
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 7, JULY 2009 2047

Multichannel Seismic Deconvolution Using
Markov–Bernoulli Random-Field Modeling
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Abstract—In this paper, we present an algorithm for multichan-
nel blind deconvolution of seismic signals, which exploits lateral
continuity of Earth layers based on Markov–Bernoulli random-
field modeling. The reflectivity model accounts for layer disconti-
nuities resulting from splitting, merging, starting, or terminating
layers within the region of interest. We define a set of reflectivity
states and legal transitions between the reflector configurations of
adjacent traces and subsequently apply the Viterbi algorithm for
finding the most likely sequences of reflectors that are connected
across the traces by legal transitions. The improved performance
of the proposed algorithm and its robustness to noise, compared
with a competitive algorithm, are demonstrated using simulated
and real seismic data examples, in blind and nonblind scenarios.

Index Terms—Multichannel deconvolution, reflectivity estima-
tion, seismic signal, sparse reflectivity, wavelet estimation.

I. INTRODUCTION

IN SEISMIC exploration, a short-duration seismic pulse
is transmitted from the surface, reflected from boundaries

between underground Earth layers, and received by an array
of sensors on the surface. The received signals, called seismic
traces, are analyzed to extract information about the under-
ground structure of the layers in the explored area [1], [2].
Preprocessing is applied to the raw data in order to increase
the signal-to-noise ratio (SNR) and attenuate surface waves
that are unrelated to the underground structure. Subsequently,
the traces can be modeled under simplifying assumptions as
noisy outcomes of convolutions between reflectivity sequences
(channels) and a certain wavelet. The objective of multichannel
seismic deconvolution is to estimate the reflectivity sequences
from the measured traces and, in the blind case, also to estimate
the unknown wavelet.

Nonblind deconvolution is clearly simpler than blind decon-
volution; however, both suffer from sensitivity to noise due
to the ill-conditioned nature of the problem. In order to cope
with this sensitivity, some model of the reflectivity and wavelet
is often utilized. Mendel et al. [3] assume an autoregressive
moving-average model and use a maximum likelihood estima-
tor for the reflectivity. Baziw and Ulrych [4] model the over-
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lapping wavelets in the received signal as amplitude-modulated
sinusoids and use particle filtering to separate them. Kaaresen
and Taxt [5] assume that the wavelet is of short duration,
and Santamaria et al. [6] use a Gaussian mixture model for
the reflectivity sequence. While statistical methods generally
require a large data set for derivation of a good estimate [7]–[9],
sparsity of the reflectivity sequences can be exploited to cope
with the ill-posed nature of the basic blind deconvolution
problem [5], [10] and to improve the performance of nonblind
deconvolution methods [11]. Channel sparsity enables effi-
cient channel estimation, which is suitable for relatively short
traces [5], [12].

Multichannel blind deconvolution (see [13] and references
therein, [14], and [15]) is often more advantageous and more
robust than single-channel blind deconvolution. Certain rela-
tions between spatially near channels are used to regularize the
problem. Lateral continuity of the reflectors across channels
has been used in [5] to further improve the channel estimates
(see also [16]). Idier and Goussard [17] model the 2-D structure
of the underground reflectivity as a Markov–Bernoulli random
field and impose lateral continuity to generate deconvolution
results that are superior to those obtainable by single-channel
deconvolution methods. However, since the parametric mod-
els used in these works result in a nonconvex optimization
problem, a global optimal solution is very difficult to achieve.
Usually, some sort of constrained search is performed within
a group of possible solutions for the locations of reflectors
(such as the single most likely replacement (SMLR) approach
in [18]), and a typical tradeoff remains between the extent of
the search, the computational complexity, and the optimality of
the final solution. Lavielle [19] has modeled the 2-D reflectivity
as a Markov random field and used simulated annealing and
a maximum a posteriori probability (MAP) criterion for its
estimation. Rosec, Boucher, Nsiri, and Chonavel use the Monte
Carlo Markov chain and the Gipps sampler to generate samples
of the reflectivity according to its posterior distribution and
estimate it by averaging over them.

