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A Minimum Squared-Error Framework
for Generalized Sampling
Yonina C. Eldar, Member, IEEE, and Tsvi G. Dvorkind

Abstract—We treat the problem of reconstructing a signal from
its nonideal samples where the sampling and reconstruction spaces
as well as the class of input signals can be arbitrary subspaces of
a Hilbert space. Our formulation is general, and includes as spe-
cial cases reconstruction from finitely many samples as well as uni-
form-sampling of continuous-time signals, which are not neces-
sarily bandlimited. To obtain a good approximation of the signal
in the reconstruction space from its samples, we suggest two de-
sign strategies that attempt to minimize the squared-norm error
between the signal and its reconstruction. The approaches we pro-
pose differ in their assumptions on the input signal: If the signal
is known to lie in an appropriately chosen subspace, then we pro-
pose a method that achieves the minimal squared error. On the
other hand, when the signal is not restricted, we show that the min-
imal-norm reconstruction cannot generally be obtained. Instead,
we suggest minimizing the worst-case squared error between the
reconstructed signal, and the best possible (but usually unattain-
able) approximation of the signal within the reconstruction space.
We demonstrate both theoretically and through simulations that
the suggested methods can outperform the consistent reconstruc-
tion approach previously proposed for this problem.

Index Terms—Consistent reconstruction, generalized sampling,
interpolation, minimax approximation.

I. INTRODUCTION

D IGITAL signal processing entails representing a signal
by a set of coefficients and relies on the existence of

methods for reconstructing the signal from its samples. The
most common setting considered in the sampling literature is
that introduced by the Shannon-Whittaker sampling theorem,
in which the input signal is assumed to be bandlimited and the
samples of the signal are ideal, i.e., they are equal to the signal
values at a set of sampling points. The reconstructed signal is
also a bandlimited function, generated by integer shifts of the
sinc interpolation kernel. In practice, however, the input signal
is never perfectly bandlimited, and the sampling process may
not be ideal. Another drawback of the Shannon paradigm is the
difficulty in implementing the infinite sinc interpolating kernel,
which has slow decay.

To overcome these limitations of the traditional sampling
framework, a more recent approach is to consider a generalized
sampling scheme, in which the samples are obtained by first
linearly preprocessing the signal. The nonideal samples can
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then be represented as the inner products of the input signal
with a set of sampling vectors (associated with the acquisition
device), which span the sampling space [1]–[7]. Examples
include multiresolution [2], [8] and spline decompositions [3].
Reconstruction is obtained by forming linear combinations of a
set of reconstruction vectors that span a space . Since in this
framework, the reconstructed signal is constrained to lie in , if

is not in to begin with, then perfect reconstruction cannot
be achieved, regardless of the sampling and reconstruction
method. A natural question that arises from this formulation of
the sampling problem is whether the samples can be processed
prior to reconstruction such that the reconstructed signal is
close to in some sense.

In this paper, we design reconstruction strategies for the gen-
eralized sampling scheme, where we treat the problem of re-
construction from finitely many samples and from uniform sam-
ples of a prefiltered continuous-time signal in a unified way. The
only constraints we impose on the problem are that the sampling
process is linear and bounded, and the reconstruction is con-
strained to a subspace of an arbitrary Hilbert space . How-
ever, we do not require any specific constraints on the spaces
involved.

To ensure that the reconstruction is close to we may try to
minimize the squared-norm of the reconstruction error . If
the reconstruction space is contained in the sampling space

, then by proper preprocessing of the samples the minimal
squared-error approximation of in the space , given by the
orthogonal projection , can be obtained. However, as we
show in Section III, if does not contain the subspace , then
the squared error cannot be minimized over the entire space
of input signals.

The sampling framework we consider here was first treated in
[1] for the case in which the sampling and reconstruction spaces
are shift-invariant (SI) subspaces of , i.e., spaces generated by
translates of an appropriately chosen function. The reconstruc-
tion was obtained by first processing the samples by a digital
correction filter, designed such that is a consistent reconstruc-
tion of , namely it yields the same samples as . Fast itera-
tive methods leading to consistent approximation were devel-
oped in [9]. The consistent approach was then generalized in [5],
[7], and [10] to a broader class of sampling and reconstruction
spaces, as well as arbitrary input Hilbert spaces . Under a di-
rect-sum condition on the spaces, the consistent reconstruction
is given by where is the oblique projection
onto along the orthogonal compliment of . Note, however,
that the fact that and yield the same samples does not nec-
essarily imply that is close to . In fact, for an input not in

, the norm of the resulting error can be made arbitrarily
large, if is close to .

