonal.

Denoting by the diagonal elements of , we can express
as

(18)

Therefore, minimizing reduces to solving independent
problems of the form

(19)

where for brevity we omitted the index .
Since is convex in , the maximum of this function

over a closed interval is obtained at one of the boundaries. Thus,

(20)

and (19) becomes

(21)

which can equivalently be expressed as

(22)

where we defined

(23)

To develop a solution to (22) we note that is a quadratic
function in that obtains a minimum at

(24)

Denoting

(25)

it then follows that both and are monotonically de-
creasing for and monotonically increasing for
so that the optimal value of , denoted , must satisfy
where . The exact value of will depend on the
intersection points between and . It is easy to see
that and intersect at exactly two points: and

where

(26)

For any value of the parameters and

(27)

Therefore, there are three possibilities:
1) ,
2) ,
3) .
In Fig. 1, we illustrate schematically the functions and

for each of the three options. For the specific choices of
and drawn in the figure, it can be seen that if ,

as in Fig. 1(a), then the optimal value of is . On the
other hand, if , as in Fig. 1(b) and (c), then . The
following lemma shows that these conclusions hold true for all
parameter values.

Lemma 3: Let denote the optimal value of in the problem

where and are defined by (23). Then

(28)

where with , ,
, and are given by (24), and .

Proof: See Appendix A.

To complete the proof of the theorem we need to prove that
if and only if . Since , it is

sufficient to prove that if only if .
Now, if , then

(29)

Similarly, if , then ,
completing the proof of the theorem.

1) Interpretation of the Minimax MSE Estimator: We now
provide some insight into the minimax MSE estimator of The-
orem 1. Let with ,
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Fig. 1. Illustration of the functions f (d) and f (d) of (23) for different
choices of d ; d and d . (a) d � d � d ; (b) d � d � d ; (c)
d � d � d .

and let . Then, in the case for
all , the minimax MSE estimator can be written as

(30)

where denotes the pseudoinverse of the corresponding
matrix. The estimator of (30) is just a least-squares estimator
matched to the average singular values .
Defining the output signal-to-noise ratio (SNR) as

, it follows that for high enough SNR with respect to
the reciprocal of the uncertainty region in , ,
the minimax MSE approach reduces to least-squares estimation
matched to the average .

If for all , or equivalently, , then
the minimax MSE solution is an MMSE estimator matched to

, , and . To see this, we note that under
the model (4), the estimator of (3) can be written as

(31)

where with

(32)

The result then follows from comparing (31) and (32) with the
minimax MSE estimator of Theorem 1.

In particular, in the special case in which is known,
and is an MMSE estimator matched to the worst case eigen-

values of the signal and noise covariance matrices: and
.

More generally, at each coordinate, the minimax MSE ap-
proach reduces to inverse filtering if the coordinate SNR is high
with respect to the coordinate uncertainty in , or MMSE fil-
tering matched to the worst case signal and noise values and the
best case channel, at low SNR.

Note, that the values of do not affect the
solution of Theorem 1. This result is to be expected from the
structure of the estimation problem. Indeed, under the model (4)

(33)

where , , and . Since the covariance
of is

(34)

the components of are uncorrelated. If is an optimal es-
timate of from , then with is an op-
timal estimate of from . Now, for , we have
from (33) that , where denotes the th component
of the vector . Since the parameter vector is not present in

, and the components of are uncorrelated,
these observations are not useful in estimating , so that , and
consequently, , will not be affected by the eigenvalues of
corresponding to indices larger than .

As a final comment, since the minimax MSE problem of
(10) is not concave in the maximization argument , it is not
a convex–concave problem, and therefore in general the solu-
tion does not satisfy a saddle-point property. Nonetheless, it is
interesting to note that when for all ,
the minimax MSE estimator is also the solution to the max-min
problem

(35)

Thus, in the regime, the minimax estimate is also a saddle-point
solution.

