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Anomaly Detection Based on Wavelet Domain
GARCH Random Field Modeling
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Abstract—One-dimensional Generalized Autoregressive Con-
ditional Heteroscedasticity (GARCH) model is widely used for
modeling financial time series. Extending the GARCH model to
multiple dimensions yields a novel clutter model which is capable
of taking into account important characteristics of a wavelet-based
multiscale feature space, namely heavy-tailed distributions and
innovations clustering as well as spatial and scale correlations. We
show that the multidimensional GARCH model generalizes the
casual Gauss Markov random field (GMRF) model, and we de-
velop a multiscale matched subspace detector (MSD) for detecting
anomalies in GARCH clutter. Experimental results demonstrate
that by using a multiscale MSD under GARCH clutter modeling,
rather than GMRF clutter modeling, a reduced false-alarm rate
can be achieved without compromising the detection rate.

Index Terms—Anomaly detection, Gaussian Markov
random field (GMRF), Generalized Autoregressive Conditional
Heteroscedasticity (GARCH), image segmentation, image texture
analysis, matched subspace detector, multiscale representation,
object recognition.

I. INTRODUCTION

IMAGE ANOMALY detection is the process of distilling
a small number of clustered pixels, which differ from the

image general characteristics. The type of image, its charac-
teristics, and the type of anomalies depend on the application
at hand. Common applications include detection of targets in
images [1]–[4], detection of mine features in side-scan sonar
[5]–[7], detection of tumorous areas in medical imaging [8],
and detection of faults in seismic data [9], [10]. Anomaly-
detection algorithms generally consist of some or all of the
following steps [1]–[6], [13]–[16]: 1) selection of an appro-
priate feature space where the distinction between an anomaly
and clutter is possible; 2) selection of a statistical model for the
image clutter and particular anomalies relevant for the given
application; and 3) selection of a detection algorithm.

Feature spaces employed in anomaly and object detection
applications are often related to multiresolution representa-
tions for various reasons. In an image, features of interest
are generally present in different sizes [11]. A multiresolution
decomposition of the image is thus an efficient way to analyze
such features. Using a multiresolution representation also al-
lows processing of different scales and orientations in paral-
lel, resulting in a more efficient implementation [11]. In [8],
it is shown that a certain wavelet transform can be used to
approximate the matched filter for detecting Gaussian objects in
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Markov noise. It is also claimed that objects in imagery create a
response over several scales in a multiresolution representation
of an image, and therefore, the wavelet transform can serve as
a means for computing a feature set for input to a detector. In
[17], a multiscale wavelet representation is utilized to capture
periodical patterns of various period lengths, which often ap-
pear in natural clutter images. In [12], the orientation and scale
selectivity of the wavelet transform are related to the biological
mechanisms of the human visual system and are utilized to
enhance mammographic features.

Statistical models for clutter and anomalies are usually
related to the Gaussian distribution due to its mathematical
tractability. In [1], the RX algorithm for detecting anomalies
in multiband images was established. The RX algorithm as-
sumes two hypotheses. Under target presence hypothesis, the
observations are assumed to be a linear combination of the
target signature and clutter, while under the clutter hypothesis,
the observation are assumed to consist of only clutter. The
statistical distributions of the two hypotheses are Gaussian
with common covariance matrices and different means. The
Gaussian mixture model [3] is another Gaussian-based feature
space model, which has been used for modeling nonhomoge-
neous data consisting of multiple scenes. In a Gaussian mixture
model, each observation is modeled as a linear combination
of Gaussian distributions. The Gauss Markov random field
(GMRF) is also a well-known Gaussian model, which has been
extensively used in the context of texture analysis and anomaly
and object detection. The 2-D GMRF has been introduced
by Woods [13]. It assumes a stationary image background
where every image pixel is represented as a weighted sum of
neighboring pixels and additive colored noise. Schweizer and
Moura [14], [15] utilize a 3-D GMRF for detecting anomalies
in multi- and hyperspectral images, where a moving window
over the image is employed. Inside the window, a stationary
GMRF is assumed, and the center of the window is tested as an
anomaly. Hazel [16] used a multivariate GMRF model of vector
observations for the application of image segmentation and
anomaly detection. A good review of multiresolution Markov
Models for signal and image processing can be found in [18].

Over the years, several anomaly-detection methods have
been developed. The single hypothesis test (SHT) [19] assumes
a background model and detects areas within the image
which differ from the background clutter. The SHT does not
allow any use of a priori information about the anomalies. The
counter approach is the matched signal detector, where an exact
pattern of the anomaly is assumed available and utilized in
the detection process. Unfortunately, the matched signal de-
tector is not useful for detecting anomalies which significantly
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differ from the assumed pattern. Scharf and Friedlander [20]
presented the matched subspace detector (MSD). The MSD
is appropriate when the anomalies are assumed to lie within
a known subspace. The MSD allows for a priori information
about the anomalies to be used without the single pattern
limitation of the matched signal detector. Kraut et al. [21]
extended the MSD for the case of unknown noise covariance
matrix and developed the adaptive subspace detector.

The aforementioned statistical models may account for spa-
tial as well as depth correlation in a multidimensional feature
space. However, these models are not appropriate for modeling
two common phenomena of often-used feature spaces: heavy
tails of the probability density function of the features (known
as excess kurtosis) and volatility clustering (a property of
many heteroscedastic stochastic processes, which means that
large changes tend to follow large changes and small changes
tend to follow small changes). Detection algorithms based
on these models may result in high false-alarm rates due to
mismatch between the model and the data. In particular, it was
observed that the wavelet transform, which is often used as a
feature space in applications dealing with natural images, yields
wavelet coefficients that show excess kurtosis [18], [22]–[24].
It is also argued that spatial- and scale-to-scale statistical de-
pendences of wavelet coefficients exist. That is, coefficients of
large magnitudes tend to appear at close spatial locations and
at adjacent scales and orientations. These characteristics of a
wavelet-based feature space cannot be appropriately modeled
by a Gaussian distribution and therefore call for an alternative
multidimensional statistical model.

In this paper, we introduce an N -dimensional (N -D)
Generalized Autoregressive Conditional Heteroscedasticity
(GARCH) model and an appropriate detection approach. The
1-D GARCH model [25]–[27] is widely used for modeling
financial time series. We have extended this model to 2-D in
[28]. Extending the GARCH model to N dimensions yields
a novel clutter model which is capable of taking into account
important characteristics of a 3-D feature space, namely heavy-
tailed distributions and innovations clustering as well as spatial
and depth correlations. We utilize an undecimated wavelet
transform and present a 3-D wavelet-based feature space. The
undecimated wavelet transform has the property of translation
invariance, which is important in the context of anomaly
detection.

