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ABSTRACT

Recently, we introduced a method to recover the controlling param-

eters of linear systems using diffusion kernels. In this paper, we

apply our approach to the problem of source localization in a rever-

berant room using measurements from a single microphone. Prior

recordings of signals from various known locations in the room are

required for training and calibration. The proposed algorithm re-

lies on a computation of a diffusion kernel with a specially-tailored

distance measure. Experimental results in a real reverberant envi-

ronment demonstrate accurate recovery of the source location.

Index Terms— Source localization, acoustic localization, dif-

fusion geometry, diffusion kernel, manifold learning

1. INTRODUCTION

Acoustic source localization has been a task that drew much re-

search effort in the past several decades. In order to find the po-

sition of an acoustic source in a room, the source signal is usually

picked up with a microphone array, and the relative delays between

pairs of microphone signals need to be determined [1, 2, 3]. A dif-

ferent approach was first presented by Malioutov et al. [4], where

a predefined grid of potential source positions was considered. The

steering vector from each possible position was calculated and used

to create an over complete representation of all possible source loca-

tions. Unfortunately, this contribution enables localization only in

anechoic environments. In [5], Model and Zibulevsky extended [4]

to support reverberant environments by pre-calculating the acous-

tic transfer functions from all the potential positions to the sensors.

However, this approach suffers from high computational burden. In

addition, accurate acoustic transfer functions may be analytically

computed only for specific room layouts.

In this work we assume that the information on the source po-

sition may be conveyed by a single acoustic impulse response be-

tween the source and the microphone. Unfortunately, the acoustic

response is unknown, may be analytically computed only in spe-

cific rooms, and its estimation based on a single microphone mea-

surement is a completely blind task and hence very challenging. To

overcome this difficulty, we require prior recordings of signals from

various known locations in the room that are used for training and

calibration. Based on the prior recordings, we propose a supervised

single-channel algorithm for source localization.

Recently, we introduced in [6] a method to recover the control-

ling parameters of linear systems using diffusion kernels. In this

paper, we apply our approach to the problem of source localization
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in reverberant rooms based on the measured signal in a single mi-

crophone. The proposed algorithm is based on a computation of

a diffusion kernel with a specially-tailored distance measure. The

kernel integrates together local estimates of the covariance matrices

of the measurements into a global structure. This structure, often

referred to as manifold, enables parametrization of the measure-

ments. In particular, we show that the recovered parameters from

each measurement represent the position coordinates of the source

in the room. Experimental results in a real reverberant environment

demonstrate accurate source localization.

This paper is organized as follows. In Section 2, we formulate

the problem. In Section 3, we present the proposed algorithm for

source localization. Finally, in Section 4, experimental results are

shown, demonstrating the performance of the algorithm.

2. PROBLEM FORMULATION

An acoustic impulse response between a source and a microphone

depends on several parameters: room dimensions; positions of the

source and microphone; and reflection coefficients of the walls,

floor and ceiling. In addition, the presence of objects in the room,

e.g. furniture, and openings in the walls, such as windows and

doors, affect the acoustic impulse response. Although in practice

these parameters can easily be altered, in this work we assume they

remain unchanged between the training and test stages. We con-

sider a certain room and fix the position of the microphone. Thus,

the remainder degree of freedom is the source position. Let hθ(n)
denote an acoustic impulse response between the microphone and

a source, at relative position θ = [φ, θ, ρ], where φ and θ are the

azimuth and elevation direction of arrival (DOA) angles and ρ is the

distance between the source and the microphone.

For generating the training data, we pick m predefined posi-

tions of the source Θ̄ = {θ̄1, . . . , θ̄m}. From each position, we

play an arbitrary stationary unknown input signal of finite length,

and record the signal picked up with the microphone. The received

signal is expressed as

ȳi(n) = hθ̄i
(n) ∗ xi(n) (1)

where xi(n) and ȳi(n) are the input and output signals of the room

impulse response hθ̄i
corresponding to the source location θ̄i. We

repeat the measurement from each source location L times. How-

ever, the position of the source is slightly perturbed. Let {θij}Lj=1

denote the small perturbations of θ̄i. Let {xij (n), yij (n)}Lj=1 be

the input and output signals corresponding to the repeated measure-

ments. We assume these predefined locations and measurements

are available beforehand and are used for training. It is worthwhile

noting that in practice we may use short time intervals, and hence



2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

we may only require a pseudo-stationary input signal, e.g., speech

and music. However, this issue is beyond the scope of this paper

and will be addressed in future work.