1053-587X/$20.00 © 2006 IEEE



2156 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE 2006

To obtain a good approximation for cases in which the con-
sistent method leads to large errors, we suggest two alternative
strategies that differ in their assumptions on the signal . We
first treat the case in which is known to lie in a subspace of

, and show that if the subspace is chosen appropriately, then
the squared error can be minimized over all signals in that space
leading to a reconstruction that is closer to than the consistent
method. When the input signal can be any vector in , and the
minimal error approximation cannot be achieved, we suggest
minimizing a worst-case error measure over all bounded norm
signals. We first consider minimizing the worst-case squared
error. This approach turns out to be overconservative resulting
in the trivial solution . To counterbalance the conserva-
tive behavior of this minimax strategy, we develop a competi-
tive approach, similar in spirit to the methods of [11] and [12],
in which is designed to minimize the worst-case regret in-
stead of the worst-case squared error. The regret is defined as
the difference between the squared error of and the minimal
attainable error in the ideal case when . The minimax
regret solution turns out to be linear, and is given by the double
orthogonal projection onto and . In contrast
with the consistent approach which can result in an arbitrarily
large reconstruction error, the regret strategy has the desirable
property that the squared error is bounded by twice the norm of

. In the case of SI subspaces of , our methods can be imple-
mented using linear time-invariant (LTI) discrete-time filters. A
particularly efficient implementation of these filters is possible
in spline spaces, based on the results of [3], [13]–[15].

We present a detailed comparison of the regret and consistent
methods, by analyzing the error resulting from both strategies.
In particular, we show that if the spaces and are sufficiently
far apart, or if has enough energy in , then the minimax re-
gret reconstruction is preferable to the consistent approach. Our
theoretical results are also demonstrated through simulations in
Section VIII.

The paper is organized as follows. The general sampling
framework we treat in the paper is introduced in Section II
together with some mathematical preliminaries. Section III
shows that the minimal squared error reconstruction cannot be
obtained in general. In Section IV we eliminate the dependency
on the signal by minimizing the error over a subspace of

. Two minimax reconstruction approaches are introduced in
Section V: minimax squared error and minimax regret. We first
treat the problem of linear reconstruction, and then suggest
a nonlinear design criterion whose optimal solution turns out
to be linear. The special case of sampling in SI subspaces is
discussed in Section VI. In Section VII we analyze the recon-
struction error resulting from the minimax regret approach,
and compare it with the error from the consistent strategy.
Simulation results are presented in Section VIII.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Sampling Formulation

We denote vectors in an arbitrary Hilbert space by lower-
case letters, and the elements of a sequence by . The
orthogonal projection operator onto a closed subspace of is
denoted by , and the orthogonal complement of is denoted
by . The Moore-Penrose pseudoinverse [16] of a bounded

Fig. 1. General sampling and reconstruction scheme.

transformation is denoted by , is the adjoint of , and
and are the null space and range space, respec-

tively. The inner product between vectors is denoted
as , and is linear in the second argument;
is the squared norm of . The direct sum between two closed
subspaces and is written as , and is the sum set

with the property . The
oblique projection1 [17] onto along is denoted by ,
and is defined as the unique operator satisfying

(1)

A set transformation corresponding to frame
vectors2 is defined by for all

. From the definition of the adjoint, if , then
.

We consider a general sampling problem in a Hilbert space
, in which the goal is to reconstruct a signal from a

sequence of samples . Our formulation of the problem
allows for a broad class of sampling strategies where the basic
constraint we impose on the sampling process is that it is
bounded and linear. From the Riesz representation theorem,
the samples can be modeled as the inner products of the signal

with a set of sampling vectors , so that ,
and the problem is to reconstruct the signal from its given
samples .

In principle, can be defined in a space that is larger than
the sampling space , spanned by the vectors . Therefore,
our problem is inherently ill-posed. To resolve this issue we con-
strain the reconstruction to a closed subspace of . Choosing
a set of vectors that span , the reconstruction of has
the form

(2)

for some coefficients that are a transformation of the sam-
ples . Denoting by and the sequences in with elements

and , respectively, we have that for some
transformation , which can be nonlinear. Using
set transformations we can express the sequence of samples as

, and the reconstruction as

(3)

where and are the set transformations
corresponding to the vectors and , respectively. The
sampling and reconstruction scheme is illustrated in Fig. 1.

1An oblique projection is a projection operator E satisfying E = E that is
not necessarily Hermitian. The notation E denotes an oblique projection
with range spaceW and null space S . IfW = S , then E = P .

2Frames are defined in Section II-B; for frame vectors the sum a[n]v
is guaranteed to converge.
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Fig. 2. Sampling and reconstruction in shift-invariant spaces.

A special case of Fig. 1, which we consider in detail in
Section VI, is when and
are vectors corresponding to uniform shifts of real generators
in . In this setting, the sampling and reconstruction scheme
of Fig. 1 can be formulated in terms of LTI filters, as depicted
in Fig. 2.

