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Abstract

A translation-invariant denoising method based on the minimum description length (MDL) criterion and tree-
structured best-basis algorithms is presented. A collection of signal models is generated using an extended library of
orthonormal wavelet-packet bases, and an additive cost function, approximately representing the MDL principle, is
derived. We show that the minimum description length of the noisy observed data is achieved by utilizing the
shift-invarient wavelet packet decomposition (SIWPD) and thresholding the resulting coe$cients. This approach is
extendable to local trigonometric decompositions, and corresponding procedures to optimize either the library of bases
or the "lter banks used at each node of the expansion-tree are described. The signal estimator is e$ciently combined with
a modi"ed Wigner distribution, yielding robust time}frequency representations, characterized by high resolution and
suppressed interference-terms. The proposed method is compared to alternative existing methods, and its superiority is
demonstrated by synthetic and real data examples. ( 1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Wir praK sentieren eine translationsinvariante Denoising-Methode, die auf dem Minimum Description Length (MDL)
Kriterium und tree-structured best-basis Algorithmen basiert. Wir erzeugen eine Sammlung von Signalmodellen mit
Hilfe einer erweiterten Bibliothek von orthonormalen Wavelet-packet Basen. Weiters wird eine additive Kostenfunktion,
die naK herungsweise das MDL Prinzip repraK sentiert, abgeleitet. Wir zeigen, da{ die minimale BeschreibungslaK nge der
beobachteten verrauschten Daten durch ein Thresholding der shift-invariant Wavelet-packet (SIWPD) Koe$zienten
erreicht wird. Dieses Verfahren kann auf lokale trigonometrische Signalentwicklungen erweitert werden. Die
entsprechende Optimierung der ZugehoK rigen Bibliothek von Basen bzw. der FilterbaK nke, die an jedem der Knoten
des Entwicklungsbaumes verwendet werden, wird in der vorliegenden Arbeit beschrieben. Wir kombinieren
unseren SignalschaK tzer mit einer modi"zierten Wignerverteilung. Die daraus resultierenden robusten Zeit}Frequenz
Darstellungen haben hohe Au#oK sung und reduzierte Interferenzterme. Das vorgeschlagene Verfahren wird mit
alternativen existierenden Verfahren verglichen. Die UG berlegenheit der neuen Methode wird an Hand von
synthetischen und natuK rlichen Daten demonstriert. ( 1999 Elsevier Science B.V. All rights reserved.

Re2 sume2

Nous preH sentons une meH thode de deH bruitage invariante en translation, reposant sur le critère de Longueur de
Description Minimale (LDM) et sur des algorithmes de meilleures bases structureH s en arbres. Une collection de modèles
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de signaux est geH neH reH e en utilisant une librairie eH tendue de bases de paquets d'ondelettes orthogonales, et nous deH rivons
une fonction de cou( t additive, repreH sentant approximativement le principe LDM. Nous montrons que la Longueur de
Description Minimale des donneH es bruiteH es observeH es est atteinte en utilisant la deH composition en paquets d'ondelettes
invariants en deH calage et en seuillant les coe$cients reH sultants. Cette approche est extensible à des deH compositions
trigonomeH triques locales, et nous deH crivons des proceH dures correspondantes pour optimiser à la fois la librairie de bases
et les bancs de "ltres utiliseH s à chaque nwud de l'arbre d'expansion. L'estimateur du signal est combineH e$cacement avec
une distribution de Wiener modi"eH e, produisant des repreH sentations temps}freH quence robustes, caracteH riseH es par une
haute reH solution et des termes d'interfeH rence supprimeH s. La meH thode proposeH e est compareH e à des meH thodes existantes
alternatives, et sa supeH rioriteH est deHmontreH e par des exemples de donneH es syntheH tiques et reH elles. ( 1999 Elsevier Science
B.V. All rights reserved.

Keywords: Denoising; Signal estimation; Shift-invariant; Wavelet packet; Minimum description length; Best basis;
Time}frequency representation; Wigner distribution

1. Introduction

The use of wavelet bases for estimating noisy
signals has been the object of considerable recent
research. Traditional methods often entail noise
removal by lowpass "ltering, thus blurring sharp
signal features. In contrast, wavelet-based methods
show good performance for a wide diversity of
signals, including those containing jumps, spikes
and other nonsmooth features [17,11,12]. The
wavelet shrinkage method (Donoho and Johnston
[19]) is based on transforming the noisy data into
a "xed wavelet basis, where soft or hard thresh-
olding is applied to the resulting coe$cients. The
subsequent synthesis yields the desired signal. It
was recognized that such a denoising scheme is
practically restricted by the extent to which the
transform compresses the unknown signal into few
signi"cant coe$cients [18]. Accordingly, adaptive
transforms such as the wavelet packet and local
trigonometric decompositions (WPD, LTD) [10],
appear to be quite promising [16,20,33].

Several approaches and measures to selecting the
`besta basis and threshold value, leading to the best
signal estimate, have been proposed. In [16,20], the
adapted basis and threshold selection are based on
a criterion on minimum mean-squared error. In
[3], a complexity-penalized functional is de"ned
using the same threshold, and a subset of basis
functions is chosen from a prescribed collection of
waveforms. Saito [33] proposed to use an informa-
tion-theoretic criterion, the minimum description
length (MDL) principle [32], for the noise removal.

He suggested that the MDL criterion provides the
best compromise between the estimation "delity
(noise suppression) and the e$ciency of representa-
tion (signal compression). Unfortunately, the cost
function associated with this method is not addi-
tive. Thus, he employed the Shannon entropy as the
primary cost function for determining the best
basis, and the MDL principle merely as a second-
ary criterion. In [21,25], the MDL principle is
further investigated to derive e$cient procedures
for selecting the best basis as well as the threshold
values. They show that it is possible to de"ne an
additive `denoisinga criterion so that the conven-
tional WPD remains applicable.

Coifman et al. [12,2,33] observed that denoising
with the conventional wavelet transform and WPD
may exhibit visual artifacts, such as pseudo-Gibbs
phenomena in the neighborhood of discontinuities
and arti"cial symmetries across segmentation
points in the frequency domain. These artifacts are
related to the shift-variant representation, and
therefore can be reduced by averaging the transla-
tion dependence: applying a range of shifts to the
noisy data, denoising the shifted versions with the
wavelet transform, then unshifting and averaging
the denoised data. This procedure, termed Cycle-
Spinning, generally yields better visual performance
on smooth parts of the signal. However, transitory
features may be signi"cantly attenuated [35]. Fur-
thermore, the MDL principle and related informa-
tion-theoretic arguments cannot be applied.