The input of the algorithm is a new measurement of an arbitrary

unknown input signal from an unknown source position. Our goal

in this work is to recover the source position given the measured

signal based on the prior training information. For computational

efficiency, we present the recovery of M source positions given

M sequential measurements. Let Θ = {θ1, . . . ,θM} denote the

unknown M source positions corresponding to the new measure-

ments. As in (1), we have

yi(n) = hθi
(n) ∗ xi(n) (2)

where xi(n) and yi(n) are input and output signals of finite length.

3. PROPOSED ALGORITHM

3.1. Features

The measured output signal heavily depends on the arbitrary ran-

dom unknown input signal. Consequently, the information on the

position of the source is weakly disclosed by the raw time domain

measurements. To overcome this challenge, we propose to compute

features that better convey the position, and are less dependent on

the particular input signal. From (2), by assuming the input signal

is zero-mean, the covariance function of the output signal yi(n) is

given by

cyi(τ ) = hθi
(τ ) ∗ hθi

(−τ ) ∗ cxi
(τ ) (3)

where cxi
(τ ) and cyi(τ ) denote the covariance functions of xi(n)

and yi(n), respectively. We assume that the time interval is suffi-

ciently short, so that the covariance of the pseudo-stationary input

signal does not vary during the interval. Thus, the time variations

of the covariance of the output signal only depend on the variations

of the acoustic impulse response. Accordingly, for each measure-

ment, we compute a feature vector consisting of D elements of the

covariance. Let ci, c̄i, and cij denote the covariance elements of

yi(n), ȳi(n), and yij (n), respectively. We note that geometrically

the vectors {cij }Lj=1 are viewed as a “cloud” of points around c̄i

in R
D. As a consequence, they are utilized to estimate the local

covariance matrix of c̄i, i.e., Σi = Cov(c̄i) via

Σ̂i =
1

L

L
∑

j=1

cijc
T
ij . (4)

3.2. Training stage

We compute an affinity matrix W between the m training samples

in Θ̄. As proposed in [7, 8], the matrix klth element is calculated

according to

Wkl =
π

dkl
exp

{

− (c̄k − c̄l)
T [Σ̂k + Σ̂l]

−1(c̄k − c̄l)

ε

}

(5)

where ε is the kernel scale and dkl is the following normalization

factor

dkl =

√

det
(

Cov
(

c̄k + c̄l

2

))

. (6)

It can be shown that the distance measure used in (5) approximate

the Euclidean distance between the parameters [7], i.e.,

∥

∥θ̄k − θ̄l

∥

∥

2 ≈ (c̄k − c̄l)
T [Σk +Σl]

−1(c̄k − c̄l). (7)

This is the key point of this work: the proposed kernel enables to

capture the actual variability in terms of the source position based

on the measurements.

Let {λj}m−1
j=0 and {ϕj}m−1

j=0 be the eigenvalues and eigenvec-

tors of the affinity matrix W, where the eigenvalues are denoted

in descending order. We note that λ0 = 1 and the corresponding

eigenvector ϕ0 is trivial [7]. There exist eigenvectors, which can

be chosen as suggested in [9], that represent the data in terms of its

independent parameters. For simplicity, we assume these eigenvec-

tors correspond to the largest eigenvalues, namely, ϕ1, ϕ2, and ϕ3.

In our work, these independent parameters represent the desired po-

sition coordinates of the source.

3.3. Test stage

Given a set of M new sequential measurements we compute their

corresponding covariance elements {ci}Mi=1. Let A be an M by m
matrix computed by

Akl = exp

{

− (ck − c̄l)
T
Σ̂

−1
l (ck − c̄l)

ε

}

. (8)

We note that unlike the kernel in (5) where the covariance matrices

of both vectors are required, the computation of (8) involves just

the available information at this point: the feature vector of the new

measurement and the training data. Let Ã be a corresponding nor-

malized matrix given by Ã = AS
−1/2, where S = diag{AT

A1}
is a diagonal matrix and 1 is a vectors of ones. The normalized

matrix satisfies W = Ã
T
Ã. Therefore, the eigenvectors of W of

length m are the left singular vectors of Ã and are assumed to de-

scribe the m training measurements. The right singular vectors of

Ã of length M are given by

ψj =
1√
λj

Ãϕj . (9)

The computation of the right singular vectors via the weighted in-

terpolation of the eigenvectors in (9) circumvents additional spectral

decomposition. In addition, the right singular vectors can be viewed

as the extension of the spectral representation describing the new M
measurements [6].