Recently, we have proposed a deconvolution method that
attempts to maximize a MAP criterion using dynamic pro-
gramming [20], [21]. A search is performed among continuous
paths of reflectors instead of single reflectors, and the best con-
tinuous reflector paths are chosen by dynamic programming.
We showed that our approach recovers the reflectivity better
than the iterative windowed maximization (IWM) algorithm
[5] and, particularly, its advantage is more significant when the
SNR is low. However, our reflectivity model did not take into
account layer discontinuities. As a result, the application of our
algorithm was limited to areas of mostly continuous layers.
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In this paper, we introduce an improved method for estimat-
ing the 2-D reflectivity pattern by using a Markov–Bernoulli
random-field modeling. Unlike the model proposed in [20] and
[21], the Markov–Bernoulli random field accounts for layer
discontinuities resulting from splitting, merging, starting, or
terminating layers within the region of interest. The algorithm
performs a search only among a subgroup of 2-D reflectivity
patterns that fit into the model. The Viterbi algorithm [22]
is employed for efficiently finding the most likely reflectivity
pattern at each iteration. We define a set of reflectivity states and
legal transitions between reflector configurations of adjacent
traces and subsequently extract sequences of reflectors across
the traces, connected by legal transitions with the highest
likelihood. The performance of the proposed algorithm is in-
vestigated for reflectivity patterns that contain discontinuities.
Improved performance and robustness to noise are demon-
strated for simulated and real seismic data in blind and nonblind
scenarios. The rest of this paper is organized as follows. In
Section II, we describe the signal and reflectivity model. In
Section III, we present a relaxed optimization criterion for
deconvolution and incorporate the Viterbi algorithm in the
optimization procedure. In Section IV, we demonstrate the im-
proved performance of the proposed algorithm compared with
an existing algorithm, using simulated and real seismic data.
Finally, we conclude in Section V and discuss the additional
complexity of the proposed algorithm.

II. SIGNAL MODEL

A. Signal Model

We assume M received signals (traces) z(m)[n] of length
N + K − 1, each generated by a single input signal h[n] of
length K passing through a channel x(m)[n] of length N , which
represents the reflectivity sequence of the mth trace. The output
signal of channel m can be written as

z(m)[n] =
K−1∑
k=0

h[k]x(m)[n − k] + e(m)[n] (1)

for m = 1, . . . ,M and n = 1, . . . , N + K − 1, where e(m)[n]
denotes white Gaussian noise, which is statistically independent
of the reflectivity sequence x(m)[n] and h[n]. We denote by
zm ∈ RN+K−1 the observation vector of a single trace m and
by z ∈ R(N+K−1)×M the matrix of observations, which is the
concatenation of the vectors zm, m = 1, . . . , M , as columns.

B. Reflectivity Model

1) Geometric Field: Let x ∈ RN×M represent the 2-D re-
flectivity pattern, and let q ∈ {0, 1}N×M denote a binary ma-
trix representing the existence of reflectors in x, i.e., q (n,m) =
1 if there is a reflector in row n and column m of x; oth-
erwise, q (n,m) = 0. Let t/, t−, and t\ ∈ {0, 1}N×M be
binary matrices representing transition variables of reflectors
in x for ascending, horizontal, and descending layers, respec-
tively, i.e., t/(n,m) = 1 if q (n,m) = q (n − 1,m + 1) = 1,
and these two reflectors belong to the same layer boundary;

otherwise, t/(n,m) = 0. In a similar way, t−(n,m) = 1 if
q (n,m) = q (n,m + 1) = 1, and these two reflectors belong
to the same layer boundary; otherwise, t−(n,m) = 0. More-
over, t\(n,m) = 1 if q (n,m) = q (n + 1,m + 1) = 1, and
these two reflectors belong to the same layer boundary; other-
wise, t\(n,m) = 0. Using these definitions, the 2-D reflectivity
model is defined as follows.

1) For each column m, the sequences {t/(n,m)}n,
{t−(n,m)}n, and {t\(n,m)}n are white binary
processes.

2) For each column m, the sequence {q (n,m)}n is a white
binary process.

3) p{t/(n,m), t−(n,m), t\(n,m)} = p{t/(n, m)}p{t−(n,
m)}p{t\(n,m)}.

4) p{t/(n,m − 1) = a, t−(n,m − 1) = b, t\(n,m − 1) =
c, q (n,m)}=p{t/(n,m)=a, t−(n,m) = b, t\(n,m) =
c, q (n,m)}.

5) p{t/(n,m − 1) = 0, t−(n,m − 1) = 0, t\(n,m − 1) =
0|q (n,m) = 0} = 1.

6) ∀n,m: p{t/(n,m) = 1} = μ/, p{t−(n,m) = 1} = μ−,
p{t\(n,m) = 1} = μ\.

7) ∀n,m: p{q (n,m) = 1} = λ.
8) ∀n,m: p{q (n,m) = 1|t/(n + 1,m − 1) =

0, t−(n,m − 1) = 0, t\(n − 1,m − 1) = 0} = ε.

Properties 6), 7), and 8) define the parameters of the geo-
metric model μ/, μ−, μ\, λ, and ε, which are related by λ =
1 − (1 − μ/)(1 − μ−)(1 − μ\)(1 − ε).