Another approach to attaining shift-invariance is
to optimize the time localization of the signal, so
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that its features are well-aligned with the basis-
functions. In the case of WPD, Pesquet et al.
[28,29] suggested to adapt the shift of the signal as
follows. (i) To each node of the expansion tree
assign an information-cost by averaging the Shan-
non entropy over all translations. (ii) Determine the
best expansion tree using the conventional WPD
algorithm of Coifman and Wickerhauser [10]. (iii)
Compare the entropy of the 2i orthonormal repres-
entations resulting from 2i di!erent shift-options,
where i is the number of nodes in the best ex-
pansion tree, and choose that representation
(shift-option) which minimizes the entropy. This
procedure is sub-optimal compared with the shift-
invariant wavelet packet decomposition (SIWPD)
[5,6], since the expansion tree is determined by the
averaged entropy. Additionally, the shift-options in
step (iii) are examined one by one, whereas the
SIWPD not only provides a recursive selection
method for the optimal shift, but also o!ers an
inherent trade-o! between the computational com-
plexity and the information cost.

In this paper, we present a translation-invariant
denoising method, based on the SIWPD and the
MDL criterion. An extended library of wavelet-
packet bases [6] is employed for generating a
collection of competing models, and the MDL
principle is applied for approximating the descrip-
tion length of the observed noisy data. We show
that minimum description length is attainable by
optimizing the expansion-tree associated with the
SIWPD. The optimal signal estimate is sub-
sequently obtained by thresholding the resulting
coe$cients. The proposed method is extendable to
other adaptive transforms, e.g., the shift-invariant
adaptive-polarity local trigonometric decomposi-
tion (SIAP-LTD) [8]. A corresponding procedure
to optimize either the library of bases or the "lter
banks used at each node of the expansion-tree is
described as well. The signal estimator is indepen-
dent of the alignment of the observed signal with
respect to the basis functions. Furthermore, the
intrinsic advantages of the SIWPD and SIAP-LTD
over the conventional WPD and LTD are instru-
mental in generating a relatively superior es-
timator.

The proposed algorithm is also useful for estima-
ting the time}frequency distributions of noisy sig-

nals. Since the Wigner distribution is very sensitive
to noise, it is often necessary to employ some kind
of smoothing to reduce the noise e!ects [4,27].
However, smoothing suppresses noise at the ex-
pense of considerable `smearinga of the signal com-
ponents. The combination of the above mentioned
signal estimator with the recently introduced modi-
"ed Wigner distribution [9] yields a distribution
that is robust to noise and characterized by high
resolution, high concentration and suppressed in-
terference terms.

This paper is organized as follows. In Section 2,
we review the SIWPD and demonstrate its shift-
invariant properties. In Section 3, we formulate our
problem. Speci"cally, signal estimation is described
as a problem of choosing the best model from
a collection de"ned by an extended library of
wavelet packet bases. In Section 4, the MDL prin-
ciple is applied to determine the description length
of the data. We show that minimum description
length is attainable by optimizing the expansion-
tree. In Section 5, we present a corresponding
algorithm for the optimal tree design and signal
estimation. We also propose an MDL-based
estimator for structuring the time}frequency distri-
bution. Examples illustrating the execution and
performance of the proposed algorithms are pre-
sented in Section 6. The connections between these
algorithms and other approaches are discussed in
Section 7.

2. The shift-invariant wavelet packet decomposition

The SIWPD [6] is an adaptive representation in
an extended library of wavelet packet bases. The
extended library is de"ned as the collection of all
translated versions of the ordinary wavelet packet
bases. For a prescribed signal, the SIWPD selects
the best basis with respect to an additive informa-
tion cost functional.

Let Mt
n
(t) : n3Z

`
, t3RN be a wavelet packet

family [10] generated by

t
2n

(t)"J2+
k|Z

h
k
t
n
(2t!k), (1)

t
2n`1

(t)"J2+
k|Z

g
k
t
n
(2t!k), (2)
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Fig. 1. The extended set of wavelet packets organized in a binary tree structure. Each node in the tree is indexed by the triplet (l,n,m) and
represents the subspace ;l,n,m

.

where g
k
"(!1)kh

1~k
, and t

0
(t),u(t) is an or-

thonormal scaling function, satisfying

Su(t!p),u(t!q)T"d
p,q

, p,q3Z. (3)

The extended library of wavelet packets is de"ned
as the collection of all the orthonormal bases which
are subsets of

MBl,n,m
: !¸)l)0, 0)n, m(2~lN, (4)

where l"!¸ denotes the coarsest resolution
level, and

Bl,n,m
,Mtl,n,m,k

"2l@2t
n
(2l(t!m)!k) :

0)k(N2lN. (5)

The integer N designates the wavelet packets at the
"nest resolution level (l"0), which are relevant to
analyzing the given signal. The extended library is
larger than the standard wavelet packet library by
a square power, but is still structured into a tree
con"guration which supports fast search algo-
rithms [5]. The tree is depicted in Fig. 1. Each node
in the tree is indexed by the triplet (l,n,m) and
represents the subspace

;l,n,m
"SpanMBl,n,m

N. (6)

Since there are two alternatives for decomposing
;l,n,m

into two orthogonal subspaces,

;l,n,m
";l~1,2n,mc

=;l~1,2n`1,mc
,

m
c
3Mm,m#2~lN, (7)

upon expanding a prescribed node, with minimiz-
ation of the information cost in mind, we examine
and select one of these two alternative decomposi-
tions. The branches in the expansion tree between
a parent node (l, n,m) and its children-nodes,
(l!1, 2n,m

c
) and (l!1, 2n#1, m

c
), are depicted

by either "ne or heavy lines, depending on the
adaptive selection of m

c
(Fig. 2).

Let B and M represent, respectively, a library of
bases and an additive cost function, let g3;

0,0,0
,

and denote by M(Bg) the information cost of rep-
resenting g in a basis B3B.

De5nition 1 ([10]). The best basis for g in B with
respect to M is B3B for which M(Bg) is minimal.

Denote by Al,n,m
the best basis for g restricted

to the subspace ;l,n,m
. Then, the SIWPD selects

the best basis A
0,0,0

by the following recursive
procedure:

Al,n,m
"Bl,n,m

if M(Bl,n,m
g)

)M(Al~1,2n,mc
g)#M(Al~1,2n`1,mc

g),

Al,n,m
"Al~1,2n,mc

=Al~1,2n`1,mc
, otherwise,

(8)

where the shift indices of the respective children-
nodes are obtained by

m
c
"m, if

1
+
i/0

M(Al~1,2n`i,m
g)

)

1
+
i/0

(Al~1,2n`i,m`2~lg),

m
c
"m#2~l, otherwise. (9)
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Fig. 2. Alternative decompositions of a parent-node (l, n, m) in an SIWPD tree. The branches to the children-nodes (l!1, 2n, m
c
) and

(l!1, 2n#1, m
c
) are depicted by "ne lines if m

c
"m, and by heavy lines if m

c
"m#2~l.

Fig. 3. Test signal g(t).