Since we assume that the multiscale feature space follows a
GARCH distribution, we are faced with the challenge of devel-
oping an appropriate detection approach. In [20], an MSD is
developed for the detection of signals in subspace interference
and additive white Gaussian noise (WGN). Here, we introduce
a set of multiscale MSDs operating in subspace interference and
additive GARCH noise. We show that the GARCH model is
more appropriate for the background clutter than the Gaussian
model. Since the statistical model is not limited to 2-D, our
multiscale MSDs can utilize the correlation within and between
layers (for example, every scale and orientation in the wavelet
domain can be regarded as a feature space layer). This means
that detection at each location in the feature space may be based
on feature space data from adjacent layers and is not limited
to a single layer. Our multiscale MSD approach takes into

Fig. 1. Detection results on side-scan sea-mine sonar images. (Top row)
Original side-scan sea-mine sonar images. (Bottom row) Detection results using
a GMRF-based method.

consideration the fact that not all feature space layers contribute
uniformly to the detection process. It allows for selection of
the most relevant layers, where the relevance criteria are appli-
cation dependent and independent of the detection algorithm.
A separate anomaly subspace is assumed for each multiscale
MSD (operating on a set of feature space layers), thus allowing
incorporation of a priori information into the detection process.
These anomaly subspaces need not be of the same size so that
greater adaptivity of the anomaly subspace to the characteristics
of the feature space, namely, scale and orientation, can be
implemented.

This paper is organized as follows: Section II describes the
motivation for using the GARCH model. Section III introduces
the N -D GARCH model and a maximum likelihood model
estimation. Our multiscale MSD anomaly-detection approach is
developed in Section IV. Finally, in Section V, we demonstrate
the performance of our method using synthetic data and real
sea-mine side-scan sonar images.

II. MOTIVATION FOR A GARCH MODEL

Anomaly detection is often applied using a Gaussian dis-
tribution due to its mathematical tractability. As an example,
consider the GMRF-based algorithm presented in [17]. This
algorithm is based on 2-D GMRF modeling of uncorrelated
layers in a multiscale representation of the image. Correlation
between layers is reduced by means of the Karhunen–Loéve
transform (KLT). Anomaly detection is performed by means
of an MSD followed by a threshold operation. We next apply
this algorithm to the sea-mine sonar images in the top row
of Fig. 1. The side-scan sonar images presented in this paper
are from the Sonar-5 database collected by the Naval Surface
Warfare Center Coastal System Station (Panama City, FL).
The images are 8-bit grayscale. An elongated sea mine (such
as those presented in the top row of Fig. 1) is characterized
by a bright line (the highlight or echo), corresponding to the
scattering response of the mine to the acoustic insonification,
and a shadow behind it, corresponding to the blocking of
sonar waves by the mine. The image background corresponds
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Fig. 2. Example of layers from an undecimated wavelet-transform represen-
tation of sea-mine sonar images. (a)–(b) Two layers from the multiresolution
representation of Fig. 1(b). (c)–(d) Two layers from the multiresolution repre-
sentation of Fig. 1(c).

to the reverberation from the seabed [5], [6]. A description
of the acquisition process of side-scan sonar imagery and a
discussion on the various shapes of minelike objects in such
imagery can be found in [6] and [29]. Further technical and
navigational information about the specific database used is not
available. It is worth noting that the anomaly, being the mine
and its shadow, is skewed. We shall not pursue this further in
this paper since our goal is to propose a novel clutter model
and a corresponding detection approach without the specifics
of a certain application. However, for specific applications,
when information about the statistical characteristics of the
anomaly is available a priori, it can be accounted for in order
to improve detection results. Applying the anomaly-detection
algorithm described above to the sea-mine sonar images in the
top row of Fig. 1 results in a high false-alarm rate. This high
false-alarm rate is demonstrated at the bottom row of Fig. 1,
where the dark target like symbol marks locations where an
anomaly has been detected. To explain this high false-alarm
rate, let us first look into the statistical characteristics of the
feature space of Fig. 1(a) and (b). The kurtosis (forth moment
divided by the square second moment) is a measure of fat
tail behavior [22]. The sample kurtosis of the multiresolution
feature space of these two figures (obtained by means of an
undecimated wavelet transform) is 9.8 and 10.9, respectively.
The expected kurtosis value for the Gaussian distribution is
three. The high kurtosis values of the feature space for these
two images imply a distribution with much heavier tails than
the Gaussian distribution. Second, let us examine Fig. 1(c). The
sample kurtosis value for the multiresolution feature space of
these images is about 4.2, meaning that the distribution is not
highly leptokurtic. However, in the areas where false alarms
are detected, clustering of innovations occurs. Clustering of
innovations is clearly seen in the image itself and is also
apparent in the layers of the multiresolution representation, as
demonstrated in Fig. 2(c) and (d). This phenomenon is also
present in Fig. 1(b) and in its corresponding multiresolution
layers presented in Fig. 2(a) and (b). We note that the clustering
of innovations phenomena demonstrated in Fig. 2 appears at
the same spatial locations in the different multiscale repre-
sentation layers. This demonstrates scale-to-scale dependence
of the wavelet coefficients. The two characteristics of the
feature space, namely, heavy tailed distribution and clustering
of innovations, cannot be accounted for by the GMRF model
underlying the detection algorithm of [17] and therefore call for
an alternative statistical model. For that purpose, we introduce
in this paper the multidimensional GARCH model.

III. N -DIMENSIONAL GARCH MODEL

The 1-D GARCH, which is often used as a statistical model
for time series, allows for the conditional variance to change
as a function of past squared field values and past conditional
variance values. It has been shown to be useful in modeling
different economic phenomena. In [28], we have extended this
model to 2-D. In this paper, we propose a 3-D multiresolution
feature space for a given 2-D image. We assume that our feature
space follows a 3-D GARCH model, that is, the conditional
variance at every location within the feature space depends on
the squared field values and the conditional variance values of
neighboring locations, where the neighborhood is 3-D. In order
to model the 3-D feature space, we next present an extension of
the GARCH model to the general case of N -D and use a 3-D
GARCH for modeling our feature space in subsequent sections.
Following model definition, we present maximum likelihood
model estimation.