2) Amplitude Field: The amplitude field of the reflectivity
pattern is characterized by two parameters r and σ2

a. A reflector
in x (n1,m − 1) is said to be a predecessor of a reflector in
x (n2,m) [or x (n2,m) is said to be a successor of x (n1,m −
1)] if q (n1,m − 1) = 1, q (n2,m) = 1, |n1 − n2| ≤ 1, and the
transition variable connecting these two reflectors is equal to
one. Then, the amplitude field is defined as follows.

9) If there is no reflector in x (n2,m), then x (n2,m) = 0.
10) If there is a reflector in x (n2,m), which has no prede-

cessors, then x (n2,m) ∼ N(0, σ2
a).

11) If there is a reflector in x (n2,m), which is a distinct
successor of a particular predecessor x (n1,m − 1), then
x (n2,m) ∼ N(rx(n1,m − 1), (1 − r2)σ2

a).
12) If there is a reflector in x (n2,m), which has more

than one predecessor or is not a distinct successor of a
particular reflector, then x (n2,m) ∼ N(0, σ2

a).

It is shown in [17] and [23] that these definitions describe a
Markov–Bernoulli random field of reflectors with Gaussian am-
plitudes, which is homogenous and symmetric. In each column,
the binary variable representing the existence of a reflector is
Bernoulli distributed with the parameter λ. The probability of a
new boundary appearing or disappearing at a certain sample is
ε, and the parameters μ/, μ−, μ\, and ε determine the degree
of geometric continuity of layer boundaries. The amplitudes
of reflectors in a single column form a white sequence. The
parameter σ2

a determines the variance of the amplitudes, and the
parameter r determines the degree of continuity of amplitudes
along a layer boundary. Fig. 1 shows some examples of 2-D
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Fig. 1. Two-dimensional reflectivity patterns generated with various parameters values.

TABLE I
PARAMETERS USED FOR GENERATING 2-D REFLECTIVITY PATTERNS

reflectivity patterns generated by this model with different
parameters. The parameters’ values used to generate these
patterns are shown in Table I.

III. ESTIMATION PROCEDURE

A. MAP Estimation

Let xm and qm be the mth columns of the matrices x and
q, respectively, and let am denote the amplitudes of reflectors
in the reflectivity sequence xm. Note that the size of am may
vary for different m’s according to the number of reflectors in
the specific column m. We would like to perform a maximum
a posteriori estimation of the locations and amplitudes of
reflectors given the observations

{q̂, â} = arg max p(q,a|z). (2)

Using Bayes’ rule, we have p(q,a|z) = p(z|q,
a)p(a|q)p(q)/p(z). According to the reflectivity model,
the sequences {qm|m = 1, . . . ,M} and {am|m = 1, . . . ,
M} are vector Markov processes of the first order, i.e.,
p(qm|qm−1, . . . ,q1) = p(qm|qm−1), and p(am|qm, . . . ,

q1,am−1, . . . ,a1) = p(am|qm,qm−1,am−1). Accordingly,
(2) can be rewritten as

{q̂1, . . . , q̂M , â1, . . . , âM}

= arg max
q1,...,qM ,a1,...,aM

{
p(z1|q1,a1)p(a1|q1)p(q1)

×
M∏

m=2

p(zm|qm,am)

× p(am|qm,qm−1,am−1)

× p(qm|qm−1)

}
. (3)

B. Suboptimal Estimation

Let x̂t and q̂t denote estimates of x and q, respectively, in
iteration t. Let q̂t,n

m represent the column m of the matrix q̂t,
with the insertion of a new reflector in line n. Let â(q̂t,n

m ) denote
an estimate of the reflectors’ amplitudes in q̂t,n

m , given the
observation zm. We define the following set of states and legal
transitions to which we will refer as the states set, as shown
in Fig. 2. Each column m in the states set consists of possible
configurations of reflectors in the mth column in the reflectivity
estimate and the amplitudes’ estimates associated with them.
The first N states in each column describe reflector configu-
rations that have a single additional reflector in the nth line
with respect to the current estimate (if there is already a
reflector in that line in the current estimate, then there is no
change). The last state in each column describes a reflector
configuration that is identical to that of the current estimate.
Legal transitions denoted by black arrows exist from each
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of the first N states in a column to the three closest states in
the next column, i.e., the states in the next column that are in
the previous, the same, and the next lines. In addition, legal
transitions exist from each of the first N states in a column
to the last state in the next column and from the last state in
a column to each of the first N states in the next column. A
legal path is a sequence of M states, one from each column of
the states set, for which there are legal transitions from each
state in the path to the next one. Let us denote, as sm, a chosen
state from column m of the states set. We define the maximum
a posteriori estimated path as follows:

{ŝ1, . . . , ŝM}
= arg max

{s1,...,sM}∈{Legal Paths}
p(s1, . . . , sM |z1, . . . , zM ). (4)