If is in , and and satisfy the direct-sum condition

(4)

then it was shown in [5], [7], and [10] that can be per-
fectly reconstructed from the samples by choosing

. With this choice of it follows from (7)
that the reconstruction is equal to

(5)

If , then it cannot be perfectly reconstructed using only
vectors in since given by (2) is always an element of

. Therefore, in this case the reconstruction of (5) no longer
equals . Nonetheless it has the property that it is a consis-
tent reconstruction [1], namely, it yields the same samples as

. However, the fact that and of (5) have the
same samples, does not guarantee that is close to . In fact,
using the relation we can express the
reconstruction error as , which can have arbi-
trarily large norm if is close to . Therefore, our problem
is to choose the transformation in Fig. 1 such that is a good
approximation of .

In Section II-B, we propose different strategies for designing
which attempt to control the squared-norm of the reconstruc-

tion error , and evaluate their performance. In particular
we show that in many cases we can choose such that is a
better approximation to than the consistent method. The solu-
tions to all the criteria we define turn out to be linear, leading to a
nice filtering interpretation in the SI case. Before proceeding to
our detailed developments, we next summarize the mathemat-
ical background and hypotheses.

B. Mathematical Preliminaries

In order to make the sampling problem of Fig. 1 well posed,
we need several mathematical hypotheses. First, we would like
to ensure that the sampling is stable so that the sequence of sam-
ples obtained by has finite energy for any fi-
nite-energy . Additionally, for the reconstruction to be
well defined, the sum must converge. Both prop-
erties can be satisfied by choosing the vectors and
such that they form frames for their closed span, which we de-
note by and , respectively.

Definition 1 ([18]): A family of vectors in a Hilbert
space is called a frame for a subspace if there exist
constants such that

(6)

for all .
The lower bound in (6) ensures that the vectors span
; thus, the number of frame elements, which we denote by ,

must be at least as large as the dimension of . If , then
the right hand inequality of (6) is always satisfied with

. Thus, any finite set of vectors that spans is a
frame for .

If the sampling vectors form a frame for , then it fol-
lows immediately from the upper bound (6) that the sequence of
samples is in for any signal that has bounded
norm, and therefore the sampling process is stable. Similarly, if
the vectors form a frame, then the sum con-
verges for any sequence [19].

Set transformations corresponding to frame sequences have
some nice properties, which we will exploit in our derivations.
In particular, if is a frame sequence for with set trans-
formation , then is bounded and . This implies
that and in Fig. 1 are both bounded. The overall sampling
and reconstruction scheme is then guaranteed to be stable if we
choose as a bounded transformation.

Another useful result on set transformations is given in the
following lemma.

Lemma 1: [20, Lemma 3.3] Let and
be bounded transformations on with

and , where . Then

1. ;
2. is a bounded operator from to ;
3. is equal to .
Using part 2 of the lemma, we can obtain an explicit construc-

tion of the oblique projection [10], [20]:

(7)

where and are bounded operators with and
. As a special case, the orthogonal projection

can be written as

(8)

In some cases, it is useful that and have the same dimen-
sion. The concept of dimension is well-defined in finite spaces.
In the infinite-dimensional case, this condition can be made pre-
cise by requiring that there exits a bijective (injective and sur-
jective) transformation from to , or equiva-
lently, that and are isomorphic. One way to guarantee that
such an isomorphism exists is to impose the direct-sum condi-
tion , as incorporated in the following proposition.
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Proposition 1: Let and be closed subspaces of a Hilbert
space with . Then is bijective.

Proof: We begin by showing that is injective. If
for some , then . But since

we conclude that and is injective.
To show that is surjective, let be arbitrary. Using

we can write where and
. Since

(9)

and is surjective.
In our analysis of the reconstruction error in Section VII, we

will use the concept of an angle between two closed subspaces
and of a Hilbert space [1], [21]

(10)

and the relations [1]

(11)

III. MINIMAL SQUARED-ERROR RECONSTRUCTION

A straightforward strategy to designing a reconstruction that
is close to is to minimize the squared-error . In this
approach, the transformation is the solution to the problem

(12)

Since , for any choice of

(13)

In the special case in which , the bound (13) can be
achieved with

(14)

Indeed, with this choice of

(15)

where we used the representation (8) of and , and the last
equality follows from the fact that . However, as we now
show, when is not contained in , the lower bound cannot be
achieved for all with a transformation that depends only
on the given samples .

Proposition 2: Let be any solution to

where and are bounded transformations with
, , and . Then for arbitrary choices of ,

cannot achieve the lower bound of (13).
Proof: To prove the proposition, suppose to the contrary

that there exits a solution achieving the lower bound that

depends only on the available samples . Consider the
signal defined by where is in but not in

(such a vector always exists since ) and .
For this choice, so that

(16)

On the other hand, since achieves the lower bound in (13), we
must have and

which implies that , or , contra-
dicting our assumption.