Let Ψ be the embedding of the measurements onto the space

spanned by the right singular vectors corresponding to the source

position, i.e.,

Ψ : ci 7→
[

ψ
(i)
1 ,ψ

(i)
2 ,ψ

(i)
3

]T

. (10)

It is shown in [6] that (10) maps the measurements into the inde-

pendent parametric domain. In this case, we show in Section 4 that

the map Ψ(ci) indeed recovers the position of the source up to a

monotonic distortion. The distortion monotonicity enables the map

to organize the measurements according to the values of the source

position coordinates. Thus, in order to obtain an estimate of the po-

sition, we interpolate the training positions according to distances

in the embedded space. Let Ni consist of the k-nearest training

measurements {c̄j} of ci in the embedded space. Let {γj}kj=1 be

interpolation coefficients, satisfying
∑k

j=1 γj(ci) = 1, given by

γj(ci) =
exp

(

−‖Ψ(ci)−Ψ(c̄j)‖2/εγj
)

∑

c̄k∈Ni

exp
(

−‖Ψ(ci)−Ψ(c̄k)‖2/εγj
) (11)
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Figure 1: Recording room setup.

where εγj is set to the minimal distance between Ψ(ci) and its near-

est neighbor. Thus, an estimate of the source position is given by

the following weighted sum of training locations

θ̂i =
∑

c̄j∈Ni

γj(ci)θ̄j . (12)

Accordingly, let e(ci) be the estimation error, defined by

e(ci) = ‖θi − θ̂i‖. (13)

3.4. One dimensional case

It can be shown that the eigenvectors are approximations of the

eigenfunctions of a Laplacian operator [7]. The eigenfunctions of

a one dimensional Laplacian (with Neumann boundary conditions)

with a uniformly distributed parameter x on [0, 1] are given by

ϕn(x) = cos(nπx). (14)

Since ψj is similar to ϕj , (14) implies that ψj represents the pa-

rameter with a cosine distortion. It is worthwhile noting, that the

cosine function is monotonic in [0, 1] and therefore organizes the

measurements according to the value of the parameter x.

Thus, in a special case, where we are interested just in a single

coordinate, e.g. the azimuth angle φ, and fix the elevation angle

θ and the radius ρ, we may apply the function arccos on the map

Ψ, now comprises of one vector, in order to compensate for the

distortion of the embedded points.

3.5. Scale adjustment

The scale of the kernel (5) is of key importance. As discussed in

[10], setting the scale conveys a tradeoff between integration of

large number of samples (large scale), and locality (small scale).

Our experimental results in Section 4 demonstrate this tradeoff. An

empirical approach to set the scale is to compute the root mean

square error (RMSE) over the training data for various scales. The

scale that yields the minimum error is set, i.e.

ε∗ = argmin
ε

√

√

√

√

1

m

m
∑

i=1

e2(c̄i). (15)

In order to verify the selection of the scale, we observe the spec-

trum of the kernel matrix W. In particular, we examine the loca-

tion of the spectral gap, i.e., the first significant difference between
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Figure 2: The embedding of the measurements as a function of the

DOA azimuth angle. (a) The values of the eigenvector ϕ1. (b) The

values of the extended eigenvector ψ1.
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Figure 3: The embedding of the measurements after re-adjustment

as a function of the DOA azimuth angle. (a) The values of

arccos(ϕ1). (b) The values of arccos(ψ1).

consecutive eigenvalues {λj}. Ideally, the spectral gap indicates

the number of degrees of freedom. Accordingly, in our general lo-

calization problem, a proper selection of the scale should yield a

spectral gap after 3 (nontrivial) eigenvalues.

4. EXPERIMENTAL RESULTS

In this section, we test the ability of the proposed algorithm to re-

cover the location of an acoustic source. We conducted recordings

in an acoustic room of dimensions 6 × 6 × 2.4m. The room re-

verberations can be controlled by 60 double-sided panels (either

absorbing or reflecting) tiled over the room walls, ceiling and floor.