We denote by nm the line in the states set from which sm is
taken. Now, explicitly formulating (4), we obtain (5), shown
at the bottom of the page. Comparing (3) and (5), we can
observe three differences that make the latter suboptimal. The
first is the fact that the target function is maximized only
over the set of reflector configurations defined by the states
set. These configurations are formed by slightly altering the
configurations in the current estimate and, hence, do not include
all configurations. However, an iterative procedure, as will be
presented later, helps to overcome this limitation. In addition,
not all paths in the states set are legal by our somewhat arbitrary
definition of legal transitions; hence, some 2-D configurations
are not examined. However, the states set and the definition
of the legal transitions are designed so that it well represents
the nature of the reflectors’ patterns as described by the 2-D
reflectivity model, since most layer boundaries are represented
by legal paths in the states set. The last difference is that the
maximization is not performed simultaneously for q and a.
Instead, a preceding step of estimating â(qt,n

m ) for each qt,n
m is

performed and, subsequently, the maximization of (5). Notice
that the state set was designed so that a legal path of states
represents a quasi-continuous boundary. When a chosen path
goes through states in the last line of states, this means that
no new reflectors are added in these columns; hence, there
is a discontinuity in the added boundary. In [20] and [21],

Fig. 2. Illustration of states and legal transitions for a single iteration of the
estimation procedure.

the examined boundaries all started at the first column and
ended at the last; hence, no discontinuities were possible, and
the algorithm could recover, less efficiently, the reflectivity of
underground sections that contained such discontinuities.

C. Estimation Procedure

In [17], the maximization of a suboptimal MAP criterion is
performed iteratively, where, in each iteration, the reflectivity
of a single column is estimated, given the estimated locations
and amplitudes of the reflectors in the previous column. In
other words, the estimation of the reflectivity of all previous
columns is held fixed, while the posterior probability of the
current column’s reflectivity is maximized given all previous
columns. This approach is suboptimal, as explained in [17].
The advantage of the approach presented in this paper is that the
reflectivity of a column is not determined before all columns are
examined and that the 2-D criterion (5) is hence truly globally
maximized in an optimal way, as will be explained (although
this criterion itself is a suboptimal 2-D criterion, as explained
in the previous section). The fact that the location of reflectors
is not determined until all columns are scanned forces us to
estimate the amplitudes for each examined configuration of

{
q̂t+1

1 , â
(
q̂t+1

1

)
, . . . , q̂t+1

M , â
(
q̂t+1

M

)}
= arg max

{n1,...,nM }∈{Legal Paths}
p

{
qt,n1

1 , â
(
qt,n1

1

)
, . . . ,qt,nM

M , â
(
qt,nM

M

)
|z1, . . . , zM

}
= arg max

{n1,...,nM }∈{Legal Paths}
p

{
z1, . . . , zM |qt,n1

1 , â
(
qt,n1

1

)
, . . . ,qt,nM

M , â
(
qt,nM

M

)}
× p

{
qt,n1

1 , â
(
qt,n1

1

)
, . . . ,qt,nM

M , â
(
qt,nM

M

)}
= arg max

{n1,...,nM }∈{Legal Paths}
p

{
z1|qt,n1

1 , â
(
qt,n1

1

)}
p

{
â

(
qt,n1

1

)
|qt,n1

1

}
p

{
qt,n1

1

}
×

M∏
m=2

p
{
zm|qt,nm

m , â
(
qt,nm

m

)}
p

{
â

(
qt,nm

m

)
|qt,nm

m ,qt,nm−1
m−1 , â

(
qt,nm−1

m−1

)}
p

{
qt,nm

m |qt,nm−1
m−1

}
(5)
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reflectors in a column, regardless of adjacent columns (whose
reflectors’ locations are not yet known). Hence, as mentioned in
the previous section, a preceding step of estimating â(qt,n

m ) for
each qt,n

m in the states set is performed before (5) is maximized.
In this paper, a maximum a posteriori estimator is used for this
estimation

â(qm) = arg max
a

p(am|qm, zm). (6)

Using a matrix form of (1), i.e., zm = Hqm
am + em, where

Hqm
is composed of replicas of h translated to the locations

of reflectors, we have zm|qm, am ∼ N(Hqm
am, σ2

eI), and
am|qm ∼ N(0, σ2

aI). Accordingly, (6) yields the following
known estimator:

â(qm) =
(
HT

qm
Hqm

+
σ2

e

σ2
a

I
)−1

HT
qm

zm. (7)

Criterion (5) is maximized using the Viterbi algorithm, as will
now be described. Let snm,m denote the state in line nm

and column mth of the states set. Let Pnm,m be a sequence
of states (“a path”), one from each column in the range
[1, . . . , m] of the states set that ends with the state snm,m.