To circumvent the problem associated with minimizing the
squared error we develop two strategies which differ in their
assumptions on . In the first approach, we take advantage of
prior information on in the form of inclusion into a properly
chosen subspace. This knowledge will allow us to directly min-
imize the squared error, as we show in Section IV. The second
strategy treats the squared-error criterion over the entire space.
In this case, we eliminate the dependency of the squared error
on by considering a worst-case measure.

IV. MINIMAL SQUARED-ERROR RECONSTRUCTION

ON A SUBSPACE

We have seen in Proposition 2 that if , then the lower
bound in (13) cannot be achieved for all . However, this
does not preclude the possibility of achieving the bound for a
subset of input signals. Indeed, if we consider only signals

, then from (5) it follows that under the direct-sum condition
, perfect reconstruction is possible with

. We now generalize this result to a broader class of
input signals.

Suppose that is known to lie in a subspace such that

(17)

From the mathematical discussion of Section II-B it follows
that there is a linear bijection between and . As we now
show, this implies that the minimal error reconstruction can be
achieved by proper processing of the samples.

Theorem 1: Consider the problem

where is a closed subspace such that and
, are bounded operators with , . A

possible solution is where

(18)

and is any bounded operator with . With this
choice, is the minimal-norm solution .

Before proving the theorem, we note that from Lemma 1
the pseudoinverse is a well defined bounded operator.
Furthermore, it is shown in [20, Lemma 3.7] that the operator

is independent of the choice of .
Proof: We begin by noting that since , it can be

expressed as for some . In addition

(19)
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Multiplying both sides of (19) by and using Lemma 1,
we have that

(20)

We conclude that the only vector in with samples given by
is the vector

(21)

so that given we can reconstruct the vector exactly. Once we
know , the approximation in minimizing the squared error
is

(22)

where we used (8). Finally, since ,

(23)

Here we relied on the fact that from (7), ,
and since , we have .

We now consider two special choices of . First, assume that
. In this case, the condition is always

satisfied, and from Theorem 1

(24)

In Theorem 2 we will see that this solution is equivalent to the
minimax regret transformation, developed in Sections V-A-II
and V-B. This implies that the regret approach minimizes the
squared error over all .

As another example, suppose that , and let
. With this choice

(25)

where we used the fact that
; the last equality follows from Lemma 1. Thus,

is equal to the consistent reconstruction transformation, which
agrees with the fact that the consistent strategy minimizes the
squared-norm error over all values of .

A. Geometric Interpretation

We have seen that if we know that is in , where
, then we can always obtain the minimal norm reconstruction

given the samples . We now provide a geomet-
rical interpretation of this result.

We first note that sampling with sampling vectors in , is
equivalent to sampling its orthogonal projection onto , denoted
by . This follows from

(26)

Since and the vectors span , is uniquely de-
termined by the samples . Therefore, knowing is equiv-
alent to knowing . The reconstruction problem then becomes
that of reconstructing a signal in from its orthogonal projec-
tion onto a subspace . In Fig. 3 we illustrate the fact that
there is only one vector in whose orthogonal projection onto

Fig. 3. Illustration of minimal-norm reconstruction x̂ = P x of x 2 A from
x = P x, with H = A � S .

is . In our setup we are constrained to obtain a reconstruc-
tion in . But, since we can determine from , we can also
determine , which is the minimal-norm reconstruction in

.

V. ROBUST SQUARED-ERROR CRITERIA

We now consider the general formulation of the sampling
problem in which is an arbitrary vector in . In this setting
we propose two different strategies. In the first approach, we
seek a linear transformation that is independent of the sam-
ples , which minimizes a worst-case error measure. The second
method allows for more general nonlinear choices of . Inter-
estingly, we show that these two design strategies lead to the
same solution.

A. Linear Minimax Design

1) Minimax Reconstruction: One approach to eliminating
the dependence of the squared error on is to minimize a worst-
possible error. However, if can grow without bound, then so
can the squared error. Therefore, to formulate a well-posed cri-
terion, we minimize the worst-case error on the set of bounded-
norm signals .

To further simplify the problem, we first treat the case in
which is constrained to be linear so that with

independent of , leading to the following minimax design
criterion:

(27)

where is some positive (finite) constant. Note that the
criterion (27) ignores the fact that the true value of satisfies

. Instead, for each possible value of we try to
obtain a small error with respect to the samples that we would
obtain for , rather than the given samples .

