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Abstract

In this paper, we investigate the influence of cross-band filters on a system identifier implemented

in the short-time Fourier transform (STFT) domain. We derive analytical relations between the number

of cross-band filters, which are useful for system identification in the STFT domain, and the power

and length of the input signal. We show that increasing the number of cross-band filters not necessarily

implies a lower steady-state mean-square error (MSE) in subbands. The number of useful cross-band

filters depends on the power ratio between the input signal and the additive noise signal. Furthermore,

it depends on the effective length of input signal employed for system identification, which is restricted

to enable tracking capability of the algorithm during time variations in the system. As the power of

input signal increases or as the time variations in the system become slower, a larger number of cross-

band filters may be utilized. The proposed subband approach is compared to the conventional fullband

approach and to the commonly-used subband approach that relies on multiplicative transfer function

(MTF) approximation. The comparison is carried out in terms of MSE performance and computational

complexity. Experimental results verify the theoretical derivations and demonstrate the relations between

the number of useful cross-band filters and the power and length of the input signal.
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I. INTRODUCTION

Identification of systems with long impulse responses is of major importance in many applications,

including acoustic echo cancellation [1], [2], relative transfer function (RTF) identification [3], derever-

beration [4], [5], blind source separation [6], [7] and beamforming in reverberant environments [8], [9].

In acoustic echo cancellation applications, a loudspeaker-enclosure-microphone (LEM) system needs to

be identified in order to reduce the coupling between loudspeakers and microphones. A typical acoustic

echo canceller (AEC) for an LEM system is depicted in Fig. 1. The far-end signal x(n) propagates

through the enclosure, which is characterized by a time-varying impulse response h(n), and received in

the microphone as an echo signal d(n) together with the near-end speaker and a local noise. To cancel

the echo signal, we commonly identify the echo path impulse response using an adaptive transversal

filter ĥ(n) and produce an echo estimate d̂(n). The cancellation is then accomplished by subtracting

the echo estimate from the microphone signal. Adaptation algorithms used for the purpose of system

identification are generally of a gradient type (e.g., least-mean-square (LMS) algorithm) and are known

to attain acceptable performances in several applications, especially when the length of the adaptive

filter is relatively short. However, in applications like acoustic echo cancellation, the number of filter

taps that need to be considered is several thousands, which leads to high computational complexity and

slow convergence rate of the adaptive algorithm. Moreover, when the input signal to the adaptive filter

is correlated, which is often the case in acoustic echo cancellation applications, the adaptive algorithm

suffers from slow convergence rate [10].

To overcome these problems, block processing techniques have been introduced [10], [11]. These

techniques partition the input data into blocks and perform the adaptation in the frequency domain to

achieve computational efficiency. However, block processing introduces a delay in the signal paths and

reduces the time-resolution required for control purposes. Alternatively, the loudspeaker and microphone

signals are filtered into subbands, then decimated and processed in distinct subbands (e.g., [12]–[18]). The

computational complexity is reduced and the convergence rate is improved due to the shorter independent

filters in subbands. However, as in block processing structures, subband techniques introduce a delay into

the system by the analysis and synthesis filter banks. Moreover, they produce aliasing effects because of

the decimation, which necessitates cross-band filters between the subbands [16], [19].

It has been found [16] that the convergence rate of subband adaptive filters that involve cross-band filters

with critical sampling is worse than that of fullband adaptive filters. Several techniques to avoid cross-band

filters have been proposed, such as inserting spectral gaps between the subbands [12], employing auxiliary
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Fig. 1: A typical acoustic echo canceller (AEC) for a loudspeaker-enclosure-microphone (LEM) system.

subbands [15], using polyphase decomposition of the filter [17] and oversampling of the filter-bank outputs

[13], [14]. Spectral gaps impair the subjective quality and are especially annoying when the number of

subbands is large, while the other approaches are costly in terms of computational complexity. Some

time-frequency representations, such as the short-time Fourier transform (STFT) have been introduced

for the implementation of subband adaptive filtering [20]–[23]. A typical system identification scheme

in the STFT domain is illustrated in Fig. 2. The block Ĥ represents a matrix of adaptive filters which

models the system h(n) in the STFT domain. The off-diagonal terms of Ĥ (if exist) correspond to the

cross-band filters, while the diagonal terms represent the band-to-band filters. Recently, we analyzed the

performance of an LMS-based direct adaptive algorithm used for the adaptation of cross-band filters in

the STFT domain [24].

In this paper, we consider an offline system identification in the STFT domain using the least squares

(LS) criterion, and investigate the influence of cross-band filters on its performance. We derive analytical

relations between the input signal-to-noise ratio (SNR), the length of the input signal, and the number of

cross-band filters which are useful for system identification in the STFT domain. We show that increasing

the number of cross-band filters not necessarily implies a lower steady-state MSE in subbands. The number

of cross-band filters, that are useful for system identification in the STFT domain, depends on the length

and power of the input signal. More specifically, it depends on the SNR, i.e. the power ratio between the

input signal and the additive noise signal, and on the effective length of input signal employed for system

identification. The effective length of input signal employed for the system identification is restricted to

enable tracking capability of the algorithm during time variations in the impulse response.

We show that as the SNR increases or as the time variations in the impulse response become slower

(which enables to use longer segments of the input signal), the number of cross-band filters that should be
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Fig. 2: System identification scheme in the STFT domain. The unknown system h(n) is modeled by the block Ĥ

in the STFT domain.

estimated to achieve the minimal MSE increases. Moreover, as the SNR increases, the MSE that can be

achieved by the proposed approach is lower than that obtainable by the commonly-used subband approach

that relies on long STFT analysis window and multiplicative transfer function (MTF) approximation.

Experimental results obtained using synthetic white Gaussian signals and real speech signals verify the

theoretical derivations and demonstrate the relations between the number of useful cross-band filters and

the power and length of the input signal.

The paper is organized as follows. In Section II, we briefly review the representation of digital signals

and linear time-invariant (LTI) systems in the STFT domain and derive relations between the cross-band

filters in the STFT domain and the impulse response in the time domain. In Section III, we consider

the problem of system identification in the STFT domain and formulate an LS optimization criterion

for estimating the cross-band filters. In Section IV, we derive an explicit expression for the attainable

MMSE in subbands. In Section V, we explore the influence of both the input SNR and the observable

data length on the MMSE performance. In Section VI, we address the computational complexity of the

proposed approach and compare it to that of the conventional fullband and MTF approaches. Finally, in

Section VII, we present simulation results which verify the theoretical derivations.
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II. REPRESENTATION OF LTI SYSTEMS IN THE STFT DOMAIN

In this section, we briefly review the representation of digital signals and LTI systems in the STFT

domain. For further details, see e.g., [25], [26]. We also derive relations between the cross-band filters in

the STFT domain and the impulse response in the time domain, and show that the number of cross-band

filters required for the representation of an impulse response is mainly determined by the analysis and

synthesis windows employed for the STFT. Throughout this work, unless explicitly noted, the summation

indexes range from −∞ to ∞.