Let D(P ) Δ= p(P |z) be the probability of the states in the
path P given the observations z. If the path P is com-
posed of the states {sn1,1, . . . , snm,m}, then we can explicitly

write D(P ) = p(sn1,1, . . . , snm,m|z1, . . . , zm). Let P o
nm,m

Δ=
arg maxPnm,m

D(Pnm,m) be the path that ends with the state
snm,m, whose probability, given the observations, is maximal.
Let Bnm,m be the group of states from which there is a legal
transition to the state snm,m in the states set. Recalling that the
sequences qm and am are Markov processes of the first order,
we define

no
m−1

Δ= arg max
nm−1∈Bnm,m

D
(
P o

nm−1,m−1

)

×p(zm|snm,m)p(snm,m|snm−1,m−1)
p(z)

. (8)

It can be shown that

P o
nm,m =

(
P o

no
m−1,m−1

...snm,m

)
(9)

where
... describes the concatenation of the state on its right to

the path on its left. Equations (8) and (9) provide an efficient
way for calculating the sequence of states in the states set
whose probability, given the observations, is maximal. We

initialize P o
n1,1

Δ= sn1,1 for n1 = 1, . . . , N and use (8) and (9)
to recursively calculate P o

nM ,M , nM = 1, . . . , N . Finally, we
choose

no
M

Δ= arg max
nM

D
(
P o

nM ,M

)
and obtain the final desired path

P o Δ= P o
no

M
,M .

Notice that, in order to avoid dealing with the transition
variables and to be able to calculate p{qt,nm

m |qt,nm−1
m−1 } in (5),

we make the following approximated assumption. Whenever
q(n1,m − 1) = 1 and q(n2,m) = 1 and |n1 − n2| ≤ 1, we
assume that there is a transition variable equal to one between
these two reflectors. In other words, if two reflectors are in
adjacent columns and in adjacent rows or in the same row, we
assume that they belong to the same boundary. This approxi-
mation is very precise when λ and ε are small enough. Under
this assumption, a given configuration of reflectors determines
completely the value of all transition variables t\, t−, t/. Given
reflectors’ configurations in two adjacent columns, the transi-
tion variables between these two columns, and the amplitudes
estimate of reflectors in the first of these two columns, the am-
plitude distribution of each reflector in the second column can
be determined according to properties 9)–12) of the amplitude
field model.

D. Complete Algorithm Structure

When maximizing the estimation criterion by iteratively
examining alternatives to the current reflectivity estimate, the
optimality of the final estimate depends on the set of rules
used to select the examined alternatives. It is suggested, in [5]
for a single-channel deconvolution, that attempting not only
to add or delete a reflector but also to change the location of
a reflector has an advantage considering the overall effect on
computational complexity and optimality of the final solution.
Considering this result, we now describe a simple mechanism
that allows not only the addition of a sequence of reflectors but
also moving a sequence to a different location.

We define a “Section” of reflectors as a sequence of reflector
locations {(nm,m)}m2

m=m1, for which |nm − nm−1| ≤ 1 for
m = m1 + 1, . . . ,m2.

Each legal path selected from the states set is composed of
sections of reflectors separated by columns from which the
last state was selected. When we add reflectors to the estimate
according to a selected path, we actually add reflectors in loca-
tions defined by these sections. We keep track of the sections
that are added to the estimate in the following way. When
we add a section, we try to concatenate the added section to
existing sections in the estimate. Let (nm1 ,m1) and (nm2 ,m2)
denote the location of the first and last reflectors in the added
section, respectively. If there exists a unique section in the
estimate whose last reflector is in location (nm1−1,m1 − 1)
such that |nm1−1 − nm1 | ≤ 1, then we concatenate the two
sections as follows. Let (nmb

,mb) be the starting reflector of
the existing section; then, the description of the existing section
is changed to include the reflectors of the newly added section,
hence creating a section starting at (nmb

,mb) and ending at
(nm2 ,m2). A similar operation is performed if there is a unique
section in the estimate, which starts with a reflector at location
(nm2+1,m2 + 1) such that |nm2+1 − nm2 | ≤ 1. In this case,
we concatenate the section by including the reflectors of the
added section in the description of the existing section, creating
a concatenated section starting at (nm1 ,m1) and ending at
(nmc

,mc), where (nmc
,mc) is the ending reflector of the

existing section. If both situations occur, both concatenation
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operations are performed, creating a section starting at
(nmb

,mb) and ending at (nmc
,mc). Each time a section is

added to the estimate, its description is also inserted to a list
of existing sections. If an added section is concatenated with
an existing one, the section with which it was concatenated is
removed from the list, and the concatenated section is inserted
at the end of the list. This mechanism allows us to perform
some sort of sections management in order to relocate sections
of reflectors. The complete structure of the algorithm is as
follows.