It turns out that (27) is too conservative and results in the
trivial solution . To see this, we note that

(28)
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where the first inequality results from exchanging the order of
the minimum and maximum, and the second inequality stems
from the fact that the best approximation to in is .
Now, with , we have that

(29)

and, therefore, is a solution to (27).
2) Minimax Regret Reconstruction: To counterbalance the

conservative behavior of the minimax approach, instead of min-
imizing the worst-case squared-norm error, we now consider
minimizing the worst-case regret. The regret is defined as the
difference between the squared-norm error and the smallest pos-
sible error , where

(30)

Beginning with a linear reconstruction, our problem is to seek
an that is a solution to

(31)

The reconstruction is then given by . Expressing as
, we have that

(32)

and the problem (31) becomes

(33)

A solution to (33) is given in the following theorem.
Theorem 2: Consider the problem

where and are bounded transformations with
and . A possible solution is

which is independent of . The resulting reconstruction is
.

Proof: The maximum squared error can be bounded as

(34)

where we used the fact that for we have .
Thus

(35)
We now show that with , the lower bound in (35) is
achieved. Indeed, in this case

(36)

and

(37)

Using Lemma 1 it follows that both of the operators
and are bounded, so that of Theorem

2 is a bounded operator.
An interesting feature of the minimax regret reconstruction

of Theorem 2 is that it does not depend on the norm bound .
Therefore, minimizes the worst-case regret error
over all bounded inputs , regardless of the norm of . Further-
more, in the derivation of the minimax regret reconstruction we
do not require the direct-sum condition , which
is necessary in the development of the consistent approach [5],
[7], [10].

Another desirable property of the minimax regret solution
is that the resulting reconstruction error is always bounded by
twice the norm of . Specifically, expressing the error as

(38)

we have that

(39)

Tighter error bounds are derived in Section VII.

B. Nonlinear Minimax Regret Design

Next, we consider minimizing the worst-case regret over all
possible values of that are consistent with the given samples

, which results in the problem

(40)

In this case the reconstruction is given by where
is the solution to (40) and in general can depend

nonlinearly on . Interestingly, the solution to (40) is linear, and
is the same as the linear minimax regret solution.

Theorem 3: Consider the problem
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where and are bounded transformations with
and . A possible solution is

The resulting reconstruction is .
Proof: First we note that any satisfying and

is of the form for some
where

and . Thus

(41)

where we defined , and
stands for the real part. Now, the maximum in (41) is

achieved when

(42)

Indeed, let be the vector for which the maximum is ob-
tained. If , then (42) is trivially true. Otherwise,
we can define

(43)

Clearly, and . In addition,
and so that the objec-

tive in (41) at is larger than the objective at unless (42) is
satisfied.

Combining (42) and (41) our problem becomes

(44)

Denoting the optimal objective value by , and replacing the
order of minimization and maximization,

(45)

where we used the fact that with
equality for , or

(46)

Thus, for any choice of

(47)

Fig. 4. Illustration of minimax regret reconstruction x̂ = P P x of x from
x = P x.

The proof then follows from the fact that given by (46)
achieves the lower bound (47).

In Fig. 4 we illustrate the minimax regret reconstruction. We
have seen already in Section IV-A that knowing the samples
is equivalent to knowing . Thus, our reconstruction
problem is that of approximating an arbitrary in from its
orthogonal projection onto , where the reconstruction is
constrained to lie in . As illustrated in the figure, the minimax
regret solution chooses the orthogonal projection of onto .

VI. RECONSTRUCTION IN SHIFT-INVARIANT SPACES

The reconstruction algorithms of Theorems 1, 2, and 3 were
derived for general subspaces of a Hilbert space . An inter-
esting special case of this setup is when and and

are real SI subspaces, each spanned by the integer shifts of
a fixed generating function [22], [23]. In this case, as we now
show, and reduce to discrete-time LTI filters, and the
sampling and reconstruction can be implemented using contin-
uous-time LTI filters.

Suppose that is a real signal in , and that

(48)

where and are the real generators of and
. To ensure that the vectors and

form frames for and , respec-
tively, we must have that [24]

(49)

for some and , where
, are the continuous-time Fourier transforms of the

generators , , and , are the set of frequencies
for which and , respectively. In
this case, the samples , which are given by

(50)
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correspond to samples at times of the output of a filter with
impulse response , with as its input. Here
denotes the continuous-time convolution between the signals

and , and . The reconstructed signal
can be viewed as the output of a filter with impulse response

, with an impulse train whose values are the corrected mea-
surements as its input. In the minimax regret reconstruction

and in the subspace approach . We now
show that in both cases the samples can be obtained by fil-
tering the samples with a discrete-time LTI filter.

Denoting by and the set transformations corresponding
to and respectively, it is easy to see that
is equivalent to filtering the sequence by a discrete-time LTI
filter with discrete-time Fourier transform (DTFT)

(51)

Similarly, the pseudoinverse can be represented by a
filter with DTFT

;
(52)

where if . Combining (51) and (52), it
follows that the corrected samples can be obtained
from using a discrete-time filter with DTFT

;
.

(53)

The sampling scheme of Fig. 1 then reduces to that depicted in
Fig. 2.

Applying the Cauchy-Schwartz inequality to the numerator
of (53), we see that the regret reconstruction filter (53) has the
property that its magnitude is no larger than 1.