The STFT representation of a signal x(n) is given by

xp,k =
∑
m

x(m)ψ̃∗p,k(m) , (1)

where

ψ̃p,k(n) , ψ̃(n− pL)ej 2π

N
k(n−pL) , (2)

ψ̃(n) denotes an analysis window (or analysis filter) of length N , p is the frame index, k represents the

frequency-band index, L is the discrete-time shift (in filter bank interpretation L denotes the decimation

factor as illustrated in Fig. 2) and ∗ denotes complex conjugation. The inverse STFT, i.e., reconstruction

of x(n) from its STFT representation xp,k, is given by

x(n) =
∑

p

N−1∑

k=0

xp,kψp,k(n) , (3)

where

ψp,k(n) , ψ(n− pL)ej 2π

N
k(n−pL) (4)

and ψ(n) denotes a synthesis window (or synthesis filter) of length N . Throughout this paper, we assume

that ψ̃(n) and ψ(n) are real functions. Substituting (1) into (3), we obtain the so-called completeness

condition:
∑

p

ψ(n− pL)ψ̃(n− pL) =
1
N

for all n . (5)

Given analysis and synthesis windows that satisfy (5), a signal x(n) ∈ `2(Z) is guaranteed to be perfectly

reconstructed from its STFT coefficients xp,k. However, for L ≤ N and for a given synthesis window

ψ(n), there might be an infinite number of solutions to (5); therefore, the choice of the analysis window

is generally not unique [27], [28].
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We now proceed with an STFT representation of LTI systems. Let h(n) denote a length Q impulse

response of an LTI system, whose input x(n) and output d(n) are related by

d(n) =
Q−1∑

i=0

h(i)x(n− i) . (6)

In the STFT domain, we obtain after some manipulations (see Appendix I)

dp,k =
N−1∑

k′=0

∑

p′
xp′,k′hp−p′,k,k′ =

N−1∑

k′=0

∑

p′
xp−p′,k′hp′,k,k′ , (7)

where hp−p′,k,k′ may be interpreted as a response to an impulse δp−p′,k−k′ in the time-frequency domain

(the impulse response is translation-invariant in the time axis and is translation varying in the frequency

axis). The impulse response hp,k,k′ in the time-frequency domain is related to the impulse response h(n)

in the time domain by

hp,k,k′ = {h(n) ∗ φk,k′(n)}|n=pL , h̄n,k,k′
∣∣
n=pL

, (8)

where ∗ denotes convolution with respect to the time index n and

φk,k′(n) , ej 2π

N
k′n

∑
m

ψ̃(m)ψ(n + m)e−j 2π

N
m(k−k′)

= ej 2π

N
k′nψn,k−k′ , (9)

where ψn,k is the STFT representation of the synthesis window ψ(n) calculated with a decimation factor

L = 1. Equation (7) indicates that for a given frequency-band index k, the temporal signal dp,k can

be obtained by convolving the signal xp,k′ in each frequency-band k′ (k′ = 0, 1, . . . , N − 1 ) with the

corresponding filter hp,k,k′ and then summing over all the outputs. We refer to hp,k,k′ for k = k′ as a

band-to-band filter and for k 6= k′ as a cross-band filter. Cross-band filters are used for canceling the

aliasing effects caused by the subsampling. Note that equation (8) implies that for fixed k and k′, the filter

hp,k,k′ is noncasual in general, with
⌈

N
L

⌉ − 1 noncasual coefficients. In echo cancellation applications,

in order to consider those coefficients, an extra delay of
(⌈

N
L

⌉− 1
)
L samples is generally introduced

into the microphone signal (y(n) in Fig. 1) [13]. It can also be seen from (8) that the length of each

cross-band filter is given by

Nh =
⌈

Q + N − 1
L

⌉
+

⌈
N

L

⌉
− 1 . (10)

To illustrate the significance of the cross-band filters, we apply the discrete-time Fourier transform

(DTFT) to the undecimated cross-band filter h̄n,k,k′ (defined in (8)) with respect to the time index n and

obtain

H̄k,k′(θ) =
∑

n

h̄n,k,k′e
−jnθ = H(θ)Ψ̃(θ − 2π

N
k)Ψ(θ − 2π

N
k′) , (11)
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where H(θ), Ψ̃(θ) and Ψ(θ) are the DTFT of h(n), ψ̃(n) and ψ(n), respectively. Had both Ψ̃(θ) and

Ψ(θ) been ideal low-pass filters with bandwidth fs/2N (where fs is the sampling frequency), a perfect

STFT representation of the system h(n) could be achieved by using just the band-to-band filter hn,k,k,

since in this case the product of Ψ̃(θ − 2π
N k) and Ψ(θ − 2π

N k′) is identically zero for k 6= k′. However,

the bandwidths of Ψ̃(θ) and Ψ(θ) are generally greater than fs/2N and therefore, H̄k,k′(θ) and h̄n,k,k′

are not zero for k 6= k′. One can observe from (11) that the energy of a cross-band filter from frequency-

band k′ to frequency-band k decreases as |k − k′| increases, since the overlap between Ψ̃(θ − 2π
N k) and

Ψ(θ− 2π
N k′) becomes smaller. As a result, relatively few cross-band filters need to be considered in order

to capture most of the energy of the STFT representation of h(n).

Figure 3 illustrates a synthetic LEM impulse response based on a statistical reverberation model, which

assumes that a room impulse response can be described as a realization of a nonstationary stochastic

process h(n) = u(n)β(n)e−αn, where u(n) is a step function (i.e., u(n) = 1 for n ≥ 0, and u(n) = 0

otherwise), β(n) is a zero-mean white Gaussian noise and α is related to the reverberation time T60

(the time for the reverberant sound energy to drop by 60 dB from its original value). In our example, α

corresponds to T60 = 300 ms (where fs = 16 kHz) and β(n) has a unit variance.