A. Model Definition

Let q = (q1, q2, . . . , qN ), qi ≥ 0, i = 1, . . . , N ; p = (p1,
p2, . . . , pN ), pi ≥ 0, i = 1, . . . , N denote the order of an N -D
GARCH model, and let Γ1 and Γ2 denote two neighborhood
sets, such that

Γ1 = {k|0 ≤ ki ≤ qi, i = 1, . . . , N and k �= 0}
Γ2 = {k|0 ≤ ki ≤ pi, i = 1, . . . , N and k �= 0} .

Define an N -D index vector i = (i1, i2, . . . , iN ). Let εi rep-
resent a random variable on an N -D lattice, and let hi de-
note its variance conditioned upon the information set ψi =
{{εi−k}k∈Γ1 , {hi−k}k∈Γ2}. Define the N -D causal neighbor-
hood of location i as: Γ = Γ(i) = {k|kj ≤ ij , j = 1, . . . , N}
and let ηi

iid∼ N(0, 1) be another random variable on an N -D
lattice independent of {hk}k∈Γ. An N -D GARCH(p;q)
process is defined as

εi =
√
hi ηi (1)

hi =α0 +
∑
k∈Γ1

αkε
2
i−k +

∑
k∈Γ2

βkhi−k (2)

and is therefore conditionally distributed as

εi|ψi ∼ N(0, hi). (3)

In order to guarantee a nonnegative conditional variance, the
model parameters must satisfy

α0 > 0

αk ≥ 0, k ∈ Γ1

βk ≥ 0, k ∈ Γ2. (4)

From (2), we see that at every location (i), both the N -D
neighboring squared field values and the N -D neighboring
conditional variances play a role in the current conditional vari-
ance. This yields clustering of variations, which is an important
characteristic of the GARCH process.
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A special case of the GARCH model is when q = p = 0.
In this case, εi is simply WGN. Another worth-noting case is
when N = 1, that is, q = q1 and p = p1 in which case the
multidimensional GARCH model resorts to the 1-D GARCH
model of Bollerslev [25].

Note that although causality may seem an unnatural model
limitation, it is a means of guarantying nonnegativity of the
conditional variance in the above model (see Appendix I for
more details). The causality of the model may lead to different
results, depending on the data orientation. This is demonstrated
in Section V-B. Depending on the application and on the data
at hand, it may be appropriate to consider more than one data
orientation when performing anomaly detection based on the
casual GARCH model.

B. Estimation of an N -D GARCH Model

In this section, we find a maximum likelihood estimate for
the GARCH model. We let εi be innovations of a linear re-
gression on an N -D lattice, where yi is the dependent variable,
xi is a vector of explanatory variables, and b is a vector of
unknown parameters, such that εi can be viewed as innovations
of an autoregressive process:

εi = yi − xT
i b. (5)

Note that if εi in (5) is WGN (as described in Section III-A),
the regression model is a casual GMRF. This is a special case
of the GARCH process.

The conditional distribution of yi is Gaussian with meanxT
i b

and variance hi

f
(
yi|xT

i b, ψi

)
=

1√
2πhi

exp

(
−
(
yi − xT

i b
)2

2hi

)
. (6)

Define the sample space Ωs as an N -D lattice of size
K1 ×K2 × · · · ×KN such that: Ωs = {i|1 ≤ ij ≤ Kj , j =
1, . . . , N}, and let θ = [bT , α0,α,β]T be a vector of the
unknown parameters, where α and β are column vectors of
the parameter sets {αk}k∈Γ1 and {βk}k ∈ Γ2, respectively.
The conditional sample log likelihood is

L(θ) =
∑
i∈Ωs

log f(yi|xi, ψi)

= − 1
2

[
(K1 + · · ·+KN ) log(2π)−

∑
i∈Ωs

log(hi)

−
∑
i∈Ωs

(
yi − xT

i b
)2
/hi

]
. (7)

Substituting (2) and (5) into (7) together with the constraints
in (4) may seem enough to estimate the model parameters.
However, due to the structure of the conditional variance (2),
wide sense stationarity (WSS) is a necessary condition for guar-
antying bounded variance for an infinite lattice, and therefore,
conditions for WSS should be included in the model estimation
process. It is shown in [25] and [28] that a sufficient condition
for WSS of the 1-D and 2-D GARCH process, respectively, is

that the sum of all model parameters is smaller than one. A
similar result is obtained here for the N -D case as we prove in
the following theorem.
Theorem 1: The GARCH(p;q) process, as defined in

(1) and (2), is wide-sense stationary with

E(εi) = 0

var(εi) =α0

[
1−

∑
k∈Γ1

αk −
∑
k∈Γ2

βk

]−1

cov(εi, εk) = 0 ∀i �= k

if and only if

1T (α+ β) < 1.

Proof: See Appendix II. �
The parameter vector θ is found by numerically solving a

constrained maximization problem on the log likelihood func-
tion with respect to the unknown parameters (see, for example,
[30]). The constraints used are those presented in (4) and in
Theorem 1. To solve the maximization problem, knowledge
of εi and hi, where i1, . . . , iN ≤ 0, is required. We set these
boundaries in a similar way to the studies in [25] and [28]
such that

εi = hi =
1

N∏
�=1

K�

∑
k∈Ωs

(
yi − xT

i b
)2 ∀ i1, . . . , iN ≤ 0.

(8)

Since GARCH model estimation requires an iterative proce-
dure to solve the constrained maximization problem presented
above, it may be desirable to test if it is appropriate and to esti-
mate the model order before going into the effort of estimating
it. Several tests and model-order selection methods have been
proposed for the 1-D GARCH model [25]–[27]. The problem of
testing for GARCH and model-order estimation is beyond the
scope of this paper and may be the subject of future research.

C. Example

We next demonstrate the heavy tails and volatility clustering
properties of the multidimensional GARCH model. Fig. 3
shows seven layers of a 3-D synthetic GARCH data. These
synthetic data were generated using the regression and GARCH
parameters shown in Tables I and II, respectively. The re-
gression parameters are of low values so that the GARCH
behavior can be easily detected in the examples. The sum of
the GARCH parameters is 1T (α+ β) = 0.98 such that the
condition stated in Theorem 1 is satisfied. The parameter values
in α compared to those in β allow the neighboring square field
values to have a larger influence on the conditional variance
than the neighboring conditional variances. A 7 × 7 random
Gaussian-shaped anomaly is planted to the lower left of the
image center in all layers of the synthetic image, as shown in,
for example, Fig. 3(f). The sample kurtosis of the complete
data set is 26.87. The kurtosis of each of the 2-D layers in
Fig. 3 is shown in Table III. The kurtosis values are much larger
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Fig. 3. Seven layers of a GARCH synthetic image with a Gaussian-shaped
anomaly.