1) Start with the empty reflectivity estimate, i.e., matrices q̂
and x̂ that are all zeros.

2) If there are any reflectors in the estimate, remove a section
of reflectors from the estimate and from the beginning of
the list of sections.

3) Define the states set, and estimate the amplitudes for each
state.

4) Using a single execution of the Viterbi algorithm, find the
path of states with the highest probability in the states set.

5) Insert the sections of reflectors as described by the se-
lected path to the estimate with the proper amplitudes.

6) Insert the sections of reflectors in the selected path to
the end of the list of sections performing concatenation
operations, if needed.

7) Return to step 2) for the next iteration.
Step 2) is skipped during the first several iterations in order

to let the estimate gather some sections of reflectors. The
process is continued until no change occurs in the reflectivity
estimate during a complete scan of the list of sections or until
a predetermined number of iterations were performed. Notice
that the number of sections of reflectors can change during the
execution of the algorithm since the path of reflectors found
in Step 4) can contain more than one section and Step 6) can
reduce the number of sections by concatenation operations.
In the rest of this paper, we refer to this algorithm as a
Markov–Bernoulli deconvolution (MBD).

Although the model accounts for discontinuities, the strength
of the algorithm is in exploiting the continuity; hence, regions
with highly discontinuous reflectivity patterns will obviously
be recovered with less accuracy. Once a discontinuity occurs,
e.g., a boundary shift of more than one pixel, the amount of
shift between the boundaries on both sides should not affect
the results. Small discontinuities in the sampled data, which
can occur in boundaries with a higher slope, can be allowed
by altering the legal transitions in the state set and adding
transitions between states that are further apart. Such a change,
however, will result in an increased complexity.

E. Discussion on Convergence

We now provide a proof of convergence in the nonblind case.
The probability of a legal path in the state set is actually the
probability of the reflectivity pattern it represents given the data,
as shown on the right-hand side of (5). In each iteration of the
algorithm, we first remove an existing section of reflectors from
the reflectivity estimate, as described in the previous section,
and then, we select the legal path with the highest probability
given the data among the examined set of legal paths. The re-

Fig. 3. Typical convergence of the posterior log probability of the reflectivity
estimate for 130 × 130 data in a nonblind case.

Fig. 4. Wavelet used in the simulated examples.

Fig. 5. Estimating the noise variance and μ/, μ−, and μ\ from the data.

flectivity patterns described by this examined set of legal paths
obviously include the reflectivity estimate that we had before
removing the section of reflectors (the path that recovers this
reflectivity estimate is composed of the N + 1 state for columns
that are not a part of the removed section and from the state in
the line from which a reflector was removed, for each column
that is a part of the removed section). Hence, by choosing the
path with a maximum probability, while considering also the
previous reflectivity estimate, we assure that the probability
of the reflectivity estimate is greater or equal to the previous
one, causing this probability to be a nondecreasing function
of the iteration number. Since there is only a finite number
(although very large) of reflectivity patterns, this probability
is also bounded and, therefore, converges, which is the same
for the reflectivity estimate. In all executions of the algorithm
however, the convergence was much faster than is implied by
this very loose bound, usually after a few dozen iterations.
A typical graph of the convergence of probability function is
shown in Fig. 3. The convergence in the blind case is less
easy to prove, since between iterations, the wavelet estimate
also changes; hence, although we also consider the previous
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TABLE II
TRUE AND ESTIMATED VALUES OF PARAMETERS USED FOR NONBLIND DECONVOLUTION EXAMPLES

Fig. 6. Performances of MBD and IWM algorithms under medium SNR conditions (0 dB). True reflectivity appears as empty circles; red is for positive reflectors,
and magenta is for negative ones. Estimated reflectivity appears as filled circles; blue is for positive reflectors, and black is for negative ones. The radius of the
circles represents the magnitude of the reflectors. (a) Received traces. (b) and (c) Reflectivity estimates using IWM algorithm with different sparsity parameters.
(d) and (e) Reflectivity estimate using MBD algorithm with different estimated model parameters.

reflectivity estimate, its probability might have decreased from
the last iteration since the wavelet is different now. However,
although the log probability might decrease between sequential
iterations in the nonblind case, this rarely occurs, and the
procedure still converges with similar convergence graphs.

F. Relation to Previous Work

In the SMLR approach [18], which is suited also for a single-
channel deconvolution, the optimization criterion is maximized
by a limited search, which tries to alter the current reflectivity
by adding or removing a single reflector at a time. The approach

presented in this paper is similar except that it tries to alter the
reflectivity by adding or removing a complete legal path from
the states set. Generally speaking, the search is among possible
boundary sections’ locations rather than among possible single
reflectors’ locations. The ability to search among boundary sec-
tions rather than among single reflectors without a significant
complexity increase is due to the design of the states set so that
legal paths well represent the typical structure of boundaries
and the use of the Viterbi algorithm.