At the coarsest resolution level l"!¸ the sub-
spaces ;

~L,n,m
are not further decomposed, i.e.,

A
~L,n,m

"B
~L,n,m

for 0)n,m(2L.
Compared with the ordinary WPD [10], the

SIWPD is determined to be advantageous in the
following respects [6]: (1) Shift-invariance; (2)
Lower information cost; (3) Improved time}
frequency resolution; (4) More stable information
cost across a prescribed data set; (5) Controlled
computational complexity (at the expense of the
information cost down to O(N log

2
N)). These de-

sirable properties advance signal analysis, compres-
sion, identi"cation and classi"cation applications.
To illustrate the shift-invariant properties of the
SIWPD and its enhanced time}frequency repres-
entation compared to the standard WPD, we refer
to the expansion of the signal g(t) (Fig. 3) and
g(t!2~6). These signals contain 27"128 samples,

and are identical to within 2 samples time-shift. For
de"niteness, we choose D

8
to serve as the scaling

function (D
8

corresponds to 8-tap Daubechies least
symmetric wavelet "lters [13, p. 198]) and the
Shannon entropy as the cost function, de"ned
by [10] M(Mx

i
N)"!+

i>xiE0
x2
i
logx2

i
. Figs. 4 and

5 display the best-basis expansions under the
WPD and the SIWPD algorithms, respectively.
The sensitivity of WPD to temporal shifts is obvi-
ous, while the best-basis SIWPD representation is
indeed shift-invariant and characterized by a lower
entropy and improved time}frequency resolution.

3. Problem formulation

We assume the following model for signal es-
timation:

y(t)"f (t)#z(t), (10)

where y(t) represents the noisy observed data, f (t) is
the unknown signal to be estimated, and z(t) is
a white Gaussian noise (WGN) with zero mean and
a presumably known power spectral density (PSD)
p2. We assume that f (t) is real-valued and belongs
to <

0
, where

<
0
"SpanMt

0
(t!k) : k3ZN, (11)

so that Eq. (10) can be projected onto <
0

(this
assumption amounts to some weak regularity con-
dition on f (t) [22]). Furthermore, f (t) is assumed to
have a compact support, so that there exists a "nite
integer N such that

S f,tl,n,m,k
T"0, if k(0 or k*N2l, (12)
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Fig. 4. E!ect of a temporal shift on the time}frequency representation using the WPD with 8-tap Daubechies least asymmetric wavelet
"lters: (a) the best expansion tree of g(t); (b) g(t) in its best basis, entropy"2.84; (c) the best expansion tree of g(t!2~6); (d) g(t!2~6) in
its best basis, entropy"2.59.

where

tl,n,m,k
(t),2l@2t

n
(2l(t!m)!k), (13)

!log
2
N)!¸)l)0, 0)n,m(2~l (N rep-

resents the number of wavelet packet coe$cients
retained at the "nest resolution level l"0).

To estimate f (t) from the noisy signal y(t), we
employ the extended library of wavelet packet
bases. Each basis in the library is associated with
a tree-set E, that comprises the terminal-nodes indi-
ces of an SIWPD tree [6].

De5nition 2. A collection of indices E"M(l,n,m) :
!¸)l)0, 0)n,m(2~lN is called a tree-set if
it satis"es

(i) The segments Il,n
"[2ln, 2l(n#1)) are a dis-

joint cover of [0,1).
(ii) The shift indices of a pair of nodes (l

1
,n

1
,m

1
),

(l
2
,n

2
,m

2
)3E are related by

m
1
mod2~lK`1"m

2
mod2~lK`1, (14)

where lK is the level index of a dyadic interval
IlK ,n(

that contains both Il
1,n1

and Il
2,n2

.
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Fig. 5. Time}frequency representation using the SIWPD with 8-tap Daubechies least asymmetric wavelet "lters: (a) the best expansion
tree of g(t); (b) g(t) in its best basis, entropy"1.92; (c) the best expression tree of g(t!2~6); (d) g(t!2~6) in its best basis, entropy"1.92.
Fine and heavy lines in the expansion tree designate alternative node decompositions. Compared with the WPD (Fig. 4), bene"cial
properties are shift-invariance and lower information cost.

By Proposition 1 in [6], MBl,n,m
: (l,n,m)3EN is an

orthonormal basis for ;
0,0,0

, and the collection of
all tree-sets E as speci"ed above generates an ex-
tended library of orthonormal wavelet packet bases.
Eq. (12) implies that f (t) belongs to ;

0,0,0
L<

0
.

Consequently, f (t) can be estimated from

MSy,tl,n,m,k
T : (l,n,m)3E, 0)k(N2lN.

Since the bases in the extended library compress
signals very well and the tree-set E is adapted to the

signal, it is reasonable to assume that f (t) is ad-
equately represented by a small number K(N of
orthogonal directions. Accordingly, we consider
a signal estimate of the form

fK (t)"
K
+
k/1

f
k
/
k
(t), (15)

where

/
k
3MBl,n,m

: (l,n,m)3EN. (16)
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The problem is to "nd the best tree-set E and the
best number of terms K (best model) such that the
estimate (15) is optimal according to the MDL
principle.

4. The minimum description length principle

The MDL principle [30}32] asserts that given
a data set and a collection of competing models, the
best model is the one that yields the minimal de-
scription length of the data. The description length
of the data is counted for each model in the collec-
tion as the codelength (in bits) of encoding the data
using that model, and the codelength needed to
specify the model itself. The rationale is that a good
model is judged by its ability to `explaina the data,
hence the shorter the description length, the better
the model.

In order to apply the MDL principle to our
problem, we compute the codelength required to
encode the data y(t) using the following model:

y(t)"
N
+
k/1

y
k
/
k
(t), (17)

f (t)"
N
+
k/1

f
k
/
k
(t),

f
k
O0 i! k3Mk

n
N
1xnxK

, (18)

M/
k
: 1)k)NN"MBl,n,m

: (l,n,m)3EN, (19)

y
k
"f

k
#z

k
, 1)k)N, (20)

where y
k
"Sy,/

k
T and f

k
"S f,/

k
T are, respectively,

expansion coe$cients of the observed data and the
unknown signal, and z

k
"Sz,/

k
T are i.i.d. N(0,p2)

by the orthonormality of the transform. The encod-
ing, and hence the computation of the codelength,
is carried out in three steps: (i) encoding the ob-
served data assuming E, K and Mk

n
N
1xnxK

are
given; (ii) encoding the number of signal terms
K and their locations Mk

n
N
1xnxK

assuming that E is
given; and (iii) encoding the tree-set E. Accordingly,
the total description length of the data is given by

L(y)"L(yDE,K, Mk
n
N
1xnxK

)

#L(K,Mk
n
N
1xnxK

DE)#L(E). (21)

We start with the encoding of the observed
data assuming E, K and Mk

n
N
1xnxK

are given. It
was established by Rissanen [32, pp. 56,87] that
the shortest codelength for encoding the data
set My

k
N
1xkxN

using the probabilistic model
P(My

k
N
1xkxN

Dk), where k is an unknown parameter
vector, is asymptotically given by

L(My
k
N
1xkxN

)

"!log
2
P(My

k
N
1xkxN

Dk( )#
q

2
log

2
N, (22)

where k( is the maximum likelihood estimator of k:

k("argmax
k

P(My
k
N
1xkxN

Dk) (23)

and q is the number of free real parameters in the
vector k.