We arranged the panels to yield moderate room reverberation time

of T60 = 0.3s. Inside the room, we positioned an omni-microphone

(AKG CK32) in a fixed location. A 2m long “arm” was connected

to the base of the microphone, and attached to Brüel & Kajer 9640

turntable that controls the horizontal angle of the arm. A sound

source (type 4227 Brül & Kjaer mouth-simulator) was located on

the far-end of the arm. Thus, the turntable controlled the azimuth

angle of the DOA of the sound played by the speaker with respect

to the microphone. Figure 1 depicts the recording room setup.

Using the turntable we tested 60 different DOA angles with 1◦

spacing. In each location, 10 seconds of a zero-mean and unit-

variance (neglecting the gain of the electronic system) white Gaus-

sian noise sampled at 48 kHz was played from the mouth-simulator.

The movement of the arm along the entire range of 60 angles was

repeated 8 times. Consequently, we obtained 480 measurements of

10s long each, originating from 60 different angles. Due to small

perturbations of the long arm, we assume that the exact location is

not maintained during the entire 10s period. Thus, each measure-

ment was divided into 10 segments of 1s each. Based on each 1s

measurement we estimated D = 100 elements of the covariance
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Figure 4: Localization results. The RMSE as a function of (a) the

kernel scale, and (b) the test set size relative to the training set size.

function of the signal, and collected them into a feature vector. The

10 feature vectors corresponding to different 1s segments from the

same DOA angle are viewed as a “cloud” of 10 points, and used to

estimate the covariance matrix according to (4).

The DOA azimuth angle constitutes the sole degree of freedom

in this experiment, as the rest of the room parameters, and the lo-

cation of the microphone are fixed. It is worthwhile noting that we

neglect the mild variations of the room impulse response caused by

the movement of the arm. Thus, in this particular experiment, the

map (10) is reduced to the right singular vector ψ1.

In the first experiment, we tested the ability of the proposed

method to organize the recordings according to the DOA azimuth

angle. We randomly chose 60 measurements for the test set, and

the rest 420 were used for training. To avoid the boundary distor-

tions imposed by the cos function on the embedding, we limit the

observation to the range of angles 10◦ − 50◦. In Fig. 2 we show

the 1-D embedding of the measurements. Figure 2(a) shows a scat-

ter plot of the values of the eigenvector ϕ1 and (b) show a scatter

plot of the values of the right singular vector ψ1, both as a function

of the azimuth angle of each embedded measurement. We observe

that the embedding organizes the measurements according to the

azimuth angle in a monotonic order. In addition, we note that the

right singular vector is similar to the eigenvector computed based

solely on the training. As mentioned in Section 3, the shape of the

embedding indeed corresponds with the shape of the cos function.

Therefore, we employ the function arccos. The adjusted embedding

is presented in Fig. 3. We now observe that the embedding via the

adjusted eigenvectors maps the measurements almost linearly with

respect to the DOA angle.

In the second experiment, we tested the ability of the proposed

method to recover the azimuth angle. The recordings were divided

into training and test sets with sizes determined by a predefined ra-

tio. First, we randomly chose 60 measurements for testing, and the

rest 420 measurements are used for training. This division with dif-

ferent selection of training and test sets was repeated 1000 times to

yield confident results. To evaluate the localization results, we com-

puted the RMSE of the azimuth estimate (13). Figure 4(a) shows

the RMSE as a function of the kernel scale. We observe that max-

imum accuracy of 1.21◦ is obtained using ε = 1. In addition, it

demonstrates the consideration of setting the optimal scale: smaller

scale corresponds to better “spatial” resolution, whereas larger scale

integrates together more points. Figure 4(b) presents the recovery

accuracy based on different relative sizes of the training set with

respect to the entire set. As expected, we observe that as the train-

ing set is larger, the recovery of the azimuth angle is more accurate.

However, even in case the test set consists of 150 measurements out

of the entire 480 (31.25%), the extended embedding is still accurate

and the estimation error of the azimuth angle is small.

5. CONCLUSIONS

We have presented a supervised algorithm for source localization

using a diffusion kernel. Unlike common model-based localization

algorithms, the proposed algorithm entails a data-driven approach

that exploits prior measurements for training and calibration. More-

over, it is based solely on single-channel recordings. Experimental

results conducted in a real reverberant environment showed accu-

rate estimation of the source direction of arrival.

For future work we intend to broaden the scope of this work.

We plan to extend the algorithm for noisy environments and de-

velop a multi-channel algorithm. In addition, it would be interest-

ing to investigate the influence of environmental changes following

the training stage, e.g. when furniture are added or when people are

moving around the speaker.
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