To compare the cross-band filters obtained for this synthetic impulse response with those obtained in

anechoic chamber (i.e., impulse response h(n) = δ(n)), we employed a Hamming synthesis window of

length N = 256, and computed a minimum energy analysis window ψ̃(n) that satisfies (5) for L = 128

(50% overlap) [27]. Then we computed the undecimated cross-band filters h̄n,k,k′ using (8). Figures 4(a)

and (b) show mesh plots of the
∣∣h̄n,1,k′

∣∣ and contours at −40 dB (values outside this contour are lower than

−40 dB) for h(n) = δ(n) and for the synthetic impulse response depicted in Fig. 3. Figure 4(c) shows

an ensemble averaging of
∣∣h̄n,1,k′

∣∣2 over realizations of the stochastic process h(n) = u(n)β(n)e−αn

which is given by

E
{∣∣h̄n,1,k′

∣∣2
}

= u(n)e−2αn ∗ |φ1,k′(n)|2 . (12)

Recall that the cross-band filter hp,k,k′ is obtained from h̄n,k,k′ by decimating the time index n by

a factor of L (see (8)). We observe from Fig. 4 that most of the energy of h̄n,k,k′ (for both anechoic

chamber and the LEM reverberation model) is concentrated in the eight cross-band filters, i.e., k′ ∈
{(k + i)modN | i = −4, . . . , 4}; therefore, both impulse responses may be represented in the time-

frequency domain by using only eight cross-band filters around each frequency-band. As expected from

(11), the number of cross-band filters required for the representation of an impulse response is mainly

determined by the analysis and synthesis windows, while the length of the cross-band filters (with respect
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Fig. 3: (a) A synthetic LEM impulse response: h(n) = β(n)e−αn and (b) its frequency response. β(n) is unit-

variance white Gaussian noise and α corresponds to T60 = 300 ms (sampling rate is 16 kHz).

to the time index n) is related to the length of the impulse response.

III. SYSTEM IDENTIFICATION IN THE STFT DOMAIN

In this section, we consider system identification in the STFT domain and address the problem of

estimating the cross-band filters of the system using an LS optimization criterion for each frequency-

band. Throughout this section, scalar variables are written with lowercase letters and vectors are indicated

with lowercase boldface letters. Capital boldface letters are used for matrices and norms are always `2

norms.

Consider the STFT-based system identification scheme as illustrated in Fig. 2. The input signal x(n)

passes through an unknown system characterized by its impulse response h(n), obtaining the desired

signal d(n). Together with the corrupting noise signal ξ(n) , the system output signal is given by

y(n) = d(n) + ξ(n) = h(n) ∗ x(n) + ξ(n) . (13)

Note that the noise signal ξ(n) may often include a useful signal, as in acoustic echo cancellation where

it consists of the near-end speaker signal as well as a local noise. From (13) and (7), the STFT of y(n)

may be written as

yp,k = dp,k + ξp,k =
N−1∑

k′=0

Nh−1∑

p′=0

xp−p′,k′hp′,k,k′ + ξp,k , (14)
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(a) (b)

(c)

Fig. 4: A mesh plot of the cross-band filters |h̄n,1,k′ | for different impulse responses. (a) An anechoic chamber

impulse response: h(n) = δ(n). (b) An LEM synthetic impulse response: h(n) = u(n)β(n)e−αn, where u(n) is a

step function, β(n) is zero-mean unit-variance white Gaussian noise and α corresponds to T60 = 300 ms (sampling

rate is 16 kHz). (c) An ensemble averaging E|h̄n,1,k′ |2 of the impulse response given in (b).

where Nh is the length of the cross-band filters. Here, we do not consider the case where the cross-band

filters in the k-th frequency-band are shorter than the band-to-band filter, as in [16]. We assume that all

the filters have the same length Nh. Defining Nx as the length of xp,k in frequency band k, we can write

the length of yp,k for a fixed k as Ny = Nx+Nh−1. It is worth noting that due to the noncasuality of the

filter hp,k,k′ (see Section II), the index p′ in (14) should have ranged from − ⌈
N
L

⌉
+1 to Nh−

⌈
N
L

⌉
, where

⌈
N
L

⌉− 1 is the number of noncasual coefficients of hp,k,k′ . However, we assume that an artificial delay
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of
(⌈

N
L

⌉− 1
)
L samples has been introduced into the system output signal y(n) in order to compensate

for those noncasual coefficients, so the signal yp,k in (14) corresponds to the STFT of a delayed signal

y
(
n− (⌈

N
L

⌉− 1
)
L

)
. Therefore, both p and p′ take on values starting with 0 rather than with − ⌈

N
L

⌉
+1.

Let hk,k′ denote the cross-band filter from frequency-band k′ to frequency-band k

hk,k′ =
[

h0,k,k′ h1,k,k′ · · · hNh−1,k,k′

]T
(15)

and let hk denote a column-stack concatenation of the filters {hk,k′}N−1
k′=0

hk =
[

hT
k,0 hT

k,1 · · · · · · hT
k,N−1

]T
. (16)

Let

Xk =




x0,k 0 · · · · · · 0

x1,k x0,k 0 · · · 0
...

...
...

...
...

xNy−1,k · · · · · · · · · xNy+Nh−2,k




(17)

represent an Ny × Nh Toeplitz matrix constructed from the input signal STFT coefficients of the k-th

frequency-band, and let ∆k be a concatenation of {Xk}N−1
k=0 along the column dimension

∆k =
[

X0 X1 · · · · · · XN−1

]
. (18)

Then, (14) can be written in a vector form as

yk = dk + ξk = ∆khk + ξk , (19)

where

yk =
[

y0,k y1,k y2,k · · · yNy−1,k

]T
(20)

represents the output signal STFT coefficients of the k-th frequency-band, and the vectors dk and ξk are

defined similarly.

Let ĥp′,k,k′ be an estimate of the cross-band filter hp′,k,k′ , and let d̂p,k be the resulting estimate of dp,k

using only 2K cross-band filters around the frequency-band k, i.e.,

d̂p,k =
k+K∑

k′=k−K

Nh−1∑

p′=0

ĥp′,k,k′modNxp−p′,k′modN , (21)

where we exploited the periodicity of the frequency-bands (see an example illustrated in Fig. 5). Let ˆ̃hk

be the 2K + 1 estimated filters at frequency band k

ˆ̃hk =
[

ĥT
k,(k−K)modN ĥT

k,(k−K+1)modN · · · · · · ĥT
k,(k+K)modN

]T
, (22)
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where ĥk,k′ is the estimated cross-band filter from frequency-band k′ to frequency-band k, and let ∆̃k

be a concatenation of {Xk′}(k+K)modN
k′=(k−K)modN along the column dimension

∆̃k =
[

X(k−K)modN X(k−K+1)modN · · · · · · X(k+K)modN

]
. (23)

Then, the estimated desired signal can be written in a vector form as

d̂k = ∆̃k
ˆ̃hk , (24)

Note that both ˆ̃hk and d̂k depend on the parameter K, but for notational simplicity K has been omitted.