To see this, recall that in the region considered, the minimax
MSE method is an MMSE estimator matched to ,

, and for . Now, the inner minimization
problem in (35) is that of minimizing the MSE when , ,
and are known. The solution therefore is the MMSE estimator
given by (3) and the resulting optimal MSE is [13]

(36)

Substituting , , and
into (36), the problem (35) becomes

(37)

Since the objective in (37) is monotonically decreasing in each
of the variables and monotonically increasing in each of the

and , the maximum is obtained at and
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for . Therefore, the max-min solution of
(35) is an MMSE estimator matched to these values.

B. Unstructured Uncertainty

We now treat the minimax MSE problem for the unstructured
uncertainty model

(38)

where the maximization is over perturbation matrices satisfying
with

(39)

and we defined

(40)

To develop a solution to (38) we rely on the following lemma,
the proof of which can be found, e.g., in [13].

Lemma 4: Let and be nonnegative definite matrices
with . Then .

From Lemma 4

(41)
Substituting (41) into (38), our problem becomes

(42)
The problem of (42) can be viewed as linear minimax MSE

estimation in which the noise covariance is known and is given
by , and and are subjected to uncertainty. This
minimax problem was considered in [13, Sec. 4], in which it was
shown that (42) can be formulated as a convex SDP [18]–[20],
which is the problem of minimizing a linear functional subject
to linear matrix inequalities. The main advantage of the SDP
formulation is that it readily lends itself to efficient computa-
tional methods [19], [20], which are guaranteed to converge to
the global optimum in polynomial time. Specifically, based on
the results of [13], (42) is equivalent to the SDP

(43)

subject to

(44)

Note that each of the matrices in (44) is indeed linear in the
unknowns.

In the special case in which is known so that ,
using Lemma 4 it follows immediately that the solution to the
inner maximization in (42) is , and the minimax
MSE method reduces to an MMSE estimator matched to

and .

IV. MINIMAX DIFFERENCE REGRET ESTIMATOR

To partially compensate for the conservative character of the
minimax MSE approach, in the next two sections we develop
competitive strategies in which we seek linear estimators with
MSE performance uniformly close to that of the MMSE es-
timator for all possible values of and satisfying (4),
where we assume that is completely specified. Thus, instead
of choosing a linear method to minimize the worst case MSE,
we now seek the linear estimator that minimizes the worst case
regret. In this section, we treat the difference regret, and in Sec-
tion V the ratio regret.

The difference regret is defined as the differ-
ence between the MSE of and the smallest possible
MSE attainable with an estimator of the form
when the covariances and are known, which we denote
by MSE . If and are specified, then the MMSE estimator
is given by (3) and the resulting optimal MSE is [13]

MSE (45)

Thus, we seek the matrix that is the solution to

(46)

where and have eigendecompositions of the form (4),

(47)

and

(48)

The minimax difference regret estimator is given by the fol-
lowing theorem.

Theorem 2: Let denote the unknown parameters in the
model , where is a known matrix with
rank , is a zero-mean random vector with covariance ,
and is a zero-mean random vector with covariance , un-
correlated with . Let where and are unitary
matrices and with , and let
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, where ,
, and

Then the solution to the problem

(49)
is

where with

(50)

Proof: As in the proof of Theorem 1, we first show that the
minimizing the worst case regret has the form

(51)

for some matrix . We then prove that must be a
diagonal matrix with diagonal elements given by (50).

To establish (51) we note that the regret of
(48) depends on only through and . There-
fore, using the same arguments as in the proof of Lemma 1

where is an orthogonal projection onto
the range of . Since the regret is strictly convex in (be-
cause in the uncertainty region), the optimal solution
is unique and therefore must satisfy

(52)

for some matrix . Denoting , (52) reduces
to (51).

Substituting , and of (51) into
(48), we can express as

(53)

Our problem then reduces to finding that minimizes

(54)

Since is strictly convex in , has a unique
global minimum. Now, as in the proof of Lemma 2 we can show
that for any diagonal matrix
with diagonal elements equal to , from which we conclude

that the optimal satisfies for any such , which in
turn implies that must be a diagonal matrix.

Denoting by the diagonal elements of , we can express
as

(55)
Thus, we need to solve independent problems of the form

(56)

where

(57)

and for brevity we omitted the index . To develop an explicit
expression for we note that the function

(58)

with is convex1 in . It follows that for fixed
and

(59)

is convex in for fixed , and convex in for fixed . Conse-
quently, the maximum of over a closed interval of or

is obtained at one of the boundaries. Thus,

(60)

Note that is a function of , and can be expressed as

(61)

Defining in a similar way the functions , , and
, the problem (56) can be formulated as

(62)
We now rely on the following lemma.