TABLE I
REGRESSION PARAMETERS USED FOR GENERATING SYNTHETIC IMAGE

TABLE II
GARCH PARAMETERS USED FOR GENERATING SYNTHETIC IMAGE

TABLE III
KURTOSIS VALUES OF EACH OF THE 2-D LAYERS IN FIG. 3

than the value of three characterizing the Gaussian distribution,
demonstrating the heavy tails property of the GARCH model.
The heavy tails of these sample data can also be viewed from
the data’s histogram shown in Fig. 4. The volatility clustering
property of the GARCH model, which is due to the special
structure of the conditional variance, is apparent from Fig. 3,
where clustered areas of high variations in gray-scale levels are
easily noticed. To further demonstrate it, Fig. 5 shows the seven
layers of the conditional variance field based on the estimated
model parameters. Darker areas in Fig. 5 represent areas of high
conditional variance. These darker areas appear in clusters and
not as scattered pixels. The match between darker areas in Fig. 5
and the areas of clustered variations in Fig. 3 is obvious.

IV. MULTISCALE MATCHED SUBSPACE

ANOMALY DETECTION

In this section, we develop our anomaly-detection approach,
which is based on modeling the image feature space (presented
in the next section) as a 3-D causal autoregressive model with
GARCH innovations and an interference subspace. We assume
that the anomalies are sparse within the image, and therefore,

Fig. 4. Histogram of the 3-D GARCH data shown in Fig. 3. The sample
kurtosis of these data is 26.87.

Fig. 5. Seven layers of the conditional variance field of the synthetic GARCH
data presented in Fig. 3. Darker areas represent higher conditional variance
values.

their influence on the model estimation and on the estimated
conditional variance field is negligible. Model estimation is
performed as described in Section III-B. The conditional vari-
ance field hi1,i2,i3 is calculated based on the estimated model
parameters using (2) and (8) and is later used in our detection
process. The following sections present our multiscale MSD
anomaly-detection approach.

A. Statistical Model in the Wavelet Domain

In this section, we present the wavelet-based multiresolution
feature space. The suggested multiresolution feature space is
an example of a multidimensional feature space that can be
statistically modeled using the proposed GARCH model. Let
Y be a 2-D image of size K1 ×K2. We use an undecimated
wavelet transform into z levels to create a multiresolution
representation of Y [8]. The undecimated wavelet transform
yields four subband images at every analysis level. These
four subband images are labeled di

LH, di
HL, di

HH, and siLL,
where the subscripts L and H stand for low- and high-pass
filtering, respectively, d labels a detail subband, s represents the
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“smooth” subband, and the superscript i specifies the analysis
level. The undecimated wavelet transform yields a redundant
representation. However, the same analysis and synthesis filters
are used as in the decimated wavelet transform, and since the
transform preserves the spatial dimensions, it is easy to work
with. Furthermore, the undecimated wavelet transform has an
additional property, namely, translation invariance, which is
important in the context of anomaly detection. In [8], the
subband images of an undecimated wavelet transform were
used to create a 3-D lattice Y of size K1 ×K2 × (2 ∗ z + 1)
by creating a feature vector at every spatial location (i1, i2):

εi1,i2 =
[
d1LH + d

1
HL, d

1
HH, d

2
LH + d

2
HL ,

d2HH, . . . , d
z
LH + d

z
HL, d

z
HH, s

z
LL

]T
(i1,i2)

. (9)

Depending on the application and on the anomalies and
clutter characteristics, it may be more appropriate to use each
subband image as a separate feature, yielding a 3-D lattice
Y of size K1 ×K2 × (3 ∗ z + 1). If such an approach is se-
lected then the following represents the vector at every spatial
location (i1, i2):

εi1,i2 =
[
d1LH, d

1
HL, d

1
HH, d

2
LH, d

2
HL, d

2
HH, . . . ,

dz
LH, d

z
HL, d

z
HH, s

z
LL]

T
(i1,i2)

. (10)

The transformation from Y to Y generates a multiresolu-
tion representation with K3 layers, where K3 = 2 ∗ z + 1 or
K3 = 3 ∗ z + 1, depending on the selected feature vector (9)
or (10), respectively.

We assume that there is a set of wavelet filters such that
Y can be modeled as a 3-D GARCH process (examples are
provided in Section V-B). It has been noted by researchers
that the distribution of wavelet coefficients of natural images
is characterized by heavier tails than the often applied Gaussian
distribution (e.g., [18], [22]–[24]). It is also argued that spatial
and scale-to-scale statistical dependences of wavelet coeffi-
cients exist. That is, coefficients of large magnitudes tend to
appear at close spatial locations and at adjacent scales and
orientations.

B. Anomaly and Interference Subspaces

Our anomaly-detection approach introduces a designated
best fit multiscale anomaly subspace for each feature space
layer. The anomaly subspaces for different layers can be based
on different anomaly dimensions. This results in greater adap-
tivity of the anomaly subspace to the wavelet feature space and
improved incorporation of a priori information, thus potentially
reducing the false-alarm rate of the detection algorithm. The
anomaly subspace for layer � is spanned by a training set of
G� anomaly chips. The anomaly chips are denoted w�

g , g =
1, 2, . . . , G� and are each of size L�

1 × L�
2 × L�

3, where L�
1 �

K1, L�
2 � K2, and L�

3 ≤ K3. To create these anomaly chips,
we may start with a training set of images containing anomalies
at known image locations. These images are passed through
the process of undecimated wavelet transform, and an anomaly
chip of size L�

1 × L�
2 × L�

3 is cut around the spatial center of

the anomaly in layer �. Alternatively, we may try to create these
anomaly chips synthetically by using prior knowledge. Each
anomaly chip is reshaped in a consistent order into a column
vector of size L�

1L
�
2L

�
3 × 1. The G� vectors associated with

layer � are arranged as columns in a matrix H�, such that the
columns or H� spans the anomaly subspace for layer �. This
procedure is performed for every layer � = 1, . . . ,K3.

When the number of available image chips for a certain
layer is high, such that rank(H�) ≈ L�

1L
�
2L

�
3, the subspace

practically spans the entire space, and anomalies may be falsely
detected everywhere within layer �. In this case, dimensionality
reduction methods (for example, principal component analysis
[31], [32]) are utilized.