Using the above notations, the LS optimization problem can be expressed as

ˆ̃hk = arg min
h̃k

∥∥∥yk − ∆̃kh̃k

∥∥∥
2

. (25)

The solution to (25) is given by
ˆ̃hk =

(
∆̃H

k ∆̃k

)−1
∆̃H

k yk , (26)

where we assumed that ∆̃H
k ∆̃k is not singular1. Substituting (26) into (24), we obtain an estimate of the

desired signal in the STFT domain at the k-th frequency-band, using 2K cross-band filters. Our objective

is to analyze the MSE in each frequency-band, and investigate the influence of the number of estimated

cross-band filters on the MSE performance.

1In the ill-conditioned case, when ∆̃H
k ∆̃k is singular, matrix regularization is required [29].
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IV. MSE ANALYSIS

In this section, we derive an explicit expression for the MMSE obtainable in the k-th frequency-band2.

To make the following analysis mathematically tractable we assume that xp,k and ξp,k are zero-mean

white Gaussian signals with variances σ2
x and σ2

ξ , respectively. We also assume that xp,k is statistically

independent of ξp,k. The Gaussian assumption of the corresponding STFT signals is often justified by a

version of the central limit theorem for correlated signals [30, Theorem 4.4.2], and it underlies the design

of many speech-enhancement systems [31], [32].

The (normalized) MSE is defined by

εk(K) =
E

{∥∥∥dk − d̂k

∥∥∥
2
}

E
{
‖dk‖2

} , (27)

Substituting (24) and (26) into (27), the MSE can be expressed as

εk(K) =
1

E
{
‖dk‖2

}E

{∥∥∥∥
[
1− ∆̃k

(
∆̃H

k ∆̃k

)−1
∆̃H

k

]
dk

∥∥∥∥
2
}

+
1

E
{
‖dk‖2

}E

{∥∥∥∥∆̃k

(
∆̃H

k ∆̃k

)−1
∆̃H

k ξk

∥∥∥∥
2
}

. (28)

Equation (28) can be rewritten as

εk(K) = 1 + ε1 − ε2, (29)

where

ε1 =
1

E
{
‖dk‖2

}E

{
ξH

k ∆̃k

(
∆̃H

k ∆̃k

)−1
∆̃H

k ξk

}
(30)

and

ε2 =
1

E
{
‖dk‖2

}E

{
dH

k ∆̃k

(
∆̃H

k ∆̃k

)−1
∆̃H

k dk

}
. (31)

To proceed with the mean-square analysis, we derive simplified expressions for ε1 and ε2. Recall that

for any two vectors a and b we have aHb = tr(abH)∗, where the operator tr(·) denotes the trace of a

matrix. Then ε1 can be expressed as

ε1 =
1

E
{
‖dk‖2

} tr

(
E

{
ξkξ

H
k

}
E

{
∆̃k

(
∆̃H

k ∆̃k

)−1
∆̃H

k

})∗
. (32)

2We are often interested in the time-domain MMSE, i.e., in the MMSE of d̂(n). However, the time-domain MMSE is related

to the sum of MMSEs in all the frequency-bands.
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The whiteness assumption for ξp,k yields E
{
ξkξ

H
k

}
= σ2

ξINy×Ny
, where INy×Ny

is an identity matrix

of size Ny ×Ny. Using the property that tr(AB) = tr(BA) for any two matrices A and B, we have

ε1 =
1

E
{
‖dk‖2

}σ2
ξE

{
tr

(
∆̃H

k ∆̃k

(
∆̃H

k ∆̃k

)−1
)∗}

=
1

E
{
‖dk‖2

}σ2
ξE

{
tr

(
I(2K+1)Nh×(2K+1)Nh

)∗}

=
σ2

ξNh (2K + 1)

E
{
‖dk‖2

} . (33)

Using (19), E
{
‖dk‖2

}
can be expressed as

E
{
‖dk‖2

}
= hH

k E
{
∆H

k ∆k

}
hk , (34)

and by using the whiteness property of xp,k, the (m, l)-th term of E
{
∆H

k ∆k

}
is given by

(
E

{
∆H

k ∆k

})
m,l

=
∑
n

E

{
x

n−lmodNh,
j

l

Nh

kx∗
n−mmodNh,

j
m

Nh

k
}

=
∑
n

σ2
xδ(lmodNh −mmodNh)δ

(⌊
l

Nh

⌋
−

⌊
m

Nh

⌋)

= Nxσ2
xδ(l −m) . (35)

Accordingly, E
{
∆H

k ∆k

}
is a diagonal matrix, and (34) reduces to

E
{
‖dk‖2

}
= σ2

xNx ‖hk‖2 . (36)

Substituting (36) into (33), we obtain

ε1 =
σ2

ξNh (2K + 1)

σ2
xNx ‖hk‖2 . (37)

We now evaluate ε2 defined in (31), assuming that xp,k is variance-ergodic [33] and that Nx is sufficiently

large. More specifically, we assume that 1
Nx

∑Nx−1
p=0 xp,kx

∗
p+s,k′ ≈ E

{
xp,kx

∗
p+s,k′

}
. Hence, the (m, l)-th

term of ∆̃H
k ∆̃k can be approximated by

(
∆̃H

k ∆̃k

)
m,l

=
∑

n

x
n−lmodNh,

�
k−K+

j
l

Nh

k�
modN

x∗
n−mmodNh,

�
k−K+

j
m

Nh

k�
modN

≈ NxE

{
x

n−lmodNh,
�

k−K+
j

l

Nh

k�
modN

x∗
n−mmodNh,

�
k−K+

j
m

Nh

k�
modN

}
(38)

which reduces to (see Appendix II)
(
∆̃H

k ∆̃k

)
m,l

≈ Nxσ2
xδ(l −m) . (39)
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Substituting (39), (36) and the definition of dk from (19) into (31), we obtain

ε2 =
1

σ4
xN2

x ‖hk‖2h
H
k Ωkhk (40)

where Ωk,E
{
∆H

k ∆̃k∆̃H
k ∆k

}
. Using the fourth-order moment factoring theorem for zero-mean com-

plex Gaussian samples [34], Ωk can be expressed as (see Appendix III)