Recalling that the expansion coe$cients of the
noise Mz

k
N
1xkxN

are i.i.d. N(0,p2), it follows from
Eq. (20) that the probability of observing the data
given all model parameters is

P(yDk)"(2pp2)~N@2 expA!
1

2p2A
K
+
n/1

(y
kn
!f

kn
)2

#

N
+

n/K`1

y2
knBB, (24)

where

k"(E,K,Mk
n
N
1xnxK

,Mf
kn
N
1xnxK

) (25)

is the parameter vector, and

Mk
n
N
K`1xnxN

"M1,2,NNCMk
n
N
1xnxK

. (26)

Thus, from Eq. (22), the codelength required to
encode the observed data, assuming E, K and
Mk

n
N
1xnxK

are given, is

L(y DE,K,Mk
n
N
1xnxK

)

"!log
2
P(y DE,K,Mk

n
N
1xnxK

,MfK
kn
N
1xnxK

)

#

K

2
log

2
N

"

1

2p2 ln 2

N
+

n/K`1

y2
kn
#

N

2
log

2
(2pp2)

#

K

2
log

2
N, (27)
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where

fK
kn
"y

kn
, 1)n)K, (28)

are the maximum likelihood estimates of
M f

kn
N
1xnxK

.
Next, we encode the number of signal terms

K and their locations Mk
n
N
1xnxK

assuming that E
is given. The integer K (1)K)N) requires
log

2
N bits (clearly, if the probability density

function for K, P
K
(k), is known, then L(K)"

!+N
k/1

P
K
(k) log

2
P
K
(k))log

2
N). The indices

Mk
n
N
1xnxK

can be speci"ed by a binary string of
length N containing exactly K 1s. Since there are (N

K
)

such possible strings, the codelength is given by

L(K,Mk
n
N
1xnxK

D E)"log
2
N#log

2A
N

KB
"log

2

N )N!

K!(N!K)!
. (29)

By applying Stirling's formula1 to the factorials we
have

L(K,Mk
n
N
1xnxK

D E)

"Nh(K/N)!
1

2
log

2
[K(N!K)]

!

1

12 ln 2A
h
1

K
#

h
2

N!KB#c, (30)

where h(p)"!p log
2
p!(1!p) log

2
(1!p) is the

binary entropy function and h
1
, h

2
and c are con-

stants independent of K (0(h
1
, h

2
(1). For

NAK, ignoring constant terms which are indepen-
dent of K, the codelength can be approximated by

L(K,Mk
n
N
1xnxK

D E)+K log
2
N. (31)

Since our goal is to obtain the shortest codelength,
the optimal number of signal terms KH and their
optimal locations MkH

n
N
1xnxK

are obtained by min-
imizing the sum of codelengths given by Eqs. (27)
and (31):

L(y DE)"
1

2p2 ln 2

N
+

n/K`1

y2
kn
#

3K

2
log

2
N

"

1

2p2 ln 2C
N
+

n/K`1

y2
kn
#

K
+
n/1

(3p2 lnN)D,
(32)

1x!"J2pxx`1@2 exp(!x# h
12x

), x'0, 0(h(1.

where the constant terms are discarded. Clearly,

N
+
n/1

min(y2
n
,3p2 lnN))

N
+

n/K`1

y2
kn
#

K
+
n/1

(3p2 ln N)

(33)

for all 1)K)N and Mk
n
N
1xnxK

LM1,2,NN.
Equality in Eq. (33) holds for the optimal values
given by

KH"dMy2
n
'3p2 lnN D 1)n)NN (34)

and

MkH
n
N
1xnxK

H"Mn D y2
n
'3p2 lnN, 1)n)NN.

(35)

Speci"cally, given E we compute the expansion
coe$cients of the observed data, and then KH is the
number of coe$cients exceeding the threshold

pJ3 lnN in absolute value, and MkH
n
N
1xnxK

H are
their locations (notice that KH"0 implies fK,0).
Thus the codelength in Eq. (32) reduces to

L(y DE)"
1

2p2 ln 2

N
+
n/1

min(y2
n
,3p2 lnN). (36)

To encode the tree-set E, we associate a 3-ary
string with the SIWPD tree as follows. For each
node (l,n,m), use 0 if its shift-index m is identical to
the shift-index of its child-nodes; use 1 if its child-
nodes, (l!1, 2n,m

c
) and (l!1, 2n#1, m

c
), have

a di!erent shift-index (m
c
Om); and use 2 if it is

a terminal-node ((l,n,m)3E). Now, traverse the tree
from node to node, top-down from left to right,
starting at the root at the top. The string for the
example shown in Fig. 6 is 0210222.

An SIWPD tree includes DED terminal nodes and
DED!1 internal nodes, where DED is the cardinality
of E. Since the tree always ends with a terminal
node, the last 2 in the string can be discarded, and
thus we need to encode a sequence containing
DED!1 2s and DED!1 symbols from M0,1N. The
description length of such sequence is

L(E)"log
2A

2DED!2

DED!1 B#(DED!1)#log
2
DED, (37)

where the "rst term is required to specify the loca-
tions of 2s in the sequence, the second term to
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Fig. 6. Exemplifying the description of SIWPD trees by 3-ary
strings. Terminal nodes are represented by 2s, and internal
nodes by either 0s or 1s, depending on their expansion mode. In
the present example, the string is 0210222.

discriminate between 0s and 1s, and the third term
to encode the number of terminal terms. Applying
Stirling's formula to the factorials, the description
length of the tree is given by

L(E)"3DED#log
2

DED

JDED!1

#

a
1
!4a

2
24(DED!1) ln 2

#c@, (38)

where a
1
, a

2
and c@ are constants independent of

E (0(a
1
,a

2
(1). For DEDA1, the codelength can be

approximated by

L(E)+3DED, (39)

where the constant terms are ignored. Adding the
codelength L(y D E) (Eq. (36)), the total description
length of the observed data is given by

L(y)"L(E)#L(y DE)

"3DED#
1

2p2 ln 2

N
+
n/1

min(y2
n
,3p2 lnN). (40)

Observe that the dependence of L(y) on the
tree-set E is introduced through the number of
terminal nodes and the values of the expansion
coe$cients My

n
N
1xnxN

. Since the total energy of
the coe$cients +N

n/1
y2
n
"DDyDD2 is independent of E,

we want that the relative energy contained in the

coe$cients exceeding pJ3 lnN in magnitude will
be as large as possible. At the same time, we want to
minimize the complexity of the expansion tree (the

number of terminal nodes). In the next section we
show that the SIWPD can be utilized for choosing
the best E such that L(y) is minimized.