Lemma 5: The optimal value of (62) is given by
where

(63)

The proof of Lemma 5 is given in Appendix C. Below, we
provide some intuition into the optimality of .

1Indeed, the second derivative is given by 2bd=(c+ dx) which is nonnega-
tive for x � 0.
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Fig. 2. Illustration of the optimality of d when g(d) �

max (f (d); f (d)) for all d 2 I .

Fig. 3. Illustration of the fact that if g(d ) > max (f (d ); f (d )) for
some d < d , then g(d) intersects f (d) at two points.

We first note that the optimal solution must satisfy
, where

(64)

are the zeros of and , respectively. This follows from
the fact that the functions , , , are
monotonically increasing for and monotonically de-
creasing for . Now, the point is the unique intersec-
tion point in the interval of the functions
and . To show that this intersection is optimal it suffices
to prove that

(65)

where is equal to or , as illustrated in Fig. 2.
In Appendix B, we show that intersects and

at exactly one point in . Let denote the value at
which . It is easy to see that . Fig. 3 illus-
trates the fact that if for some

, then intersects at two points in which
is a contradiction to the fact that there is only one intersection
point. Similarly, it can be shown that if , then in-
tersects at two points in , so that (65) must be true.

Before discussing an interpretation of the minimax regret
method of Theorem 2 we note that this estimator does not
satisfy a saddle-point property. This follows from the fact that
the optimal objective value of the max-min problem which
results from interchanging the order of the minimization and
the maximization in (49), is . Indeed, the solution to the inner
minimization is the MMSE estimator of (3) which results in a
zero objective value.

A. MMSE Interpretation

The following corollary of Theorem 2 shows that the differ-
ence regret strategy can be interpreted as an MMSE estimator.

Corollary 1: Let denote the unknown parameters in the
model . Then, under the assumptions of Theorem
2, the solution to the problem

is an MMSE estimator matched to the covariance matrices
, , where ,

with

(66)

where

(67)

and , are arbitrary.
Proof: From (31) and (32) it follows that the MMSE esti-

mate of with and , given by Corollary 1
is , where with

(68)

where is given by (50).

Note that if , so that the th eigenvalue of the true
covariance of is equal to then, as we expect, .
Similarly, if , so that the th eigenvalue of the true
covariance of is equal to , then . When the output
SNR is high so that

(69)

and is approximately the geometric average of the bounds. Sim-
ilarly, when , then

(70)

Since the minimax difference regret estimator minimizes the re-
gret for the covariance matrices given by Corollary 1, we may
view these matrices as the “least favorable” in the regret sense.
These covariance matrices can also be viewed as estimators of
the true, unknown covariance. Specifically, considering for ex-
ample , each of the unknown eigenvalues of is estimated
as a weighted combination of the bounds and , where the
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weights depend explicitly on the uncertainty level of the corre-
sponding eigenvalue of the signal and noise covariances, and on
the matching singular value of .

The interpretation of Corollary 1 can also be used to imple-
ment the estimator of Theorem 2 in the case in which the com-
muting assumptions of (4) do not hold. Specifically, we can
choose an estimator of the form

(71)

where and are given by Corollary 1, and and are the
eigenvector matrices of and , respectively. This estimator
can be implemented whether or not (4) is satisfied.

B. Difference Regret Estimator for Known

We now consider the difference regret estimator in the spe-
cial case in which is completely specified. The scenario in
which is known has been previously treated in [13], and also
follows immediately from Theorem 2.

Suppose that , . From Theorem 2

(72)

Using Corollary 1, the difference regret approach is equivalent
to an MMSE estimator matched to

where

(73)

and , are arbitrary. Since
, we have that . In contrast, the

minimax MSE estimator of Theorem 1 in this case is matched
to an MMSE estimator with noise covariance eigenvalues

.
In the high- and low-SNR regimes, we have the approxima-

tions

.
(74)

Thus, in these regions, is an average of the boundary values
of the eigenvalues of , where for high SNR, is equal to
the arithmetic average, and for low SNR, is equal to the geo-
metric average.