An interference subspace is modeled in a similar manner
using T� subspace chips s�t , t = 1, 2, . . . , T�, each of size L�

1 ×
L�

2 × L�
3. A matrix spanning the interference subspace S� is

created accordingly.

C. Multiscale Matched Subspace Detection

In this section, we introduce an anomaly-detection approach
based on an MSD and the multidimensional GARCH statistical
model previously presented. In [20], an MSD is developed for
the detection of signals in subspace interference and additive
WGN. Here, the underlying statistics is more appropriate for
the background clutter. We derive a modified MSD operating in
subspace interference and additive GARCH noise.

Let y�,s represent a pixel at layer � and spatial location s in
the 3-D lattice Y. For each pixel y�,s, we create a column vector
y�,s by row-stacking an image chip of size L�

1 × L�
2 × L�

3 cen-
tered around (�, s). Let ε�,s be a result of row-stacking a chip
of a GARCH field of size L�

1 × L�
2 × L�

3 centered around (�, s).
Similarly, let u�,s be a vector representing the explanatory
variable field (xT

i1,i2,i3
b) in the L1 × L2 × L3 neighborhood

of (�, s). Let φ�,s, ψ�,s be vectors locating the interference
and anomaly within their subspaces 〈S�〉 = span{S�}, 〈H�〉 =
span{H�}, respectively. We define two hypotheses H0 and H1,
which represent the absence and the presence of an anomaly,
respectively.

H0 : y�,s =S�φ�,s + u�,s + ε�,s

H1 : y�,s =H�ψ�,s + S�φ�,s + u�,s + ε�,s. (11)

Let h�,s represent a row stack of the conditional variance
field hi1,i2,i3 around (�, s), and let Σ�,s be a diagonal matrix
whose main diagonal equals the elements of h�,s. Under the
two hypotheses, the sample conditional distribution of y�,s is
Gaussian with identical covariance matrices and with different
means:

H0 : y�,s ∼N(S�φ�,s + u�,s,Σ�,s)

H1 : y�,s ∼N(H�ψ�,s + S�φ�,s + u�,s,Σ�,s).

Note that although Σ�,s is a diagonal matrix, the vector
elements in y�,s are only conditionally uncorrelated. Uncon-
ditionally, these vector elements may be correlated, such that
correlation within and between layers plays a role in our
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detection algorithm. This is due to the regression process rep-
resented by u�,s in (11) and to the fact that, under the GARCH
assumption, the true distribution of the data in unknown and
only the conditional distribution is known. Define PS�

as the
projection into the subspace spanned by the columns of S�, and
define PH�S�

as the projection into the subspace spanned by the
columns of the concatenated matrix [H�S�], that is,

PS�
=S�

(
ST

� S�

)−1
ST

�

PH�S�
= [H�S�]

(
[H�S�]T [H�S�]

)−1
[H�S�]T . (12)

From (11) and (12), we find the GARCH innovation field under
any one of the hypotheses:

H0 : ε0�,s =y�,s − u�,s − S�φ�,s

=(I − PS�
)[y�,s − u�,s] (13)

H1 : ε1�,s =y�,s − u�,s − S�φ�,s −H�ψ�,s

=(I − PH�S�
)[y�,s − u�,s]. (14)

The conditional likelihood function of ε under any one of the
hypotheses is

H0 : �0�,s =(2π)
−L�

1L�
2L�

3/2|Σ�,s|−1/2

× exp
[
−1
2
ε0

T

�,sΣ
−1
�,sε

0
�,s

]

H1 : �1�,s =(2π)
−L�

1L�
2L�

3/2|Σ�,s|−1/2

× exp
[
−1
2
ε1

T

�,sΣ
−1
�,sε

1
�,s

]
(15)

where |Σ�,s| denotes the determinant of Σ�,s.
The generalized likelihood ratio (GLR) is defined as

L�,s = 2 log

(
�1�,s
�0�,s

)
. (16)

Substituting (15) into (16) yields

L�,s = ε0
T

�,sΣ
−1
�,sε

0
�,s − ε1

T

�,sΣ
−1
�,sε

1
�,s

=
[
(PH�S�

− PS�
)(y�,s − u�,s)

]T Σ−1
�,s

× [(PH�S�
− PS�

)(y�,s − u�,s)
]

=
[
Σ−1/2

�,s (y�,s − u�,s)
]T
(PH�S�

− PS�
)

×
[
Σ−1/2

�,s (y�,s − u�,s)
]
. (17)

The signal-to-noise ratio (SNR) is the ratio between the
signal and the noise in terms of intensity. We define the point
SNR as the ratio between the energy of the signal which does
not lie in the interference subspace [(H�ψ�,s)(I − PS�

)]T ×

[(H�ψ�,s)(I − PS�
)] and the innovations’ conditional variance

Σ�,s, such that

SNR�,s =
[
(H�ψ�,s)(I − PS�

)
]T Σ−1

�,s

[
(H�ψ�,s)(I − PS�

)
]
.

(18)

The GLR is a sum of squared conditionally independent
normally distributed variables and therefore is conditionally
chi-square distributed with µ� = rank(H�) degrees of freedom,
as follows:

H0 : L�,s ∼χ2
µ�
(0)

H1 : L�,s ∼χ2
µ�
(SNR�,s). (19)

Under hypothesis H1, the noncentrality parameters of the chi-
square distributions of L�,s is equal to the SNR [20].

The GLR is a 3-D lattice. Our goal is to unify the detection
results for multiple layers into a single 2-D detection image
corresponding to the original image in size. Since not all
layers of the feature space usually contribute the same amount
of information to the detection process, it may be beneficial
to use only a subset of the layers. Criteria for selecting the
subset of layers is application dependent. This selection can be
made a priori, thus reducing the computational complexity of
the proposed method, or it can be made based on in-process
data such as layers with highest average SNR, highest point
SNR, etc., in which case, the decision can only be made after
some calculations have been made. Define the selected subset
of layers as Ω ⊂ {1, 2, . . . ,K3} such that the final detection
image is

Di1,i2 =
∑
k∈Ω

Li1,i2,k ∀i1, i2. (20)

The elements summed in (20) are, in general, statistically
dependent. This is due to the 3-D neighborhood used to create
y�,s. However, under certain conditions, these elements are
conditionally statistically independent. Consider the case where
Ω consists of p layers, which are mutually farther apart than the
corresponding depth dimension of the 3-D neighborhoods L�

3,
� ∈ Ω. For example, let K3 = 7 and {L�

3 = 3,∀�}. Choosing
Ω = {2, 6} would yield conditionally independent layers in
(20). Another example is when p = 1 and Ω = {�}. That is,
layer � of the GLR is selected and used as the detection image:

Di1,i2 = Li1,i2,� ∀i1, i2. (21)

Depending on the application and available a priori informa-
tion, different selections of � may be appropriate. For example,
if L3 = K3 such that the anomaly subspace and the feature
space have the same depth dimension, it may be appropriate to
select � = �K3/2�+ 1, where �·/·� stands for integer division.