The iterated window maximization approach [5] takes into
consideration the continuity of boundaries; however, it does so
without a specific model. In addition, the account for continuity
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Fig. 7. Performances of the MBD and IWM algorithms under low SNR conditions (−5 dB). See Fig. 6 for explanation about the colors. (a) True reflectivity.
(b) and (c) Reflectivity estimates using the IWM algorithm with different sparsity parameters. (d) and (e) Reflectivity estimates using the MBD algorithm with
different estimated model parameters.

Fig. 8. Performances of the MBD algorithm in nonblind scenario under different SNR conditions (0 and −5 dB). See Fig. 6 for explanation about the colors.
(a) Received traces with SNR of 0 dB. (b) Reflectivity estimate for 0 dB. (c) Received traces with SNR of −5 dB. (d) Reflectivity estimates for −5 dB.

is local; hence, the “relaxation” is slower in terms of the number
of iterations, and also, many local optimum solutions are a
cause for a suboptimal final estimate.

The algorithm of Idier and Goussard [17] and our al-
gorithm are both based on a Markov–Bernoulli model.
However, their optimization procedure is carried out in a sub-
optimal way. At the mth iteration, the reflectivity estimate
of columns 1, . . . , m − 1 is held fixed, and the reflectivity of
the mth column is maximized with respect to the reflectivity
of column m − 1. Moreover, the columns to the right of the

currently estimated column do not participate in the estimation.
In the proposed approach, the estimate of a column is updated
only after all columns were examined, and at each iteration, a
truly global maximum of criterion (5) is found.

IV. EXPERIMENTAL RESULTS

In the following sections, we present different results show-
ing the performance of the proposed approach. In order to make
it easy to compare the true reflectivity with the recovered one,
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different colors are used as follows. The true reflectivity appears
as empty circles; red is for positive reflectors, and magenta is
for negative ones. The estimated reflectivity appears as filled
circles; blue is for positive reflectors, and black is for negative
ones. For both true and estimated reflectivities, the radius of the
circles represents the magnitude of the reflectors.

A. Nonblind Procedure

Two sets of simulated 2-D reflectivity patterns of dimensions
130 × 130, were created according to the model described in
Section II. The reflectivities are convolved with the wavelet
shown in Fig. 4 and degraded by noise with −5- and 0-dB
SNRs. The IWM algorithm of Kaaresen and Taxt and the
proposed algorithm were applied to these data sets. The wavelet
was considered known. Since the proposed algorithm employs
the parameters of the signal model, these parameters should be
given or estimated from the data. We have taken the following
approach. The parameters λ and ε were assigned two different
values in each of the two executions of the procedure. The noise
variance was estimated as the variance of the samples in a 15 ×
15 region with the smallest variance in the data. For each value
of λ, the parameter σa was estimated as σ̂a =

√
(σ̂2

z − σ̂2
e)/λ.

In the data, two pointers were chosen manually along the
reflection from a distinct boundary. Such reflections can usually
be observed even when the SNR is very low. Each point was
selected so that it is the strongest for this reflection in its
column. A simple dynamic programming algorithm was used
to find the continuous path between the two selected pointers
with the maximal absolute value of the sum of samples along it.
This path is assumed to represent the typical direction of the
boundaries in the data (since, usually, most boundaries have
similar directions). From this path, the number of ascending,
horizontal, and descending transitions were counted, and their
relative probability was estimated. Using these results and the
values of λ̂ and ε̂, the values of μ/, μ−, and μ\ were estimated.
Fig. 5 shows some simulated data as a gray-level image; the
region used to estimate the noise variance is marked with a
black frame, and the two pointers and the path between them
used to estimate μ/, μ−, and μ\ are shown with white and black
dots, respectively. The value of r was set to one, both in the
creation of the simulated data and in the algorithm. When the
noise is high, this value has little effect since the true value is
close to one and the variance in the estimated amplitude along
a single boundary is mainly due to the estimate variance rather
than due to the true change of amplitudes along the boundary.