V. MINIMAX RATIO REGRET ESTIMATOR

We now treat the problem of minimizing the worst case ratio
regret, which was suggested in [14] as an alternative to the min-
imax difference regret approach.

The ratio regret is defined as the ratio between
the MSE using an estimator and the smallest possible
MSE attainable with an estimator of the form

when the covariance matrices and are known. Thus, our
problem is

(75)

where

MSE

(76)

To ensure that MSE in the uncertainty region, we assume
that for at least on value of .

In Theorem 3 below, we show that the problem of (75) can
be formulated as an SOCP. Note, that SOCPs can be solved
very efficiently in polynomial time using standard software
packages, for example, the Self-Dual-Minimization (SeDuMi)
package [21], [22] for Matlab.

Theorem 3: Consider the setting of Theorem 2. Then the so-
lution to the problem

is

where and are the solutions to the
second-order cone program

(77)

subject to

(78)

with

(79)

Proof: We begin by noting that any problem of the form

(80)

is equivalent to

(81)
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which, in turn, can be written as

(82)

Therefore, (75) can be expressed as

(83)

where we defined

(84)

Next, we note that the optimal has the form ,
for some . This follows using a similar
argument to that used in the proof of Theorem 2. The problem
of (83) then reduces to finding that minimizes subject to

where

(85)

with

(86)

Thus, our problem can be formulated as

(87)

Now, as in the proof of Theorem 2

(88)

is convex in for fixed , and is convex in for fixed
, where for brevity we omitted the index . Conse-

quently

(89)

The proof then follows from noting that .

A. Alternative Derivation of the Minimax Ratio Estimator

In Theorem 3, we showed that the minimax ratio regret esti-
mator can be found by solving an SOCP in unknowns.
In this subection, we provide further insight into the estimator,
by developing an alternative formulation.

Specifically, the minimax ratio estimator, that is the solution
to (83), can be determined by first solving the problem

(90)

where is fixed. Let denote the optimal value of
in the problem of (90), and let be the unique value of

such that (as we show below in Proposition 1,
such a always exists, and is unique). Then, denoting by the
optimal value of with , we now show that and
are the solutions to of (83): Since and are feasible for

with , they are also feasible for . Now suppose,
conversely, that there exist feasible and for . It then
follows that . But since is decreasing in and

, we have that , from which we conclude
that , which is a contradiction since is the unique
value for which . Therefore, to solve we may first
solve the simpler problem , and then find by a line search
algorithm using, for example, bisection. Specifically, we may
start by choosing . For each choice of we compute

. If , then we increase , and if , then
we decrease , continuing until . Due to the continuity
and monotonicity properties of , established in Proposition
1 below, the algorithm is guaranteed to converge.

Proposition 1: Let denote the optimal value of in the
problem of (90). Then

1) is continuous in ;
2) is strictly decreasing in ;
3) there is a unique value of for which .

Proof: See Appendix D.

From Proposition 1, we conclude that instead of solving
of (83), we may solve of (90), which in some cases may
provide more insight. From the proof of Theorem 2 it follows
that the solution to is given by , where
is a diagonal matrix with diagonal elements that solve the
problem

(91)

where is given by (79). The optimal value is then
.

To illustrate the possible advantage of this approach, in the
next subsection we treat the case in which is known com-
pletely and is subject to uncertainty, and show that this
method leads to new insight into the optimal solution. The min-
imax ratio estimator for the case in which is known and
is uncertain is developed in [14], and can also be found by fol-
lowing similar steps as those in Section V-B.

B. Alternative Derivation for Known Signal Covariance

Suppose that is known, so that , .
In this case the problem of (91) reduces to

(92)

where for brevity we omitted the index , and

(93)
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with , . Using the same arguments as those used in
the proof of Lemma 5 it follows that the optimal , denoted ,
satisfies

(94)

where

(95)

In addition, if there is a unique point such
that , then is optimal.