Detection is performed by applying a threshold η to Di1,i2 ,
yielding

Di1,i2

H1

≷
H0

η. (22)

The threshold is determined by the tradeoff between the
desired conditional detection and false-alarm rates. For the
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Fig. 6. ROC curves of (a) single-layer detector for different values of SNR,
(b) single-layer detector for different anomaly subspace ranks, (c) single-layer
detector and an independent layer detector, and (d) dependent layer detectors
versus an independent layer detector.

case where independent layers are used, these rates can be
calculated by

PFA =1− P
[
χ2

µtot
(0) ≤ η] (23)

PD =1− P
[
χ2

µtot
(SNRtot) ≤ η

]
(24)

where µtot =
∑

k∈Ω µk and SNRtot =
∑

k∈Ω SNRk.
These rates cannot be easily found for the general case

due to the conditional statistical dependence of the elements
summed in (20). However, computer simulations can present
receiver-operating-characteristic (ROC) curves for the general
case as we present next, when discussing the performance of
the proposed detection approach.

Performance analysis: We shall first look into the perfor-
mance of a single-layer detection. Fig. 6(a) presents ROC
curves for different values of the SNR. These curves were
generated using µl = 4, and the SNR was varied from 2 to 8
in steps of 2. The values of PFA and PD were calculated
using (23) and (24), respectively. As expected, the detection
rate increases with the SNR. Fig. 6(b) presents ROC curves for
different anomaly subspace ranks (different number of degrees
of freedom) while the SNR is preserved at a constant value. It is
clearly seen that for a constant SNR, the detector’s performance
increases with decreasing rank of the signal subspace. This is
expected since as the anomaly subspace rank increases (under
the constant SNR constraint), it is more likely for a false alarm
to occur since the anomaly subspace covers a larger portion
of the feature space. It is important to note that usually, in
real applications, increasing the signal subspace rank results
in an increase of the SNR. We next discuss the case of con-
ditionally statistical independent layers. Fig. 6(c) compares the
ROC curve of a single-layer detection (p = 1) with those of
conditionally statistical independent layers (p = 2, 3, 4). The

values of PFA and PD were calculated using (23) and (24).
We assumed a constant SNR for all layers and an identical
anomaly subspace rank for all layers. It is clear that additional
independent layers improve the detector’s performance. This
improvement is due to the additional information concealed
in every additional independent layer. ROC curves for the
general case, where the sum in (20) contains dependent layers,
are presented in Fig. 6(d). These curves are generated by
computer simulations under similar assumptions to those used
for generating Fig. 6(c) (constant SNR and identical anomaly
subspace ranks for all layer). The ROC curve for the former
case of two conditionally independent layers is also presented
for comparison. To generate Fig. 6(d), we used µk = 3; ∀k ∈ Ω
such that the ROC curve representing two independent layers is
based on information from six different layers. For the ROC
curve representing two dependent layers, we chose to use infor-
mation from only five different layers (Ω = 2, 4). This explains
the apparent advantage of the two independent layers over the
two dependent layers. However, under certain conditions, for
example,K3 = 8 and L�

3 = 3; ∀� ∈ Ω, if we wish to choose in-
dependent layers, the maximum value of p is two (six layers are
used in the detection process). Under such conditions, it appears
that using a larger number of dependent layers (for example,
p = 6 such that Ω = {2, 3, 4, 5, 6, 7} and 8 layers are used in
the detection process or p = 7 such that Ω = {2, 3, 4, 5, 6, 7, 8}
and 9 layers are used in the detection process) may be beneficial
as seen in the ROC curves of Fig. 6(d). The advantage of using
dependent layers under these conditions is due to the fact that
more information is made available in the detection process.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the pro-
posed anomaly-detection approach on synthetic and real data.

A. Synthetic Data

We demonstrate the performance of the multiscale MSD on
the synthetic data presented in Fig. 3, which exactly matches
our model assumptions, and qualitatively investigate the detec-
tion performance for different selections of Ω. As described
in Section III-C, the clutter in Fig. 3 clearly contains areas
of clustered variations. These areas may generate high rate
of false alarms when conventional GMRF-based anomaly-
detection algorithms are deployed [28]. We recall the 7 × 7
random Gaussian-shaped anomaly planted to the lower left of
the image center in all layers of the synthetic image as shown
in, for example, Fig. 3(f). Note that the anomaly does not stand
out in all layers; specifically in Fig. 3(d) and (g), it can hardly
be noticed. For anomaly detection, we set the anomaly size to
L1 = L2 = 7, L3 = 3 and create an anomaly subspace using
four image chips. No interference subspace is assumed. We
perform parameter estimation as described in Section III-B and
anomaly detection as detailed in Section IV-C. Fig. 7 shows
layers 2–6 of the GLR. Layers 1 and 7 are not considered here
since they suffer from boundary effects due to the 3-D nature
of the anomaly subspace. The target mark on each detection
image shows the detection result when Ω contains this layer
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Fig. 7. Layers 2–6 of the GLR with detected anomalies marked by a dark
target sign.

Fig. 8. Detection using a sum of GLR layers. (a) Independent layers 2 and 6.
(b) Dependent layers 2–6. (c) Layer 4 of the GLR using a seven-layer anomaly
subspace.

only. Note that positive detection is achieved in all layers,
while layer 6 includes a false alarm. Fig. 8(a) shows detec-
tion results when performing detection using layers 2 and 6,
that is, Ω = {2, 6} and L3 = 3. These two detection layers
are conditionally statistically independent, and the detection
image is achieved using (20). Once again, the anomaly is
clearly detected. Fig. 8(b) presents the results where Ω includes
dependent layers 2–6 and L3 = 3. The 2-D detection result is
achieved by means of (20). The detection of Fig. 8(b) seems
clearer than that of Fig. 8(a), which qualitatively demonstrates
the potential of using dependent layers. Fig. 8(c) presents the
detection result for the same synthetic data as above, only
here, Ω = {4} and L3 = K3 = 7, that is, we have used seven
layers anomaly subspace, and the detection image is layer 4 of
the GLR. Due to the choice of Ω = {4} and the fact that the
anomaly and feature subspaces have the same depth dimension,
information from all layers is used in the detection process. The
anomaly is clearly detected, and it seems that this detection
image is clearer than those presented earlier. For detection in
real images, presented next, we use a single layer of the GLR
with L3 = K3 and Ω = {�K3/2�+ 1}.