5. The optimal tree design and signal estimation

Let B represent the extended library of wavelet
packet bases. Since each basis B in the library is
related to a tree-set E by

B"MBl,n,m
: (l,n,m)3EN, (41)

the search for the optimal E is equivalent to the
search for the optimal basis in B. Denote by L(By)
the description length of y represented on a basis B.
Then, by Eq. (40)

L(By)" +
(l,n,m)|E

L(Bl,n,m
y), (42)

where

L(Bl,n,m
y)

"3#
1

2p2 ln 2

2
l

N
+
k/1

minMC2l,n,m,k
(y),3p2 lnNN (43)

is the codelength for the terminal node (l,n,m)3E,
and

Bl,n,m
y"MCl,n,m,k

(y)"Sy,tl,n,m,k
T : 1)k)2lNN

(44)

are the expansion coe$cients of the observed data.

De5nition 3. The optimal basis for y in B with
respect to the MDL principle is B3B for which
L(By) is minimal.

The codelength in Eq. (42) is an additive cost
function, which directly results from the expres-
sions and approximations derived in the previous
section. Accordingly, we can apply the SIWPD on
the observed data y, as described in Section 2, in
order to "nd its optimal basis.

The optimal basis A,A
0,0,0

minimizes the de-
scription length of the observed data. Thus, from
Eqs. (28), (34) and (35), the optimal estimate of f (t) is
obtained by expanding the observed data y(t) on

210 I. Cohen et al. / Signal Processing 75 (1999) 201}223



the optimal basis A"M/K
k
N
1xkxN

and hard-thre-

sholding the coe$cients by q,pJ3 lnN. Speci"-
cally,

fK (t)"
N
+
k/1

gq(yk)/K k(t), (45)

where y
k
"Sy,/K

k
T, and gq(c),c1M@c@;qN is the hard-

threshold function.
The signal estimation by the above process is

shift-invariant, since the optimal basis expansion
obtained by the SIWPD is shift-invariant. Accord-
ingly, if the observed data y(t) is translated in time
by q3Z, then the signal estimate fK (t) is also trans-
lated by q. Observe that the restriction of the trans-
lations to integers stems from the fact that the
initial ("nest) resolution level of representing the
observed signal is l"0, as the unknown signal f (t)
is assumed to be in <

0
. If we use a "ner resolution

level J'0 for the initial discrete representation,
the shift-invariance is satis"ed for "ner translations
of the form 2~Jq, where q3Z. However, the resolu-
tion levels 0(l)J add no information to estima-
ting the signal, and consequently the execution of
SIWPD over the resolution levels l'0 merely
increases the computational complexity without
improving the performance of the estimator.

The following steps summarize the execution of
translation-invariant denoising using the MDL cri-
terion:

Step 0. Choose an extended library of wavelet
packet basesB (i.e., specify a mother wavelet for the
SWP library) and specify the maximum depth of
decomposition ¸ (¸)log

2
N).

Step 1. Expand the data y into the library B, i.e.,
obtain the coe$cients Bl,n,m

y"MCl,n,m,k
(y)N

1xkx2
l

N
for !¸)l)0, 0)n,m(2~l.
Step 2. Use Eq. (43) to determine L(Bl,n,m

y) for
!¸)l)0, 0)n,m(2~l, and set A

~L,n,m
"

B
~L,n,m

for 0)n,m(2L.
Step 3. Determine the optimal basis A,A

0,0,0
and

the minimum description length L(Ay) using Eqs.
(8)}(9), where M( ) ),L( ) ).
Step 4. Threshold the expansion coe$cients in the

selected basis by q"pJ3 lnN and reconstruct the
signal estimate, as expressed by Eq. (45).

The computational complexity of executing an
optimal SIWPD best-basis expansion is O(N2L`1).

Yet, as demonstrated in [6], one may resort to
a sub-optimal SIWPD procedure entailing a re-
duced complexity, and higher description length
(i.e., information cost) while still retaining the desir-
able shift-invariance property. In that case, the
depth of a subtree, used at a given parent-node to
determine its shift index, is restricted to d resolution
levels (1)d)¸), and the computational complex-
ity reduces to O[2d(¸!d#2)N]. In the extreme
case d"1, the complexity, O(N¸), is similar to that
associated with the conventional WPD. The larger
d and ¸, the larger the complexity, however, the
determined optimal basis generally yields a shorter
description length.

Similar to the algorithm described in [33], our
algorithm can also be extended to "nd the optimal
basis in more than one library. Given a collection of
libraries MB

i
N
1xixP

including a few extended libra-
ries of wavelet packet and local trigonometric
bases, we can "nd the optimal basis that minimizes
the description length as follows. For each library
B

i
(1)i)P), "nd the optimal basis A

i
3B

i
and

the description length L(A
i
y) as described above.

Then, choose the optimal basis A such that
L(Ay)"minML(A

i
y) : 1)i)PN. In the case of an

extended library of local trigonometric bases [6],
the codelength associated with a terminal node is
also approximated by Eq. (43). Each node in an
SIAP-LTD tree has only two expansion alterna-
tives, for it is either decomposed or selected as
a terminal node (in contrast to the SIWPD tree,
where each node has three expansion alternatives).
However, another bit is required for each terminal
node to specify its polarity [6]. Therefore, the de-
scription lengths of SIAP-LTD and SIWPD trees
are approximately the same.

Finding the optimal basis A"M/K
k
N
1xkxN

, the
signal estimate is once again obtained by Eq. (45).
Alternatively, the decomposition "lters can be
adapted to the statistics of the signal in each node
[25]. Joint adaptation of "lter banks and tree struc-
tures has been utilized in image coding applications
[15,26], and a fast algorithm for maximizing energy
compaction was introduced in [24]. In our case, to
compute the description length of the observed
data, the codelength of an internal node should
include the speci"cation of the "lters applied to
expand it. Since the number of internal nodes is
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relative to the number of terminal nodes (there are
DED!1 internal nodes and DED terminal nodes), the
MDL can be obtained by adding to L(Bl,n,m

y)
(expression (43)) the codelength required to specify
the "lter banks. Speci"cally, the codelength of a ter-
minal node is given by

L(Bl,n,m
y)"log

2
M#3

#

1

2p2 ln 2

2
l

N
+
k/1

minMC2l,n,m,k
(y),3p2 lnNN,

(46)

where M is the number of di!erent decomposition
"lters being examined at each internal node.