Ωk = σ4
xNx

[
Nh (2K + 1) IN ·Nh×N ·Nh

+ NxĨN ·Nh×N ·Nh

]
, (41)

where ĨN ·Nh×N ·Nh
is a diagonal matrix whose (m,m)-th term satisfies

(
ĨN ·Nh×N ·Nh

)
m,m

=





1, m ∈ Lk(K)

0, otherwise
(42)

where Lk(K) = { [(k −K + n1)modN ] Nh + n2 | n1 ∈ {0, . . . , 2K} , n2 ∈ {0, . . . , Nh − 1}}. Substi-

tuting (41) into (40), we obtain

ε2 =
Nh (2K + 1)

Nx
+

∑2K
m=0

∥∥hk,(k−K+m)modN

∥∥2

‖hk‖2 . (43)

Finally, substituting (37) and (43) into (29), we have an explicit expression for εk(K):

εk(K) = 1 +
Nh (2K + 1)

Nx

[
σ2

ξ

σ2
x ‖hk‖2 − 1

]
−

∑2K
m=0

∥∥hk,(k−K+m)modN

∥∥2

‖hk‖2 . (44)

Expression (44) represents the MMSE obtained in the k-th band using LS estimates of 2K cross-band

filters. It is worth noting that εk(K) depends, through hk, on the time impulse response h(n) and on

the analysis and synthesis parameters, e.g., N , L and window type (see (8)). However, in this paper, we

address only with the influence of K on the value of εk(K).

V. RELATIONS BETWEEN MMSE AND SNR

In this section, we explore the relations between the input SNR and the MMSE performance. The

MMSE performance is also dependent on the length of the input signal, but we first consider a fixed Nx,

and subsequently discuss the influence of Nx on the MMSE performance.

Denoting the SNR by η = σ2
x/σ2

ξ , (44) can be rewritten as

εk(K) =
αk(K)

η
+ βk(K) , (45)

where

αk(K) , Nh

Nx ‖hk‖2 (2K + 1) , (46)

βk(K) , 1− Nh (2K + 1)
Nx

− 1
‖hk‖2

2K∑

m=0

∥∥hk,(k−K+m)modN

∥∥2
. (47)
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From (45), the MMSE εk(K) for fixed k and K values, is a monotonically decreasing function of η,

which expectedly indicates that higher SNR values enable a better estimation of the relevant cross-band

filters. Moreover, it is easy to verify from (46) and (47) that αk(K+1) > αk(K) and βk(K+1) ≤ βk(K).

Consequently εk(K) and εk(K + 1) are two monotonically decreasing functions of η that satisfy

εk(K + 1) > εk(K), for η → 0 (low SNR),

εk(K + 1) ≤ εk(K), for η →∞ (high SNR). (48)

Accordingly, these functions must intersect at a certain SNR value ηk (K + 1 → K), that is, εk(K +1) ≤
εk(K) for η ≥ ηk (K + 1 → K), and εk(K + 1) > εk(K) otherwise (see typical MSE curves in Fig. 6).

For SNR values higher than ηk (K + 1 → K), a lower MSE value can be achieved by estimating 2(K+1)

cross-band filters rather than only 2K filters. Increasing the number of cross-band filters is related to

increasing the complexity of the system model [35], as will be explained in more details at the end of

this section.

The SNR-intersection point ηk (K + 1 → K) is obtained from (45) by requiring that εk(K+1) = εk(K)

ηk (K + 1 → K) =
αk(K + 1)− αk(K)
βk(K)− βk(K + 1)

. (49)

Substituting (46) and (47) into (49), we have

ηk (K + 1 → K) =
2Nh

2Nh ‖hk‖2 + Nx

(∥∥hk,(k−K−1)modN

∥∥2 +
∥∥hk,(k+K+1)modN

∥∥2
) . (50)

Since the cross-band filter’s energy ‖hk,k′‖2 decreases as |k − k′| increases (see Section II), we have

ηk (K → K − 1) ≤ ηk (K + 1 → K) . (51)

Specifically, the number of cross-band filters, which should be used for the system identifier, is a

monotonically increasing function of the SNR. Estimating just the band-to-band filter and ignoring all

the cross-band filters yields the minimal MSE only when the SNR is lower than ηk (1 → 0).

Another interesting point that can be concluded from (50) is that ηk (K + 1 → K) is inversely pro-

portional to Nx, the length of xp,k in frequency-band k. Therefore, for a fixed SNR value, the number

of cross-band filters, which should be estimated in order to achieve the minimal MSE, increases as we

increase Nx. For instance, suppose that Nx is chosen such that the input SNR satisfies ηk (K → K − 1) ≤
η ≤ ηk (K + 1 → K), so that 2K cross-band filters should be estimated. Now, suppose that we increase

the value of Nx, so that the same SNR now satisfies ηk (K + 1 → K) ≤ η ≤ ηk (K + 2 → K + 1). In

this case, although the SNR remains the same, we would now prefer to estimate 2(K + 1) cross-band
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Fig. 6: Illustration of typical MSE curves as a function of the input SNR showing the relation between εk(K)

(solid) and εk(K + 1) (dashed).

filters rather than 2K. It is worth noting that Nx is related to the update rate of ĥp,k,k′ . We assume that

during Nx frames the system impulse response does not change, and its estimate is updated every Nx

frames. Therefore, a small Nx should be chosen whenever the system impulse response is time varying

and fast tracking is desirable. However, in case the time variations in the system are slow, we can increase

Nx, and correspondingly increase the number of cross-band filters.

It is worthwhile noting that the number of cross-band filters determines the complexity of system

model. As the model complexity increases, the empirical fit to the data improves (i.e.,
∥∥∥dk − d̂k

∥∥∥
2

can

be smaller), but the variance of parametric estimates increases too (i.e., variance of d̂), thus possibly

worsening the accuracy of the model on new measurements [35]–[37], and increasing the MSE, εk(K).

Hence, the appropriate model complexity is affected by the level of noise in the data and the length of

observable data that can be employed for the system identification. As the SNR increases or as more

data is employable, additional cross-band filters can be estimated and lower MMSE can be achieved.

VI. COMPUTATIONAL COMPLEXITY

In this section, we address the computational complexity of the proposed approach and compare it

to the conventional fullband approach and to the commonly-used subband approach that relies on the

multiplicative transfer function (MTF) approximation. The computational complexity is computed by
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counting the number of arithmetic operations3 needed for the estimation process in each method.