B. Real Data

The following examples demonstrate the potential of the
proposed anomaly-detection approach on real sea-mine sonar
images. Automatic detection of sea mines in side-scan sonar

Fig. 9. Original sea-mine sonar images from which an image chip is cut to
create the anomaly subspace.

Fig. 10. Image chips cut from the sea-mine sonar images presented in Fig. 9.

imagery is a challenging task due to the high variability of the
target and seabottom reverberation (background). An example
of this variability is shown in the top row of Fig. 1, which
shows three sea-mine sonar images. In [5], a two-phase three-
class Markovian segmentation algorithm for the detection of
sea mines in side-scan sonar is presented. In the first phase,
the data are segmented into two classes: shadow and reverber-
ation, where the latter consists of both echo and seabottom-
reverberation regions. In the second phase, the reverberation
class is segmented into two classes: seabottom reverberation
and echo. In [6], a three-phase procedure for detecting sea
mines in side-scan sonar data is presented. In the first stage,
suspected mine objects are detected. The shadow cast by the
mine is extracted in the second stage. In the third stage, shadow
information is used to provide classification information on
the shape and dimensions of the detected object. In [17], a
competing method based on 2-D GMRF modeling of inde-
pendent layers in a multiscale representation of the image is
presented. Independence of layers is achieved by means of the
KLT. Anomaly detection is performed by using an appropriate
subspace detector for each layer.

The proposed method has been applied to the images shown
in the top row of Fig. 1. A five-layer feature space is created
(K3 = 5) for each image by using the biorthogonal spline
wavelet transform domain and (9). We note that in our experi-
ments, using different wavelet filters produces similar detection
results. The anomaly subspace is created from arbitrarily se-
lected four real examples of sea mines. The images used for
creating the subspace are taken from a training set which is
mutually exclusive with the images presented in the detection
examples. These four images are presented in Fig. 9. The spatial
size of the image chip is 7 × 7. The four chips in the image
domain are presented in Fig. 10. They all consist of a portion of
a sea-mine highlight and a portion of a sea-mine shadow and
thus represent the sea mine properly. Ω = {3} is used for a
single-layer detection since no special information is used for
the different layers. We chooseK3 = 5 such that all layers con-
tribute to the detection process. To create the anomaly subspace,
a wavelet-based feature space is created for each of the four
images in Fig. 9, in a similar manner to that used for the images
in Fig. 1. Anomaly chips of size 7× 7× 5 are cut from the
four feature spaces. The center of the chip is located in layer 3
at the spatial location corresponding to the center of the image
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Fig. 11. Detection results using the proposed method on the sea-mine sonar
images of Fig. 1.

chip presented in Fig. 10. These four chips are consistently
reordered into column vectors of size 245 × 1 and are set as
column vectors in a matrix H�=3, which spans the anomaly
subspace. A GARCH(1,1,1;1,1,1) was chosen for modeling the
image clutter. For the 1-D GARCH, the GARCH(1;1) is often
enough to capture characteristics of financial time series [33].
In a similar manner, we utilize a GARCH(1,1,1;1,1,1) since it
allows demonstrating the 3-D model and its advantage over the
GMRF model while keeping the calculations simple. Choosing
a higher order GARCH model may be more appropriate for
the data; however, the results obtained by using this simple
model are very promising. We also note that the sea-mine
sonar images are noisy. Using a complex high-order model
may result in unreliable parameter estimation. Detection results
of the proposed approach are presented in Fig. 11. A black
target like symbol marks the location of the detected anomaly.
Note that the positive detection is achieved in all three images
(emphasis is given on the highlight region corresponding to the
selected subspace). To further improve the detection results,
the proposed method can be aided by inference on the object’s
shadow made available by published algorithms such as those
presented in [5], [6], and [34]. We chose to compare our results
with those of the GMRF-based multiscale detection method in
[17]. Detection results of the GMRF-based method on the sea-
mine sonar images presented in the top row of Fig. 1 are shown
in the bottom row of Fig. 1. We have used the same multi-
scale image representation, subspace image chips, and anomaly
spatial size for both the proposed approach and the GMRF-
based method. It is clearly demonstrated by these figures that
the GMRF-based method may result in high false-alarm rate,
while the proposed method potentially reduced the false-alarm
rate. The high false-alarm rate of the GMRF-based method may
be due to the inability of the GMRF statistics to properly model
the leptokurtic feature space of Fig. 1(a) and (b). High kurtosis
values correspond to non-Gaussian distributions; therefore, the
underlying GMRF model of the GMRF-based method does
not allow for accurate detection. Another reason for the high
false alarm of the GMRF-based method is the clustering of
innovation phenomena apparent in the feature spaces of all
three images. The GMRF cannot properly model clustering
of innovations. Information on statistical values and examples
of clustering of innovations in the feature spaces of these
images are presented in Section II. The examples presented here
demonstrate the potential of the proposed statistical model and
detection method in a variable background.

To further demonstrate the robustness of the proposed
method, Fig. 12(a) presents a sea-mine sonar image, in which

Fig. 12. Original side-scan sonar image of a spherical object and a corre-
sponding detection image. (a) Original sea-mine sonar image. (b) Detection
results using the proposed method on the sea-mine sonar images.

Fig. 13. Detection results on rotated versions of the side-scan sea-mine sonar
image presented in Fig. 1(c). (a) Original image rotated by 90◦. (b) Original
image rotated by 180◦. (c) Detection results for (a) using the proposed method.
(d) Detection results for (b) using the proposed method.

the mine object (probably a spherical object) differs from the
mine objects used to create the anomaly subspace (elongated
mines). Fig. 12(b) shows the detection results using the exact
same anomaly subspace used in the detection process leading to
Fig. 11. This demonstrates the potential of detecting minelike
objects in sonar imagery using a subspace, which does not
contain exact examples of such objects.

As discussed in Section III-A, causality seems an unnatural
model limitation. We therefore demonstrate detection results
for different image orientations. The side-scan sonar image
of Fig. 1(c) is rotated by 90◦ and 180◦, and the resulting
images are presented in the top row of Fig. 13. Detection is
performed using the exact same procedures as above, only that
the subspace images are rotated according to the image orien-
tation in order to isolate the effect of model causality on the
detection results. Detection results are shown in the bottom row
of Fig. 13. Although positive detection without false alarms is
achieved in all orientations (0◦, 90◦, 180◦), the detection images
differ. In particular, Fig. 13(c) produces the best detection
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results, while Fig. 13(d) produces the worst detection of the
three images. Due to the model causality, it may be appropriate
in some applications to consider all four possible orientations
of a given image.