The proposed algorithm for signal estimation is
also useful for estimating the time}frequency distri-
butions of noisy signals. While the conventional
Wigner distribution (WD) is very sensitive to noise
and smoothing is usually applied to reduce noise at
the expense of considerable smearing of the signal
components [4,27], the above signal estimate, com-
bined with the recently introduced modi"ed Wig-
ner distribution (MWD) [9], yields robust time}
frequency representations. Denote by=

(
the auto

WD of /, and by=
(1,(2

the cross WD of /
1
and /

2
:

=
(
(t,u)"P/(t#q/2)/H(t!q/2)e~+uqdq, (47)

=
(1,(2

(t,u)"P/1
(t#q/2)/H

2
(t!q/2)e~+uqdq. (48)

Then, from [9] and Eq. (45), the MWD estimate of
y is given by

¹K
y
(t,u)"+

k|K
Dy

k
D2=

(K k
(t,u)

# 2 +
Mk,k{N|C

ReMy
k
yH
k{
=

(K k,(K k{
(t,u)N, (49)

where

K"Mk : Dy
k
D'pJ3 lnN, 1)k)NN, (50)

C"MMk,k@N : k,k@3K, 0(d(/K
k
,/K

k{
))DN. (51)

Speci"cally, the set K contains the indices of basis-
functions whose coe$cients are larger than

pJ3 lnN in magnitude, and C restricts the cross
terms to neighboring pairs of basis-functions, i.e.,
basis-functions whose time}frequency distance is

smaller than a certain distance-threshold D. The
distance measure in the time}frequency plane is
de"ned by

d(/K
k
,/K

k{
)"C

(tM
k
!tM

k{
)2

*t
k
*t

k{

#

(u6
k
!u6

k{
)2

*u
k
*u

k{
D

1@2
, (52)

where (tM
k
,u6

k
) is the position of the cell associated

with /K
k
; *t

k
and *u

k
are, respectively, the widths

(uncertainties) in time and frequency. Similar nota-
tions apply to /K

k{
. The distance threshold is ad-

justed to balance the cross-term interference, the
useful properties of the distribution, and the com-
putational complexity [9]. In the next section we
show by examples that the above estimate of the
time}frequency distribution is robust to noise and
possesses the useful properties of the modi"ed Wig-
ner distribution, namely high energy concentration,
well delineated components, low interference-
terms, etc.

6. Examples

In this section, we give two examples for demon-
strating the execution and performance of the pro-
posed denoising method.

Example 1. Synthetic signal.
We created a synthetic signal f

1
(t) by a linear

superposition of a few wavelet packets, generated
by the C

12
scaling function (C

12
corresponds to

12-tap coi#et "lters [13, p. 261; 14]). The signal
contains N"27 samples and is depicted in Fig.
7(a). Its SIWPD is illustrated in Fig. 7(b), where the
Shannon entropy is used as the cost function. The
noisy observation y

1
(t) (Fig. 7(c)) was created by

adding WGN to f
1
(t) with signal-to-noise ratio

SNR"7 dB. The optimal SIWPD of y
1
(t) using the

MDL criterion is shown in Fig. 7(d). Notice the
remarkable resemblance between the optimal rep-
resentation of the noisy signal using the MDL
principle and the ordinary SIWPD of the original
signal using the Shannon entropy. This resem-
blance stems from the fact that according to the
MDL principle, the relative energy, contained in

the coe$cients exceeding pJ3 lnN in magnitude,
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Fig. 7. Signal estimation by SIWPD and MDL principle: (a) synthetic signal f
1
(t); (b) SIWPD of f

1
(t) using the Shannon entropy; (c)

noisy measurement y
1
(t), SNR "7 dB; (d) SIWPD of y

1
(t) using the MDL principle; (e) the expansion coe$cients of y

1
(t) after

hard-thresholding; (f) the signal estimate fK
1
(t), SNR "19 dB.

should be as large as possible (refer to Eq. (40)).
While by the Shannon entropy, the expansion co-
e$cients in the best-basis should decrease as rap-
idly as possible, when rearranged in a decreasing
magnitude order. Therefore, the Shannon entropy

applied to the original signal and the MDL cri-
terion applied to the noisy signal generally produce
similar SIWPD, as long as the threshold level
(noise) is lower than the expansion coe$cients of
the original signal in the best-basis.
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Fig. 8. Contour plots of time}frequency distributions: (a) Wigner distribution for the original signal f
1
(t); (b) Wigner distribution for the

noisy measurement y
1
(t); (c) smoothed pseudo-Wigner distribution for f

1
(t); (d) smoothed pseudo-Wigner distribution for y

1
(t); (e) the

modi"ed Wigner distribution for f
1
(t); (f) the estimate of the modi"ed Wigner distribution for y

1
(t) by the MDL principle.

Pursuing the estimation procedure with the
MDL criterion, the expansion coe$cients of y

1
(t)

in the optimal basis are threshold by pJ3lnN and
transformed back into the signal domain. Figs. 7(e)
and (f) show, respectively, the retained coe$cients

and the signal estimate fK
1
(t). Compared to the noisy

measurement y
1
(t), the signal estimate is enhanced

to SNR"19 dB.
Fig. 8 illustrates the usefulness of our algorithm

for estimating the time}frequency distribution of
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the noisy data. While the WD of the original signal
is corrupted by interference terms and even
worsens by the noise (Figs. 8(a) and (b)), the
smoothed pseudo-Wigner distributions are more
readable and less sensitive to noise (Figs. 8(c) and
(d)). However, the energy concentration of the sig-
nal components is poor. The estimate of the MWD,
given by Eq. (49), is not only robust to noise (com-
pare Figs. 8(e) and (f)), but also characterized by
high resolution, high concentration and suppressed
interference-terms.

Example 2. Evolution of electromagnetic pulse in
a relativistic magnetron.

Fig. 9(a) shows a noisy measurement of an
electromagnetic pulse (+100 nanoseconds long)
generated by high power (+100 MegaWatts)
relativistic magnetron. The measurement involves
heterodyning at 2.6GHz, "ltering at 500 kHz and
sampling at 1GHz [34]. The Wigner distribution,
depicted in Fig. 9(b), is clearly ine!ective as
a time}frequency analysis tool, for its high noise
sensitivity. Yet, the estimates of the signal and the
MWD, as shown in Figs. 9(c) and (d), are poten-
tially valuable when analyzing the measurements
and studying the non-stationary phenomena, such
as mode build-up and competition and pulse
shortening [1], which are common in such high
power microwave tubes.

In this example, we employed the SIAP-LTD
[8], since it yielded a shorter description length
than the SIWPD (probably because the energy of
the pulse is concentrated in the cavity-modes of the
magnetron, and local trigonometric bases are more
appropriate for describing oscillations [7]). The
residual between the noisy measurement and the
signal estimate is depicted in Fig. 9(e). To ascertain
that this residual is actually the noise component,
we compare the estimate of the MWD with the
smoothed pseudo Wigner distribution of the noisy
measurement (Fig. 9(f)). Since these two distribu-
tions are similar, in view of the fact that smoothing
in the Wigner domain reduces the noise at the
expense of smearing the signal components, it is
reasonable to assume that the signal estimate con-
tains all the signal components and the residual is
mostly noise.