A. Proposed subband approach

The computation of the proposed subband approach requires the solution of the LS normal equations

(see (26))

(
∆̃H

k ∆̃k

)
ˆ̃hk = ∆̃H

k yk (52)

for each frequency-band. Assuming that ∆̃H
k ∆̃k is nonsingular, we may solve the normal equations in

(52) using the Cholesky decomposition [38]. The number of arithmetic operations involved in forming

the normal equations and solving them using the Cholesky decomposition is Ny [(2K + 1)Nh]2 +

[(2K + 1)Nh]3 /3 [38]. As the system is identified, the desired signal estimate is computed by using

(24), which requires 2NyNh (2K + 1) arithmetic operations. In addition to the above computations, we

need to consider the complexity of implementing the STFT. Each frame index in the STFT domain is

computed by applying the discrete Fourier transform (DFT) on a short-time section of the input signal

multiplied by a length N analysis window. This can be efficiently done by using fast Fourier transform

(FFT) algorithms [39], which involve 5N log2 N arithmetic operations. Consequently, each STFT frame

index requires N + 5N log2 N arithmetic operations (the complexity of the ISTFT is approximately the

same). Since the subband approach consists of two STFT (analysis filter bank) and one ISTFT (synthesis

filter bank), the overall complexity of the STFT-ISTFT operations is 3Ny (N + 5N log2 N). Note that we

also need to calculate the minimum energy analysis window by solving (5); however, since we compute

it only once, we do not consider the computations required for its calculation. Therefore, the total number

of computations required in the proposed approach is

N
{

Ny [(2K + 1)Nh]2 + [(2K + 1)Nh]3 /3 + 2Ny (2K + 1) Nh

}

+3Ny (N + 5N log2 N) arithmetic operations . (53)

Assuming that Ny is sufficiently large (more specifically, Ny > (2K + 1)Nh/3) and that the computations

required for the STFT-ISTFT calculation can be neglected, the computational complexity of the subband

approach with 2K cross-band filters in each frequency-band can be expressed as

3An arithmetic operation is considered to be any complex multiplication, complex addition, complex subtraction, or complex

division.
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OK
SB(Nh, Ny) = O

(
NNy [(2K + 1)Nh]2

)
. (54)

B. Fullband approach

In the fullband approach, we consider the following LS optimization problem:

ĥ = arg min
h
‖y −Xh‖2 , (55)

where X is the M ×Q Toeplitz matrix constructed from the input data x(n) , M is the observable data

length, y is the M × 1 system output vector constructed from y(n) and ĥ is the Q× 1 system estimate

vector. In this case, the LS normal equations take the form of

(
XHX

)
ĥ = XHy . (56)

As in the subband approach, forming the normal equations, solving them using the Cholesky decompo-

sition and calculating the desired signal estimate, require MQ2 + Q3/3 + 2MQ arithmetic operations.

For sufficiently large M (i.e., M > Q/3), the computational complexity of the fullband approach can be

expressed as

OFB(Q,M) = O
(
MQ2

)
. (57)

A comparison of the fullband and subband complexities is given in subsection VI-D, by rewriting the

subband complexity in terms of the fullband parameters (Q and M ).

C. Multiplicative transfer function (MTF) approach

The MTF approximation is widely-used for the estimation of linear system in the STFT domain.

Examples of such applications include frequency-domain blind source separation (BSS) [40], STFT-

domain acoustic echo cancellation [23], relative transfer function (RTF) identification [3] and multichannel

processing [8], [41]. Therefore, it is of great interest to compare the performance of the proposed approach

to that of the MTF approach. In the above-mentioned applications, it is commonly assumed that the

support of the STFT analysis window is sufficiently large compared with the duration of the system

impulse response, so the system is approximated in the STFT domain with a single multiplication per

frequency-band and no cross-band filters are utilized. Following this assumption, the STFT of the system

output signal y(n) is approximated by [42]
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yp,k ≈ Hkxp,k + ξp,k , (58)

where Hk ,
∑

m h(m) exp (−j2πmk/N). The single coefficient Hk is estimated using the following

LS optimization problem:

Ĥk = arg min
Hk

‖yk −Hkxk‖2 , (59)

where yk was defined in (19) and xk is the first column of Xk (defined in (17)). The solution of (59) is

given by

Ĥk =
xH

k yk

‖xk‖2 . (60)

In contrast with the fullband and the proposed approaches, the estimation of the desired signal in the

MTF approach does not necessitate the inverse of a matrix. In fact, it requires only N (5Ny + 1) +

3Ny (N + 5N log2 N) arithmetic operations. Neglecting the STFT-ISTFT calculation (the second term),

the computational complexity of the MTF approach can be expressed as

OMTF (Ny) = O (NNy) . (61)

D. Comparison and Discussion

To make the comparison of the above three approaches tractable, we rewrite the complexities of

the subband approaches in terms of the fullband parameters by using the relations Ny ≈ M/L and

Nh ≈ Q/L. Consequently, (54) and (61) can be rewritten as

OK
SB(Q,M) = O

(
MQ2 N (2K + 1)2

L3

)
(62)

and

OMTF (M) = O

(
N

M

L

)
. (63)

A comparison of (57), (62) and (63) indicates that the complexity of the proposed subband approach

is lower than that of the fullband approach by a factor of L3/
[
N (2K + 1)2

]
but higher than that of the

MTF approach by a factor of [Q (2K + 1) /L]2 . For instance, for N = 256, L = 0.5N , Q = 1500 and

K = 4 the proposed approach complexity is reduced by a factor 100, when compared to the fullband
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approach complexity and increased by a factor 104, when compared to the MTF approach complexity.

However, the relatively high computational complexity of the fullband approach is compensated with a

better MSE performance of the system identifier (see Section VII). On the other hand, the substantial low

complexity of the MTF approach results in an insufficient accuracy of the system estimate, especially

when the large window support assumption is not valid (e.g., when long impulse response duration is

considered). This point will be demonstrated in Section VII.

It can be seen from (62) that the computational complexity of the proposed approach increases as we

increase the number of cross-band filters. However, as was shown in the previous section, this does not

necessarily imply a lower steady-state MSE in subbands. Consequently, under appropriate conditions (i.e.,

low SNR or fast time variations in the system), a lower MSE can be attained in each frequency-band

with relatively few cross-band filters, resulting in low computational complexity. It is worth noting that

the complexities of both the fullband and the proposed approaches may be reduced by exploiting the

Toeplitz and block-Toeplitz structures of the corresponding matrices in the LS normal equations (XHX

and ∆̃H
k ∆̃k, respectively) [38].

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results that verify the theoretical derivations obtained in

sections IV and V. The signals employed for testing include synthetic white Gaussian signals as well

as real speech signals. The performance of the proposed approach is evaluated for several SNR and Nx

values and compared to that of the fullband approach and the MTF approach. Results are obtained by

averaging over 200 independent runs.