If , then from (94) and (95) we have that .
Similarly, if , then from (94) and (95), .
Next assume that and . Then at

where

(96)

Since , . From the fact that , we can
show that . Thus, as long as is such that

(97)

or where

(98)

If , then . To see this, we first note that if
for all , then the optimal value of is

(99)

Furthermore, if for some , then
for all . This follows from the fact that and
are continuous, and for all . Thus,

to prove that it is sufficient to show that
for some . But this follows immediately from the

fact that .
We conclude that the optimal value of is given by

(100)

where

(101)

and the optimal value of is , with
we have (102) at the bottom of the

page. Finally, the minimax ratio regret estimator is equal to
where is a diagonal matrix with diagonal

elements that are given by (100), with chosen as the
unique value for which . Since
is continuous and strictly decreasing in , we can find by a
simple line search.

Note, that the minimax difference regret estimator of (72) has
the same form as the minimax ratio regret estimator, where
is given by (100) with .

From (31) and (32) it follows that we can interpret the min-
imax ratio regret estimator as an MMSE estimate of with least
favorable covariance where

,

,
(103)

and , are arbitrary.
In Section IV-B it was shown that the minimax difference

regret estimator is an MMSE estimator matched to a covariance
matrix with eigenvalues

(104)

Since the optimal value of is greater than (unless there is no
uncertainty), , , so that the minimax ratio
estimator is matched to a covariance matrix with eigenvalues
that are strictly smaller than the eigenvalues of the covariance
matrix matched to the minimax difference estimator.

VI. PERFORMANCE ANALYSIS

In previous sections, we proposed and developed three es-
timators for the linear model (1), for the case in which is
known and and are subject to uncertainties: minimax
MSE, minimax difference regret, and minimax ratio regret. The
performance of these methods clearly depends on the value of
the unknown covariances. For example, if the true eigenvalues
of and are equal to the worst case values, i.e.,
and , then the minimax MSE approach will have the
best performance, since it is designed to minimize the MSE for
this choice of parameters. However, for other values of these un-
knowns, the minimax different regret or ratio regret estimators
may perform better. One possible way of assessing the perfor-
mance of the three estimators is to compute the MSE of each
of the methods for the best possible choice of parameters, the
worst possible choice, and the nominal (average) parameters.
If, for example, the MSE of one of the estimators is consider-
ably lower than the MSE of the other estimators for the best
possible choice of parameters, and only slightly larger than the
MSE of the other strategies for the worst choice, then we may
prefer using this estimator. Thus, examining the performance
of the proposed methods for the worst case, best case, and nom-

.
(102)
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inal case can provide insight into their behavior, and can sug-
gest guidelines for choosing which estimator to use for a spe-
cific problem. We now demonstrate these ideas in the context of
a concrete example.

Consider the estimation problem in which

(105)

where is a length- segment of a zero-mean stationary first-
order autoregresive (AR) process with components so that

(106)

for some parameter , and is a zero-mean random vector un-
correlated with with covariance . We assume that we know
the model (105) and the eigenvectors of the true covariance ma-
trices and . The eigenvalues of are assumed to lie in
an uncertainty interval , where and

. Here denotes the th eigenvalue of the true
covariance matrix , and is a parameter that de-
fines the size of the uncertainty set. Similarly, the eigenvalues of

are assumed to lie in an uncertainty interval ,
where and with the th
eigenvalue of , and . In practice, the eigenvectors
of and as well as the uncertainty sets may not be given.
In this case, we may estimate these parameters from the data, as
described in [13], [14].

For any linear estimator of , we can find the worst
choice of , denoted , , that maximize the
MSE, and the best choice of , denoted , , that
minimize the MSE. Using Lemma 4 we have that

(107)

where

(108)

are the known eigenvector matrices of , and
, . Similarly

(109)

where , . Note,
that , , , and do not depend on the choice
of .