7. Relation to other work

Our algorithm has a close relationship with the
`simultaneous noise suppression and signal com-
pressiona algorithm developed by Saito [33]. Let
MB

p
N
1xpxP

denote a given collection of libraries of
wavelet-packet and local trigonometric bases. Then
his algorithm "rst selects in each library B

p
the

`best basisa B
p
3B

p
using the standard wavelet-

packet and cosine-packet decomposition, with the
Shannon entropy as the information cost function.
Subsequently, the MDL principle is applied for
determining the optimal basis A,B

p
H and the

optimal number of retained coe$cients KH(N.
Accordingly,

MpH,KHN"argmin
1xpxP
0xK:N

GL(B
p
y)"

3

2
K log N

#

N

2
logA

N
+

k/K`1

C2
p,k

(y)BH, (53)

where MC
p,k

(y),Sy,/
p,k

TN
1xkxN

are the expansion
coe$cients of y represented in the basis B

p
"

M/
p,k

(t)N
1xkxN

sorted in order of decreasing magni-
tude, and the signal estimate is reconstructed from
the KH largest expansion coe$cients in the optimal
basis:

fK (t)"
K
H

+
k/1

C
p
H,k

(y)/
p
H,k

(t). (54)

(Compare Eqs. (53) and (54) with (34) and (45)). The
main di!erences between our algorithm and that of
Saito are

f Our method selects the optimal basis by the
MDL principle whereas his method "rst minim-
izes the Shannon entropy to determine the
`best-basisa in each library and only then applies
the MDL principle to select the optimal basis
among the `best-basesa.

f His method ignores the codelength required to
specify the best-basis in its library, and thus
complex expansion trees are not penalized. On
the other hand, our method imposes a signi"cant
penalty (up to 3 ) 2L bits) for complex trees.

f Our method assumes that the PSD of the noise
(p2) is known whereas his method estimates
it from the N!K smallest coe$cients by
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Fig. 9. Electromagnetic pulse in a relativistic magnetron (heterodyne detection; local oscillator"2.6 GHz): (a) noisy measurement y
2
(t);

(b) Wigner distribution for y
2
(t); (c) the signal estimate fK

2
(t) by the MDL principle; (d) the estimate of the modi"ed Wigner distribution for

y
2
(t); (e) residual between y

2
(t) and fK

2
(t); (f) smoothed pseudo-Wigner distribution for y

2
(t).

1
N
+N

k/K`1
C2

p,k
(y) (maximum-likelihood estimate).

In our algorithm we can use di!erent measure-
ments or more advanced methods to estimate the
noise, whereas the above estimate of p2 heavily

relies on the assumption that f (t) is orthogonal to
M/

pH,k(t)NKH
`1xkxN

.
f Our method translates the MDL criterion into

an additive information cost function and thus
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Fig. 10. Signal estimation by the Saito method using the WPD: (a) the best expansion tree of y
1
(t) (the signal is depicted in Fig. 7(c));

(b) the expansion coe$cients of y
1
(t); (c) the retained coe$cients; (d) the signal estimate; SNR"1.1 dB.

best-basis search algorithms are applicable,
whereas his method computes the description
length in each basis one at a time (compare Eq.
(42) with the expression between the braces in
Eq. (53)).

Figs. 10}12 demonstrate the comparison be-
tween our algorithm and that of Saito, using the
synthetic signal analyzed in Example 1. Suppose
that the library of bases includes the wavelet packet

bases generated by the C
12

scaling function (recall
that the synthetic signal f

1
(t) was formed using this

library), then according to Saito, the best basis is
obtained by a conventional WPD with the Shan-
non entropy employed as the cost function. The
resultant expansion-tree and coe$cients of the
noisy observation y

1
(t) are illustrated in Figs. 10(a)

and (b), respectively. Since the compression of the
signal by the WPD is insu$cient, some of the
coe$cients containing signal energy are regarded
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Fig. 11. Signal estimation by the Saito method using the SIWPD: (a) the best expansion tree of y
1
(t); (b) the expansion coe$cients of

y
1
(t); (c) the retained coe$cients; (d) the signal estimate; SNR"12.8 dB.

as noise and set to zero. The retained coe$cients
are shown in Fig. 10(c). The signal estimate,
reconstructed from these coe$cients, is depicted in
Fig. 10(d). Observe that the SNR for the signal
estimate got worse than for the noisy measurement
(1.1 dB(7 dB).

The WPD is a special case of the SIWPD [6].
Therefore, the SIWPD yields sparser representa-
tions and better estimates than the WPD, even
using the Saito method (compare Figs. 11 and 10).
Still, the selection of the best-basis by the Shannon
entropy criterion, as discussed above, is not opti-
mal with regard to the MDL principle. The results

obtained using our method are depicted in Fig. 12.
The expansion of the signal estimate by the MDL
principle (Fig. 12(c)) is similar to the expansion of
the original signal (Fig. 7(b)). The SNR for the
signal estimate is signi"cantly higher than for the
noisy measurement (19 dB ' 7 dB).

Our algorithm is also intimately connected to the
denoising algorithm of Krim and Pesquet [21].
Their algorithm "rst applies the WPD to the ob-
served data using the information cost

M(My
n
N)"+

n

min(y2
n
,2p2 log

2
N), (55)
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Fig. 12. Signal estimation by the proposed method: (a) the optimal expansion tree of y
1
(t); (b) the expansion coe$cients of y

1
(t); (c) the

retained coe$cients; (d) the signal estimate; SNR"19dB.

and then reconstructs the signal estimate from the

coe$cients that are larger than pJ2 log
2
N in mag-

nitude. Their method, however, disregards the de-
scription length of the expansion tree (compare
Eqs. (55) and (40)). Furthermore, while our method
attains shift-invariance by utilizing the SIWPD and
SIAP-LTD, their method, restricted by the WPD,
admits of signal estimates and performances which
are signi"cantly in#uenced by the alignment of the
observation with respect to the basis functions.

Donoho and Johnstone [16] used a di!erent
approach to select from a library of bases the `ideal

basisa for the signal estimator. Rather than the
MDL principle, their criterion was the mean-
squared error. They showed that from this point of
view, the best-basis for denoising is one minimizing

M(My
n
N"+

n

min(y2
n
,f2), (56)

where f"lp(1#J2 lnM
N
), M

N
is the number of

distinct basis-functions contained in the library (for
WPD, M

N
"N log

2
N) and l'8. The signal is

then reconstructed in the best-basis from the coe$-
cients which are larger than f in magnitude. The
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Fig. 13. Signal estimates of the synthetic signal using the library of wavelet packets (12-tap coi#et "lters): (a) the Donoho}Johnstone
method, SNR"6.4 dB; (b) the method-of-frames denoising (MOFDN), SNR"7.1 dB; (c) the Basis}Pursuit denoising (BPDN),
SNR"4.3 dB; (d) the Matching}Pursuit denoising (MPDN), SNR"7.5 dB.

threshold f is larger than q"pJ3 lnN, obtained
by the MDL principle (see Eq. (45)), by at least

a factor of 8J2/3. Thus, the criterion (56) imposes
a larger penalty on nonzero coe$cients, but noth-
ing for the complexity of the expansion-tree (com-
pare with Eq. (40)).