Next, we consider subspace reconstruction with of The-
orem 1 assuming that is in a SI subspace generated by a
function , such that . This direct-sum condi-
tion can be verified quite easily in SI systems by exploiting the
following result.

Proposition 3: [25, Proposition 4.8] Suppose that
and are frame sequences

for and , and let , be the set of frequencies for
which and , respectively. Then

if and only if and there exists a
constant such that

If we choose a generator with frequency response
satisfying the condition of Proposition 3, then the subspace
transformation is equivalent to an LTI filter with DTFT

; (54)

where , are defined by (51) and we have
used the fact that on , since .

TABLE I
IMPLEMENTATION OF THE VARIOUS RECONSTRUCTION

FILTERS FOR B-SPLINE SPACES

Finally, the consistent reconstruction scheme for SI spaces,
developed in [1], has the same form as in Fig. 2, where the filter

is specified by

;
.

(55)

If , then from Proposition 3 the filter is
well defined. Note, however, that although the magnitude of the
filter is bounded, it can be arbitrarily large. This is in contrast
with the magnitude of the regret filter, which, as we have seen,
is no larger than one.

A. Efficient Implementation With Splines

A special class of SI spaces, that is popular in applications,
is the class of spline spaces which are generated by a spline
function [3], [13], [14]. When and are spline spaces, we
can use the results of [13], [14] to obtain a particularly efficient
implementation of the subspace and minimax regret filters.

Suppose that and are SI spaces generated by splines of
order and , respectively, so that ,

in (48), where is a symmetrical B-spline of order
, defined recursively by with

;
otherwise.

(56)

The discrete representative of a continuous spline function
is the discrete and symmetric finite impulse response

(FIR) spline filter , which is obtained by sampling the
continuous spline: . One of the main advan-
tages of using splines is the ability to compute many operations
using the discrete representatives (see for example [15]). In
particular, in our context, the infinite sums in the definition of
the filters (53)–(55) can be obtained explicitly.

Consider the Fourier transform defined by (51)
which is the transform of the discrete-time sequence

(57)

If and are splines, then

(58)

where we used the symmetry of the spline function and
the convolution property .
Therefore, is simply the transform of , and

is the transform of its convolutional inverse, denoted
. Each of the filters (53)–(55) can then be

implemented using discrete-time spline filters of appropriate
order, as summarized in Table I. In the table, , and
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TABLE II
COMPARISON OF RECONSTRUCTION METHODS

denote the orders of the spline generators of the subspaces ,
and , respectively.
Note that when (i.e., ) all the filters reduce

to resulting in .

VII. ERROR ANALYSIS

The reconstruction algorithms we discussed in previous sec-
tions are based on minimizing an appropriate cost function, and
differ in their assumptions on the input signal. The various ap-
proaches are summarized in Table II. In the table, the notation

means that is a function of ,
, and .
In Sections VII-A and B, we derive tight bounds on the

error norm when using the regret and consistent reconstruction
methods. Based on these bounds, in Section VII-C, we compare
the performance of both approaches. Before proceeding to
the detailed development, we note that if we know a priori
that lies in a subspace such that , then the
subspace technique will yield the minimal error approximation
of and therefore is optimal in the squared-norm sense. When

this strategy reduces to the minimax regret method,
while if , then we obtain the consistent reconstruction.
Unfortunately, in many cases we do not have prior knowledge
on the subspace in which is contained. Therefore, we must
resort to the minimax regret or the consistent techniques. Our
analysis shows that if the spaces and are sufficiently
far apart, or if has enough energy in , then the minimax
regret method is preferable in a squared-norm error sense to the
consistent reconstruction approach. These analytical results are
also demonstrated through simulation in Section VIII.

A. Error Bounds Using the Minimax Regret Method

Theorem 4 provides tight bounds on the error resulting from
the minimax regret design strategy.

Theorem 4: Let denote the error
resulting from the minimax regret reconstruction of Theorem 3
and let be the optimal error in the squared-
norm sense. Then

(59)

where and are defined in (10).

Before proving the theorem, we note that if we know the norm

bound , then with

strict equality if .
Proof: Writing

we have that

(60)

Note that for , , so that
the minimax regret reconstruction is optimal. If , then

and we can rewrite (60) as

(61)

where we defined . Since is a normalized
vector in which is orthogonally projected onto , we can
use the definitions in (10) to obtain

(62)

Combining (62) with (61) and (11), results in (59).
If achieves the maximum (minimum)3 angle with ,

then with , where , we achieve
the upper (lower) bound of (59), and the bounds are tight.

B. Error Bounds Using the Consistent Method

An upper bound on the norm of the error resulting from the
consistent reconstruction
was developed in [1] using

(63)

Specifically, it was shown that

(64)

Note that although implies [21],
with proper choice of and , the reconstruction error can be
made arbitrarily large.