In Fig. 4, we plot the MSE of the minimax MSE (MX),
minimax difference regret (DRG), and minimax ratio re-
gret (RRG) estimators as a function of the SNR defined by

for , , , and .
The MSE of each of the estimators, which is given by

, is plotted
for three different choices of and : the worst case

, , the best case ,
, and the nominal (true) value ,

. As can be seen from the figure, in the worst case,

Fig. 4. MSE in estimating xxx as a function of SNR using the minimax MSE
(MX), the minimax difference regret (DRG), and the minimax ratio regret
(RRG) estimators, for three different choices of CCC and CCC : CCC , CCC
(worst), CCC ;CCC (nominal), and CCC , CCC (best).

the minimax MSE estimator has the best performance. This
result is of course expected, since this method is designed to
minimize the worst MSE. On the other hand, in the best case,
the performance of the minimax MSE estimator deteriorates
considerably. For , , the behavior of the
three estimators is very similar. In this example, we may prefer
using the difference regret approach over the minimax MSE
method, since the loss in performance of the minimax MSE
estimator in the best case is much more significant than the
loss in performance of the difference regret estimator in the
worst case. For the nominal value of , the estimators behave
roughly the same, with a slight advantage to the difference
regret strategy.

VII. CONCLUSION

We treated the problem of estimating a random vector in the
linear model , where the covariance matrix of

, the covariance matrix of and possibly also the model
matrix , are subjected to uncertainties. The main contribution
of this paper is to extend earlier results of [13], [14] to the setting
in which the noise covariance may not be known precisely,
and to introduce a simpler method of proof.

We developed the minimax MSE estimators for the case in
which and are all subject to structured or unstruc-
tured uncertainties. We then treated the setting in which is
known, and developed two competitive minimax strategies for
the structured uncertainty model: the difference regret and the
ratio regret estimators. As shown, earlier results of [13], [14]
follow directly from the more general case we treat here. How-
ever, the method of proof we present is considerably simpler
than that used in [13], [14]. Furthermore, using this new ap-
proach, we are able to gain more insight into the optimal es-
timators for cases treated in [13], [14]. For example, the results
of Theorem 1 can be used to obtain a closed-form expression for
the minimax MSE approach in the case in which is known,
and and are subject to uncertainties.
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In our derivation of the competitive minimax methods, we
assumed a specific model on the eigenvectors of , , ,
and . If the true eigenvectors do not obey this model, then
we can still apply our general results by exploiting the fact that
the competitive strategies can be viewed as MMSE estimators
with a specific choice of covariance matrices. Thus, we may
implement the competitive estimators in this case using the form
(3), where we replace the eigenvalues of and by their
estimated values, as given, for example, by Corollary 1.

APPENDIX A
PROOF OF LEMMA 3

To prove the lemma we first note that if , then
and .

Next, assume that . We first show that if , then
. Note, that if , then from (27) it follows that

we must have . Therefore, for , is mono-
tonically increasing and is monotonically decreasing. De-
noting and noting that ,
we conclude that for , , and for

, so that for any
such that . It follows that if , then .

Finally, we show that if , then . We first note
that if for all , then the optimal value of
is

(110)

and . Furthermore, if for some
, then for all . This follows from the

fact that and are continuous, and since ,
, and cannot intersect anywhere in . Thus, to prove

that it is sufficient to show that for
some . But this follows immediately from the inequality

, since

(111)

APPENDIX B
INTERSECTION POINTS OF THE FUNCTIONS (61)

In this appendix, we show that and intersect
at exactly one point in the interval , where

and are defined by (61), and and are
given by (64). We also show that each of the functions
and intersect and at exactly one point in .

If , then

(112)
or

(113)

Denoting by and the solutions to (112) and (113), respec-
tively, we have that

(114)
and, if , then

(115)
If , then there is no solution to (113),
since we are assuming that or . To show that

, suppose first that . In this case

(116)

which implies that , so that . If, on the other hand,
, then

(117)

so that . Similarly

(118)

and

(119)

so that . Thus, the unique intersection point in of the
functions and is .

We now show that intersects and at
exactly one point in .

Suppose that . Then

(120)
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or

(121)

Denoting by and the solutions to (120) and (121), respec-
tively, we have that

(122)

and

(123)

Since , clearly . On the other hand, using the fact
that and that

(124)

we have . Thus, for exactly one value
in .