VI. CONCLUSION

We have introduced a multidimensional GARCH model
and a corresponding anomaly subspace detection method. The
GARCH statistical model is characterized by heavy tails and
clustering of innovations. These characteristics are of interest
since they are common in image multiresolution representa-
tions and cannot be well modeled by Gaussian-based statistical
models such as the GMRF. The multiresolution representation
and clutter modeling based on multiscale GARCH model allow
for correlation in and between layers of the multiresolution
representation in addition to the GARCH characteristics. Our
detection method is based on the MSD in GARCH background
noise. The MSD enables incorporation of a priori information
into the detection process. A separate anomaly subspace is
assumed for each layer in the multiresolution representation.
Since not all layers contribute uniformly to the detection
process, we allow for a selection of only those layer which are
most significant to the detection. Layers are selected a priori
based on intermediate results obtained for each layer. We have
demonstrated the performance of the proposed statistical model
and detection approach on synthetic images and real sea-mine
side-scan sonar imagery. Automatic detection of sea mines in
side-scan sonar imagery is a challenging task due to the high
variability of the target and seabottom reverberation. Compared
with a GMRF-based method, we presented improved perfor-
mance, i.e., a reduced false-alarm rate while retaining a high
detection rate.

APPENDIX I

For ease of notation, let us explore the GARCH model in
1-D and show that there is no way to guaranty a nonnegative
conditional variance without the causality constraint.

Let q, p ≥ 0 denote the order of a noncausal symmetric
GARCH model, and let Γ1 and Γ2 denote two neighborhood
sets which are defined by

Γ1 = {k| − q ≤ k ≤ q, k �= 0}
Γ2 = {k| − p ≤ k ≤ p, k �= 0} .

Let εt represent a stochastic process, and let ht denote
its variance conditioned upon the information set ψt =
{{εt−k}k∈Γ1 , {ht−k}k∈Γ2}. Let ηt

iid∼ N(0, 1) be a stochas-
tic process independent of hk, ∀k �= t. The noncausal
GARCH(p, q) process is defined as

εt =
√
ht ηt (25)

ht =α0 +
∑
k∈Γ1

αkε
2
t−k +

∑
k∈Γ2

βkht−k (26)

and is therefore conditionally distributed as

εt|ψt ∼ N(0, ht). (27)

In order to guarantee a nonnegative conditional variance, we
require that

h(t) ≥ 0 ∀t. (28)

We need to find conditions on the parameters space {α0,
{αk}k∈Γ1 , {βk}k∈Γ2} such that (28) holds. Substituting (25)
into (26) yields

ht = α0 +
∑
k∈Γ1

αkη
2
t−kht−k +

∑
k∈Γ2

βkht−k. (29)

This is a set of linear equations in ht. To the best of our
knowledge, there are no known conditions on the parameters
of a set of linear equations in order to guarantee a non-
negative solution. In addition, the equation parameters include
a stochastic process η2t−k, which cannot be limited in any way.
This means that causality is a necessary constraint to guarantee
a nonnegative conditional variance.

APPENDIX II

In this appendix, we prove Theorem 1 presented in
Section III.

Repeating substitutions of (3) into (2) yields

hi = α0+
∑
k∈Γ1

αkη
2
i−khi−k+

∑
k∈Γ2

βkhi−k

= α0+
∑
r∈Γ1

αrη
2
i−r

×
[
α0+

∑
k∈Γ1

αkη
2
i−r−khi−r−k+

∑
k∈Γ2

βkhi−r−k

]

+
∑
r∈Γ2

βr

[
α0 +

∑
k∈Γ1

αkη
2
i−r−khi−r−k +

∑
k∈Γ2

βkhi−r−k

]

= α0

∞∑
g=0

M(i, g) (30)

whereM(i, g) involves all terms of the form

∏
k∈Γ1

αak

k

∏
k∈Γ2

βbk
k

n∏
r=1

η2i−sr

for ∑
k∈Γ1

ak +
∑
k∈Γ2

bk = g

∑
k∈Γ1

ak =n
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and

0 < |s1| ≤ |s2| ≤ · · · ≤ |sn|
sr ≡ (sr1 , . . . , srN

)

sr1 ≤ max {gq1, (g − 1)q1 + p1}
...

srN
≤ max {gqN , (g − 1)qN + pN} .

Thus

M(i, 0) =1

M(i, 1) =
∑
k∈Γ1

αkη
2
i−k +

∑
k∈Γ2

βk

M(i, 2) =
∑
r∈Γ1

αrη
2
i−r

[∑
k∈Γ1

αkη
2
i−r−k +

∑
k∈Γ2

βk

]

+
∑
r∈Γ2

βr

[∑
k∈Γ1

αkη
2
i−r−k +

∑
k∈Γ2

βk

]

and in general

M(i, g + 1)=
∑
k∈Γ1

αkη
2
i−kM(i−k, g) +

∑
k∈Γ2

βkM(i − k, g).

(31)

Since ηi is independent identically distributed (i.i.d.), the mo-
ments ofM(i, g) are not dependent on (i), and in particular

E {M(i, g)} = E {M(k, g)} ∀i,k, g. (32)

From (31) and (32), we obtain

E {M(i, g + 1)} =
[∑
k∈Γ1

αk +
∑
k∈Γ2

βk

]
E {M(i, g)}

=

[∑
k∈Γ1

αk +
∑
k∈Γ2

βk

]g+1

E {M(i, 0)}

=

[∑
k∈Γ1

αk +
∑
k∈Γ2

βk

]g+1

. (33)

Finally, by (1), (30), and (33)

E
{
ε2i
}
= α0E

{ ∞∑
g=0

M(i, g)

}

= α0

∞∑
g=0

E {M(i, g)}

= α0

[
1−

∑
k∈Γ1

αk −
∑
k∈Γ2

βk

]−1

(34)

if and only if ∑
k∈Γ1

αk +
∑
k∈Γ2

βk < 1

and

E(εi) = 0

var(εi) = α0

[
1−

∑
k∈Γ1

αk −
∑
k∈Γ2

βk

]−1

cov(εi, εk) = 0 for (i) �= (k)
follows immediately.
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