We now show that using (63) we can also obtain a tight lower
bound on the error (this bound is usually higher than the trivial

3Here we assume that the inf and the sup in (10) can be replaced by min and
max, respectively. We refer the reader to [1, Theorem 2] for sufficient conditions
for the above to hold, in the case of SI spaces.
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Fig. 5. Regions of ke (x)k in which the regret reconstruction leads to a smaller error than the consistent approach, and vice versa.

bound stated in [1]). If
, then the consistent reconstruction is optimal.

Next, suppose that , which occurs if and only if4

. In this case, we derive from (63)

(65)
obtaining the tight lower bound

(66)

Note that with equality only if (in
which case ). Combining (64)
and (66)

(67)

As in the case of the bounds (59), it can be shown that the bounds
of (67) are tight, by taking which achieves the max-
imum (minimum) angle with respect to and constructing

where satisfies (so that
).

C. Bound Comparison

Using the bounds in the previous subsections we can identify
regions of for which the regret approach is prefer-
able to the consistent method, for all values of , and vice versa.
Specifically, if the upper bound in (59) is smaller than the lower
bound in (67), then the norm of the error resulting from the con-
sistent reconstruction scheme will be larger than that resulting
from the regret approach. Manipulating the equations, it can be
shown that this occurs when

(68)

where the constant is given by

(69)

Since the numerator of (69) is no larger than 1, a sufficient con-
dition to ensure a lower error using the regret reconstruction is

(70)

Evidently, if is close to and most of the signal energy is
within the sampling space, then the minimax regret method will
result in a lower error than the consistent approach.

4An equivalent claim is e (x) = 0 if and only if e (x) = 0. Indeed,
when e (x) = 0, trivially e (x) = 0. On the other hand, assuming
e (x) = 0, (63) implies e (x) 2 W . Since e (x) 2 S , and
W \ S = f0g, we must have e (x) = 0.

Fig. 6. Comparison of the minimax regret reconstruction (P P x) and
consistent reconstruction (E x) for two different choices of W (a) W
“far” from S (b) W “close” to S .

Similarly, by comparing the worst-case bound on the consis-
tent reconstruction error with the best-case bound on the regret
error, we can show that if

(71)

where

(72)

then the consistent reconstruction scheme will result in a lower
error. A sufficient condition is

(73)

Using (10) and (11), we can readily see that by com-
paring the numerators and denominators of the two terms. These
results are illustrated in Fig. 5.

As evident from the figure, when is large (i.e.,
most of the signal energy is not within the reconstruction space),
or the bound is small (i.e., most of the signal energy
is within the sampling space and is ’close’ to ) the regret
scheme will outperform the consistent reconstruction method.
Conversely, for small values of , the consistent ap-
proach is preferred. These results are intuitive as illustrated ge-
ometrically in Fig. 6. In Fig. 6(a), we depict the consistent and
regret reconstruction when is far from . As can be seen in
the figure, in this case the error resulting from the consistent so-
lution is large with respect to the regret error. In Fig. 6(b), and

are close, and the errors have roughly the same magnitude.

VIII. EXAMPLES

We now present several examples illustrating the minimax
regret reconstruction and compare it with the consistent method.
In Section VIII-A, we consider a speech processing example,
and in Section VIII-B we provide an image processing example,
which also demonstrates the error analysis of Section VII.
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A. Speech Processing Example

Suppose we sample a continuous-time speech signal
using a nonideal sampler, so that the samples are equal to
the average of the signal over intervals of length

(74)

The samples can be obtained by filtering with a filter
whose impulse response is given by

;
otherwise

(75)

and then sampling the output at times . The filter
can be viewed as a (nonideal) low-pass filter (LPF). In the sim-
ulations shown, we use and . The
reconstructed output is obtained from the transformed se-
quence using an interpolation kernel , i.e.,

, where we choose as a nonideal LPF
with support on which approximates an ideal
LPF with cutoff frequency 2 kHz.

For the purpose of simulation we approximate the contin-
uous-time signal with a discrete sequence on a fine
grid. The signal was chosen as a speech fragment, taken from
the Timit database [26], at a sample rate of 8 kHz. The contin-
uous-time integration kernel is approximated by the dis-
crete filter

;
otherwise

(76)

with samples. The ideal sampling is implemented by
downsampling the filter output with a decimation factor of 2.
The (nonideal) LPF followed by decimation can be described
by proper construction of the sampling matrix .