For the IWM algorithm, two different values of the sparsity
parameter θ were used in some reasonable range. Table II
summarizes the true values of the parameters and the estimated
values used by the algorithm for these simulations. Notice
that, due to normalization of the observed data prior to the
processing, the estimated values of σe and σa may be quite
different from the true values. However, the important quantity
is the ratio between them, which is more similar to the true
value. The IWM algorithm was executed until it converged
(no further changes occurred in the reflectivity estimate), and
the proposed algorithm was stopped after 60 iterations. Figs. 6
and 7 show the results of applying the two algorithms to

TABLE III
TRUE AND ESTIMATED VALUES OF PARAMETERS

USED FOR NOISE EFFECT INVESTIGATION

TABLE IV
TRUE AND ESTIMATED VALUES OF PARAMETERS

USED FOR BLIND DECONVOLUTION EXAMPLES

the two data sets. It can be seen that, for the higher noise
example, the proposed algorithm recovers the 2-D reflectivity
better than the competitive algorithm, whereas for the lower
noise example, the results are only slightly better. Notice that
the better performance of the proposed approach is not the
result of an improper choice of a specific sparsity parameter for
the competitive algorithm. Moreover, the results are almost the
same for the two different sets of estimated parameters, which
implies that the proposed algorithm is not sensitive to the values
of the model parameters’ estimates.

Influence of Noise: When the noise level is increased, the
received data are less reliable, and the reflectivity model be-
comes more dominant. Less true reflectors are recovered, and
more false reflectors appear. In addition, the estimation of the
model parameters from the data is less accurate. However, the
proposed algorithm exhibits good stability, in the sense that
gradually increasing the amount of noise gradually degrades
the results and does not cause sudden changes in the quality
of the recovered reflectivity. This is shown in Fig. 8, where the
nonblind procedure was applied for the same data with different
noise levels (0 and −5 dB). It can be seen that the results are
similar but that the recovered reflectivity for the lower noise
is slightly better. The parameters used for these examples are
displayed in Table III.
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Fig. 9. Performances of the MBD and IWM algorithms in blind scenarios under low SNR conditions (−5 dB). See Fig. 6 for explanation about the colors.
(a) True reflectivity. (b) and (c) Reflectivity estimates obtained by using the IWM algorithm with different sparsity parameters. (d) and (e) Reflectivity estimates
obtained by using the MBD algorithm with different model parameters. (f)–(i) Wavelet estimates corresponding to (b)–(e).

B. Blind Procedure

In this example, the proposed and the competitive algorithms
are applied to a blind problem. The observations used here
are the same as those shown in Fig. 7. The wavelet is not
given a priori. For the competitive algorithm, the procedure
starts by some initialization of the reflectivity estimate based
on strong points of local maximum in the data [5], then by
alternately estimating the wavelet given the reflectivity, and
then by estimating the reflectivity given the wavelet. For the
proposed algorithm, the procedure starts by initializing the
wavelet as a delta function, then, in a similar manner alternately,
by estimating the reflectivity given the wavelet estimate, and
then by estimating the wavelet given the reflectivity. In both
algorithms, the estimate of the wavelet given the reflectivity
is the least squares estimate, which is normalized to have
a norm equal to one, to avoid the scale ambiguity between
the recovered reflectivity and the estimated wavelet often en-
countered in blind deconvolution problems. The parameters
of the proposed algorithm were estimated as described for

the nonblind procedure. Table IV summarizes the true and
estimated parameters’ values used in this example for both
executions.

Fig. 9 shows the results for the blind problem. Again, it can
be seen that the proposed algorithm recovers the reflectivity
better. Moreover, it can be seen that the wavelet estimate is
characterized by a lower mean-squared error when using the
proposed algorithm than the IWM algorithm.

C. Real Data Example

Fig. 10(a) shows real seismic data (courtesy of GeoEnergy
Inc., Texas) containing 150 traces of 150 samples long. The
estimated model parameters used for this example are displayed
in Table V. The reflectivity and wavelet estimates obtained
by using the IWM and proposed algorithms are shown in
Fig. 10. Since the true layer structure is unknown, one can
only appreciate the continuous nature of the channel estimates
obtained by using the proposed algorithm.
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Fig. 10. Performances of the MBD and IWM algorithms in blind scenarios for real seismic data. See Fig. 6 for explanation about the colors. (a) Received traces.
(b) and (c) Reflectivity estimates obtained by using the IWM algorithm with different sparsity parameters. (d) Reflectivity estimate obtained by using the MBD
algorithm. (e)–(g) Wavelet estimates corresponding to (b)–(d).

TABLE V
ESTIMATED VALUES OF PARAMETERS USED FOR REAL DATA EXAMPLES

V. CONCLUSION

We have presented an algorithm for multichannel seismic de-
convolution, which is based on Markov–Bernoulli random-field
modeling of the lateral dependence between reflectors in con-
secutive traces. The computational complexity of the proposed
algorithm is generally higher than that of the IWM algorithm.
However, some reduction in complexity can be achieved by
selecting, in each iteration, more than one path. Furthermore,
when estimating the amplitudes for a new configuration of
reflectors in a certain trace, not all the amplitudes need to be
estimated, since reflectors that are distant from a newly added
reflector or a removed reflector remain with nearly the same
estimated amplitude values.
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