We use the following parameters for all simulations presented in this section: Sampling rate of 16

kHz; A Hamming synthesis window of length N = 256 (16 ms) with 50% overlap (L = 128), and a

corresponding minimum energy analysis window which satisfies the completeness condition (5) [27]. The

impulse response h(n) used in the experiments was measured in an office which exhibits a reverberation

time of about 300 ms. Figure 7 shows the impulse and frequency responses of the measured system. The

length of the impulse response was truncated to Q = 1500.

In the first experiment, we examine the system identifier performance in the STFT domain under

the assumptions made in Section IV. That is, the STFT of the input signal xp,k is a zero-mean white

Gaussian process with variance σ2
x. Note that, xp,k is not necessarily a valid STFT signal, as not always

a sequence whose STFT is given by xp,k may exist [43]. Similarly, the STFT of the noise signal ξp,k

is also a zero-mean white Gaussian process with variance σ2
ξ , which is uncorrelated with xp,k. Figure 8
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Fig. 7: (a) Measured impulse response and (b) its frequency response (sampling frequency=16kHz).

shows the MSE curves for the frequency-band k = 1 as a function of the input SNR for Nx = 200

and Nx = 1000 (similar results are obtained for the other frequency-bands). The results confirm that

as the SNR increases, the number of cross-band filters that should be estimated to achieve a minimal

MSE increases. We observe, as expected from (51), that the intersection-points of the MSE curves are

a monotonically increasing series. Furthermore, a comparison of Figs. 8(a) and (b) indicates that the

intersection-points values decrease as we increase Nx, as expected from (50). This verifies that when

the signal length increases (while the SNR remains constant), more cross-band filters need to be used in

order to attain the MMSE.

In the second experiment, we demonstrate the proposed theory on subband acoustic echo cancellation

application (see Fig. 1). The far-end signal x(n) is a speech signal and the local disturbance ξ(n) consists

of a zero-mean white Gaussian local noise with variance σ2
ξ . The echo canceller performance is evaluated

in the absence of near-end speech, since in such case a double-talk detector (DTD) is often applied in

order to freeze the system adaptation process. Commonly used measure for evaluating the performance

of conventional AECs is the echo-return loss enhancement (ERLE), defined in dB by

ERLE(K) = 10 log
E

{
d2(n)

}

E

{(
d(n)− d̂K(n)

)2
} , (64)

where d̂K(n) is the inverse STFT of the estimated echo signal using 2K cross-band filters around

each frequency-band. The ERLE performance of a conventional fullband AEC, where the echo signal
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Fig. 8: MSE curves as a function of the input SNR for white Gaussian signals. (a) Nx = 200. (b) Nx = 1000.

is estimated by (55), is also evaluated. Figure 9 shows the ERLE curves of both the fullband and the

proposed approaches as a function of the input SNR obtained for a far-end signal of length 1.5 sec

(Fig. 9(a)) and for a longer signal of length 2.56 sec (Fig. 9(b)). Clearly, as the SNR increases, the

performance of the proposed algorithm can be generally improved (higher ERLE value can be obtained)

by using a larger number of cross-band filters. Figure 9(a) shows that when the SNR is lower than −7 dB,

estimating just the band-to-band filter (K = 0) and ignoring all the cross-band filters yields the maximal

ERLE. Incorporating into the proposed AEC two cross-band filters (K = 1) decreases the ERLE by

approximately 5 dB. However, when considering SNR values higher than −7 dB, the inclusion of two

cross-band filters (K = 1) is preferable. It enables an increase of 10−20 dB in the ERLE relative to that

achieved by using only the band-to-band filter. Similar results are obtained for a longer signal (Fig. 9(b)),

with the only difference that the intersection-points of the subband ERLE curves move towards lower

SNR values. A comparison of the proposed subband approach with the fullband approach indicates that

higher ERLE values can be obtained by using the latter, but at the expense of substantial increase in

computational complexity. The advantage of the fullband approach in terms of ERLE performance stems

from the fact that ERLE criterion is defined in the time domain and fullband estimation is also performed

in the time domain.

In the third experiment, we compare the proposed approach to the MTF approach and investigate the

influence of the STFT analysis window length (N ) on their performances. We use a 1.5 sec length input

speech signal and a white additive noise, as described in the previous experiment. A truncated impulse
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Fig. 9: ERLE curves for the proposed subband approach and the conventional fullband approach as a function of

the input SNR for a real speech input signal. (a) Signal length is 1.5 sec (Nx = 190); (b) Signal length is 2.56 sec

(Nx = 322).

response with 256 taps (16 ms) is used. Figure 10 shows the ERLE curves of both the MTF and the

proposed approaches as a function of the input SNR obtained for an analysis window of length N = 256

(16 ms, Fig. 10(a)) and for a longer window of length N = 2048 (128 ms, Fig. 10(b)). In both cases

we have L = 0.5N . As expected, the performance of the MTF approach can be generally improved by

using a longer analysis window. This is because the MTF approach heavily relies on the assumption

that the support of the analysis window is sufficiently large compared with the duration of the system

impulse response. As the SNR increases, using the proposed approach yields the maximal ERLE, even for

long analysis window. For instance, Fig. 10(b) shows that for 20 dB SNR the MTF algorithm achieves

an ERLE value of 20 dB, whereas the inclusion of two cross-band filters (K = 1) in the proposed

approach increases the ERLE by approximately 10 dB. Furthermore, it seems to be preferable to reduce

the window length, as seen from Fig. 10(a), as it enables an increase of approximately 7 dB in the ERLE

(for a 20 dB SNR) by using the proposed method. A short window is also essential for the analysis of

nonstationary input signal, which is the case in acoustic echo cancellation application. However, a short

window support necessitate the estimation of more cross-band filters for performance improvement, and

correspondingly increases the computational complexity.

Another interesting point that can be concluded from Fig. 10 is that for low SNR values, a higher

ERLE can be achieved by using the MTF approach, even when the large support assumption is not valid
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Fig. 10: ERLE curves for the proposed subband approach and the commonly-used multiplicative transfer function

(MTF) approach as a function of the input SNR for a real speech input signal and an impulse response 16 ms

length. (a) Length of analysis window is 16 ms (N = 256); (b) Length of analysis window is 128 ms (N = 2048).

(Fig. 10(a)).