To implement the reconstruction we use a linear-phase FIR
filter of order 14 (with cutoff frequency 2 kHz) as the interpola-
tion kernel. Here as well, the discrete-time interpolation kernel
simulates the continuous-time kernel, by constructing it over the
8 -kHz fine grid and upsampling the input sequence by a factor
of 2, prior to filtering. The upsampling followed by the filtering
operation can be described by proper construction of the matrix

. The frequency responses of the nonideal LPFs are presented
in Fig. 7. Fig. 8 shows an example of an input sequence
and 3 different reconstructed signals, corresponding to ,

(consistent reconstruction) and of
Theorems 2 and 3. As can be seen from the figure, the results of
direct reconstruction are poor. This is despite the fact that delay
and gain compensations were applied for this method.5 In par-
ticular, the reconstruction filter was multiplied by a factor of 2
as custom in a down-up sampling scheme with a factor of 2. As
can be seen from the figure, the consistent and minimax regret
methods perform much better. However, it can be seen that the

5Such compensations are not required in the consistent and regret methods,
as they are taken care of automatically by H .

Fig. 7. Frequency responses of the nonideal LPFs.

Fig. 8. Original speech fragment x[a] and the reconstructed signal using three
different methods: direct, consistent, and minimax regret.

minimax regret reconstruction leads to better results than the
consistent solution. For statistical significance, the experiment
was repeated with 1000 different sections of speech of length
200 samples each, and we evaluated the normalized error norm

for each fragment. The average normalized er-
rors obtained where 0.83, 0.744, 0.413, for the direct, consis-
tent, and minimax regret methods, respectively.

We also note that subjective listening tests performed for this
setup, confirmed that the minimax regret approach outperforms
the other methods.

B. Image Processing Example

We next consider an image processing example, with the goal
of partially demonstrating the error analysis of Section VII, in
the special case of spline subspaces. To this end, we assume
that the sampling and reconstruction spaces are generated by
splines of order and , respectively. In this ex-
ample, we take the input signal to be the 512 512 gray-scale



2166 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE 2006

Fig. 9. Evaluation of the normalized error kx� x̂k = kxk for the different
reconstruction methods. The relative energy of the input signal within the
sampling space (spline of order zero) and the reconstruction space (spline of
order 2) is determined by the parameter �.

Lena image. To obtain a continuous-time representation for the
image, we assume the following model within each axis:

(77)

where is a B-spline generator of order , as defined in
Section VI-A, and , are the spline coefficients. Thus, within
each axis we model the image as present both in the sampling
space and in the reconstruction space, where the parameter

controls the amount of energy of our signal within each of
these spaces. We note that the suggested convex representation
preserves the values of the image on the original grid.

As the given image is known only at a discrete grid, we
first calculate (within each axis) the spline coefficients ,

of (77) to obtain a continuous-time representation for the
image. These coefficients can be computed by direct B-spline
filtering [13] with the symmetric IIR filter (to
obtain ) or (to obtain ). For example,

, where are the given pixel values.

The samples can then be obtained directly from the
sequences , as

(78)

where we used our model (77) for and evaluated spline inner-
products based on the results in [13], [14]. Given the samples

, we compute using three different choices of : No
correction at all, i.e., the direct method , consistent recon-
struction and regret reconstruction .
The signal is then given by . Under
this model, we can compute the exact value of the error in the
continuous-time domain, as it only involves the computation of
B-spline inner products.

In Fig. 9, we plot the normalized error using
the different methods (direct, consistent, regret, and the optimal
(but usually unattainable) least-squares reconstruction ).

As can be seen from the figure, when is small, most of the
energy of the signal lies in the reconstruction space and the con-
sistent approach outperforms the regret method. On the other
hand, when is close to one, most of the signal energy is in the
sampling space and the regret strategy is superior. This example
also demonstrates that in the current setup, the direct reconstruc-
tion leads to the poorest results. Finally, we note that this simu-
lation suggests a way to obtain bounds on the constants and

of (69) and (72), respectively, when direct calculations of
these quantities is difficult. Specifically, since at (there

was calculated to be )
the regret scheme outperforms the consistent reconstruction, we
conclude that for spline subspaces with , ,
must be smaller than 0.75. Using similar arguments, must be
larger than 0.5.

IX. CONCLUSION

In this paper, we treated the problem of sampling and recon-
struction in general vector spaces, using the squared-norm error
as the performance measure. If the input signal lies in an ap-
propriate subspace of , then we showed that a linear recon-
struction can be obtained that minimizes the squared-norm error.
However, if is an arbitrary input signal, then the squared error
cannot be minimized. Instead, we proposed a minimax regret
approach that minimizes the worst-case difference between the
squared error and the smallest possible error. We showed that
the resulting reconstruction can be interpreted geometrically in
terms of the orthogonal projections onto the sampling space
and the reconstruction space . We also considered efficient
implementations of the proposed schemes in the case of spline
subspaces.

Finally, we compared the performance of the minimax re-
gret solution with that of the previously proposed consistent ap-
proach, and demonstrated both analytically and through simu-
lation that the minimax regret method can often outperform the
consistent reconstruction strategy. We then identified the regions
in which each of the approaches should be used.
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