The methods mentioned above try to recover the
signal from a few basis-functions that belong to one
of the bases in a library. Alternatively, one could
gather all the basis-functions which comprise the
library into a dictionary of functions, and then
search for the `besta reconstruction (not necessarily

orthogonal) of the signal estimate according to
a speci"ed criterion. Let D denote an overcomplete
dictionary of waveforms, and let

fK (t)"
N
+
k/1

fK
k
/
k(t)

, M/
k
N
1xkxN

LD (57)

be the signal estimate model. Chen and Donoho
[3] proposed to choose the optimal set of elements
M/

k
N
1xkxN

and optimal set of coe$cients M fK
k
N
1xkxN

by solving the penalized problem

min
fK
G
1

2
DDy!fK DD2

2
#pm )

N
+
k/1

D fK
k
DH, (58)
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Table 1
Signal-to-noise ratios for the signal estimates of the synthetic
signal using the library of wavelet packets (12-tap coi#et "lters)
and various denoising methods. The SNR obtained by the
proposed MDL-based translation-invariant denoising method is
signi"cantly higher than those obtained with alternative
methods

Denoising method SNR (dB)

Saito # WPD 1.1
Basis}Pursuit 4.3
Donoho}Johnstone 6.4
Method-of-frames 7.1
Matching}Pursuit 7.5
Saito # SIWPD 12.8
The proposed method 19.1

where m"J2 lnM
N
, and M

N
is the cardinality of

the dictionary. They showed that the solution to
this problem can be obtained by linear program-
ming, and compared it by examples to: (i) the Do-
noho}Johnstone estimator described above; (ii) the
Method-of-Frames denoising (MOFDN), which
refers to the solution of

min
fK
GDDy!fK DD2

2
#m )

N
+
k/1

D fK
k
D2H; (59)

and (iii) the Matching}Pursuit denoising (MPDN),
which runs Matching}Pursuit [23] until the coef-
"cient associated with the selected waveform gets
below the threshold m. The solution to Eq. (58),
which was named Basis}Pursuit denoising (BPDN),
generally results in fewer signi"cant coe$cients
than the MOFDN, more stable than the MPDN,
and outperforms the Donoho}Johnstone estimator
when the true signal has a moderate number of
nonorthogonal components. However, the BPDN
is computationally much more expensive than the
other methods.

It is interesting to recognize that part of the cri-
terion in our method, which is based on the MDL
principle, is similar to expressions (58) and (59).
Inserting Eqs. (18) and (28) into Eq. (32), we have
that L(yDE), the description length of the noisy data
given the expansion-tree, can be written as

L(yDE)

"

1

2p2 ln 2G DDy!fK DD2
2
#p2(3 lnN) )

K
+
n/1

DfK
kn
D0H.

(60)

Here, the penalty term includes an l0 norm of the
coe$cients, whereas BPDN and MOFDN use
l1 and l2 norms, respectively. Considering again
the estimation problem described in Example 1,
Fig. 13 shows the signal estimates of the synthetic
signal obtained by the Donoho}Johnstone method,
MOFDN, BPDN and MPDN. The dictionary of
basis-elements employed in these algorithms is de-
rived from the WPD with the C

12
scaling function.

Compared to the signal estimate in our method
(Fig. 7(f)), the above estimates have very low sig-
nal-to-noise ratios (Table 1). The de"cient recovery
of the original signal results from the restricted
compression capability of the WPD-dictionary.
While the SIWPD optimizes the representation of

the signal by incorporating translations of
wavelet-packets into the dictionary, the WPD-dic-
tionary is inadequate for signal components that
are not aligned with the basis elements. Thus, com-
bining the extended libraries of orthonormal bases
with the fast best-basis search algorithms (e.g., the
SIWPD and SIAP-LTD), the proposed method
facilitates shift-invariant estimators at a manage-
able computational complexity, which are based on
the MDL criterion.

8. Summary

Described herein is a translation-invariant de-
noising method, which uses the MDL criterion and
tree-structured best-basis algorithms. We have de-
"ned a collection of signal models based on an
extended library of orthonormal bases, and applied
the MDL principle to derive a suitable additive
cost function. The description length of the noisy
observed data was then minimized by utilizing the
SIWPD, thus optimizing the expansion-tree asso-
ciated with the best-basis algorithm, and thre-
sholding the resulting coe$cients. Furthermore,
the signal estimator was combined with a newly
de"ned modi"ed Wigner distribution, whose
time}frequency robustness was amply illustrated.
The proposed method was compared to alternative
existing methods, and its superiority was demon-
strated by synthetic and real data examples.
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Notation

A The optimal basis for signal estimation
Al,n,m

The best set of wavelet-packet for the
subspace ;l,n,m

B Library of orthonormal bases
Bl,n,m

Set of wavelet-packets associated with
the tree-node (l,n,m)

C
n

n-tap coi#et "lters
Cl,n,m,d

Suboptimal basis for ;l,n,m
D Overcomplete dictionary of waveforms
D Distance threshold in time}frequency

plane
D

n
n-tap Daubechies least asymmetric
wavelet "lters

d Maximum depth of subtrees for shift
determination

d(uj,uj{) Distance in time}frequency plane be-
tween uj(t) and uj{(t)

E Set of terminal nodes of an expansion
tree (tree-set)

fK (t) Estimate of f (t)
f
k

Expansion coe$cients of the un-
known signal

Mg
k
N,Mh

k
N Wavelet decomposition "lter banks

Il,n
Dyadic interval

L(y) Description length of y
L(By) Description length of y expanded in

the basis B
¸ Number of decomposition levels
l Resolution-level index
(l,n,m) Index of a tree-node
M Additive information cost function
M(Bf ) Information cost of f expanded in the

basis B
m Shift index
m

c
Shift index of children-nodes

N Length of signal at its highest resolu-
tion level

n Wavelet-packet index
R Set of reals
¹

g
(t,u) Modi"ed Wigner distribution of g(t)

¹K
y
,¹K

y
(t,u) Time}frequency distribution estimate

of y
tM j Time location of uj(t)
;l,n,m

Closure of the linear span of Bl,n,m
<

j
Subspace of jth resolution level

=
g
(t,u) Auto Wigner distribution of g(t)

=
g,f

(t,u) Cross Wigner distribution of g(t) and f (t)
y(t) Noisy data
y
k

Expansion coe$cients of y(t)
Z Set of integers M0,$1,$2,2N
Z
`

Set of non-negative integers
M0,#1,#2,2N

z(t) White Gaussian noise
z
k

Expansion coe$cients of z(t)
C Set of indices of `neighboringa basis-

functions pairs
*uj,*u Frequency uncertainty of uj(t)
*tj, *t Time uncertainty of uj(t)
d
k,l

Kronecker delta function
gq(c) Hard-threshold of c by q
K Set of indices of `signi"canta basis-

functions
p2 Power spectral density of white noise
/(t),/K (t) Basis-functions
u,t

0
Scaling function

t,t
1

Mother wavelets
t
n

nth wavelet packet
u Angular frequency
u6 j Frequency location of uj(t)
xmod y Modulus (signed remainder after div-

ision)
dS, DSD The number of element in the set S
DcD Magnitude of a complex number c

SpanMSN Closure of the linear span of S
S f,gT Inner product of f and g
1
I

Indicator function for the interval I
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