Next, suppose that . Then

(125)

or

(126)

Denoting by and the solutions to (125) and (126), respec-
tively,

(127)

(128)

(129)

where (129) follows from adding and subtracting the term
to the numerator of (128). Simi-

larly, we can show that

(130)

Since , clearly . Using the fact that

(131)

, and for one value .
Since is equal to , where we replace and

by and , respectively, and is equal to where

we replace and by and , respectively, we have from (122)
and (123) that at the points

(132)

and

(133)

Similarly, from (129) and (130), at the points

(134)

and

(135)

APPENDIX C
PROOF OF LEMMA 5

To prove the lemma, we first show that .
When , we have that

, where

(136)

Therefore, the functions , , ,
are monotonically increasing, so that . When

, we have that

and , , , are monotonically de-
creasing. Therefore, .

If and , then if follows that .
Next, suppose that either or , and let denote

the interval containing . Then, we now show
that , where is the unique intersection point in of
the functions and , as proved in Appendix B. To
this end, it suffices to establish that

(137)

where is equal to or . If (137) holds, then

(138)

Since is monotonically deceasing in , and is
monotonically increasing in

(139)

where and . Therefore,
for any such that , and is optimal.
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Thus, to complete the proof of the theorem it remains to show
that (137) holds. In Appendix B, we showed that intersects

and at exactly one point in . Now, let denote
the value at which is minimized, i.e., the value for which

. Then

or (140)

so that . Since

(141)

and and are continuous, it follows that and
intersect at some point in the interval . Sim-

ilarly, and intersect at a point in . Now,
suppose that

(142)

for some . Clearly, since , and
for all . Since and

, (142) implies that intersects both
and in the interval .

If then, as illustrated in Fig. 3, this implies that
intersects at a point in and at a point

in , which contradicts the fact that there is only one
intersection point in . Similarly, if , then (142)
implies that intersects at a point in and
at a point in , which contradicts the fact that there is
only one intersection point in . Therefore, we conclude that

so that is optimal, which
completes the proof of the lemma.

APPENDIX D
PROOF OF PROPOSITION 1

To prove that is continuous in , we rely on the following
lemma.2

Lemma 6: Let

(143)

where is a continuous function in the variables and
the parameters , which are defined over a set , and is a
compact set. Then is continuous.

Proof: To prove Lemma 6, we show that if is a
sequence converging to a point in , then the sequence

converges to . To this end, it is sufficient to show
that every convergent subsequence of converges to

.
Let be a convergent subsequence of , and

define

(144)

2This proof is due to A. Beck.

Since is compact, there is a subsequence of , which we
denote by , that converges to a point in . Now, for
every

(145)

Since is continuous, and
as , where we used the

fact that because , every subsequence of
converges to . Taking the limit of (145) as we then
have

(146)

from which we conclude that

(147)

and

(148)

completing the proof of the lemma.

To apply Lemma 6 to the problem , we first note that fol-
lowing the proof of Theorem 2, the optimal has the form

, where is a diagonal matrix with diagonal
elements that are the solution to

(149)

where

(150)

We can therefore express as

(151)

with

(152)

Since the set is closed and bounded,
it is compact, and from Lemma 6, together with the fact that

is continuous, we conclude that is con-
tinuous. It then follows from (151) and Lemma 6, that if the min-
imization over can be confined to a compact set, then is
also continuous.

We now show that the optimal values of satisfy ,
so that the minimization in (151) can be confined to a compact
set. Let be arbitrary, and let . Since

, ,
and consequently, . Therefore, the optimal
value of can always be chosen to be nonnegative. Next, let
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be arbitrary, and let . Since
and , , and the optimal value

of satisfies . We conclude that can be expressed as

(153)

Since is continuous, it follows from Lemma 6 that
is also continuous, completing the proof of the first part of the
proposition.

The second part of the proposition follows from the fact that
by our assumption

Finally, to prove the last part of the proposition, we note that
since is strictly decreasing in , there is at most one value of

such that . To show that such a value always exists it is
sufficient to show that and for some and

, since is continuous. Now, as and
. This is because , for any choice of

and . Indeed, differentiating with respect
to and equating to , the minimal value of is
obtained at

(154)

and . It follows that for any choice of ,
and , , which implies

that . Therefore, there is a unique such that ,
completing the proof of the proposition.
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