VIII. CONCLUSIONS

We have derived explicit relations between the attainable MMSE in subbands and the power and length

of the input signal for a system identifier implemented in the STFT domain. We showed that the MMSE

is achieved by using a variable number of cross-band filters, determined by the power ratio between the

input signal and the additive noise signal, and by the effective length of input signal that can be used for

the system identification. Generally the number of cross-band filters that should be utilized in the system

identifier is larger for stronger and longer input signals. Accordingly, during fast time variations in the

system, shorter segments of the input signal can be employed, and consequently less cross-band filters

are useful. However, when the time variations in the system become slower, additional cross-band filters

can be incorporated into the system identifier and lower MSE is attainable. Furthermore, each subband

may be characterized by a different power ratio between the input signal and the additive noise signal.

Hence, a different number of cross-band filters may be employed in each subband.

The strategy of controlling the number of cross-band filters is related to and can be combined with

step-size control implemented in adaptive echo cancellation algorithms, e.g., [44], [45]. Step-size control

is designed for faster tracking during abrupt variations in the system, while not compromising for higher



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. Y, MONTH 2007 25

MSE when the system is time invariant. Therefore, joint control of step-size and the number of cross-band

filters may further enhance the performance of adaptive echo cancellation algorithms.

APPENDIX I

DERIVATION OF (7)

Using (1) and (6), the STFT of d(n) can be written as

dp,k =
∑

m,l

h(l)x(m− l)ψ̃∗p,k(m) (65)

Substituting (3) into (65), we obtain

dp,k =
∑

m,l

h(l)
N−1∑

k′=0

∑

p′
xp′,k′ψp′,k′(m− l)ψ̃∗p,k(m)

=
N−1∑

k′=0

∑

p′
xp′,k′hp,k,p′,k′ (66)

where

hp,k,p′,k′ =
∑

m,l

h(l)ψp′,k′(m− l)ψ̃∗p,k(m) (67)

may be interpreted as the STFT of h(n) using a composite analysis window
∑

m ψp′,k′(m− l)ψ̃∗p,k(m).

Substituting (2) and (4) into (67), we obtain

hp,k,p′,k′ =
∑

m,l

h(l)ψ(m− l − p′L)ej 2π

N
k′(m−l−p′L)ψ̃(m− pL)e−j 2π

N
k(m−pL)

=
∑

l

h(l)
∑
m

ψ̃(m)e−j 2π

N
kmψ

(
(p− p′)L− l + m

)
ej 2π

N
k′((p−p′)L−l+m)

= {h(n) ∗ φk,k′(n)} |n=(p−p′)L , hp−p′,k,k′ , (68)

where ∗ denotes convolution with respect to the time index n, and

φk,k′(n) , ej 2π

N
k′n

∑
m

ψ̃(m)ψ(n + m)e−j 2π

N
m(k−k′) . (69)

From (68), hp,k,p′,k′ depends on (p− p′) rather than on p and p′ separately. Substituting (68) into (66),

we obtain (7)-(9).
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APPENDIX II

DERIVATION OF (39)

Using the whiteness property of xp,k, the (m, l)-th term of ∆̃H
k ∆̃k given in (38) can be derived as

(
∆̃H

k ∆̃k

)
m,l

≈ NxE

{
x

n−lmodNh,
�

k−K+
j

l

Nh

k�
modN

x∗
n−mmodNh,

�
k−K+

j
m

Nh

k�
modN

}

= Nxσ2
xδ (lmodNh −mmodNh)

×δ

((
k −K +

⌊
l

Nh

⌋)
modN −

(
k −K +

⌊
m

Nh

⌋)
modN

)
. (70)

Therefore,
(
∆̃H

k ∆̃k

)
m,l

is nonzero only if lmodNh = mmodNh and
(
k −K +

⌊
l

Nh

⌋)
modN =

(
k −K +

⌊
m
Nh

⌋)
modN. Those conditions can be rewritten as

l = m + rNh for r = 0,±1,±2, . . . (71)

and

k −K +
⌊

l
Nh

⌋
= k −K +

⌊
m
Nh

⌋
+ qN for q = 0,±1,±2, . . . . (72)

Substituting (71) into (72), we obtain

r = qN ; q = 0,±1,±2, . . . . (73)

However, recall that 0 ≤ l,m ≤ (2K + 1)Nh − 1 ≤ NNh − 1, then it is easy to verify from (71) that

max {|r|} = N − 1 . (74)

From (73) and (74) we conclude that r = 0, so (71) reduces to m = l and we obtain (39).

APPENDIX III

DERIVATION OF (41)

The (m, l)-th term of Ωk from (40) can be written as

(Ωk)m,l =
∑
n,r,q

E

{
x

r−nmodNh,
�

k−K+
j

n

Nh

k�
modN

x∗
r−mmodNh,

j
m

Nh

k

× x
q−lmodNh,

j
l

Nh

kx∗
q−nmodNh,

�
k−K+

j
n

Nh

k�
modN

}
. (75)
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By using the fourth-order moment factoring theorem for zero-mean complex Gaussian samples [34], (75)

can be rewritten as

(Ωk)m,l =
∑
n,r,q

E

{
x

r−nmodNh,
�

k−K+
j

n

Nh

k�
modN

x∗
q−nmodNh,

�
k−K+

j
n

Nh

k�
modN

}

×E

{
x∗

r−mmodNh,
j

m

Nh

kx
q−lmodNh,

j
l

Nh

k
}

+
∑
n,r,q

E

{
x

r−nmodNh,
�

k−K+
j

n

Nh

k�
modN

x∗
r−mmodNh,

j
m

Nh

k
}

×E

{
x

q−lmodNh,
j

l

Nh

kx∗
q−nmodNh,

�
k−K+

j
n

Nh

k�
modN

}
. (76)

Using the whiteness property of xp,k, we can write (76) as

(Ωk)m,l = ω1 + ω2 , (77)

where

ω1 = σ4
x

∑
n,r,q

δ (r − q) δ (r − q + lmodNh −mmodNh) δ

(⌊
m

Nh

⌋
−

⌊
l

Nh

⌋)
(78)

and

ω2 = σ4
x

∑
n,r,q

δ (nmodNh −mmodNh) δ

((
k −K +

⌊
n

Nh

⌋)
modN −

⌊
m

Nh

⌋)

×δ (nmodNh − lmodNh) δ

((
k −K +

⌊
n

Nh

⌋)
modN −

⌊
l

Nh

⌋)
. (79)

Recall that n ranges from 0 to (2K + 1)Nh − 1, and that r and q range from 0 to Ny − 1 (although for

fixed m, l and n values only Nx values of r and q contribute), (78) reduces to

ω1 = σ4
xNx(2K + 1)Nhδ(m− l) . (80)

We now proceed with expanding ω2. It is easy to verify from (79) that m and l satisfy mmodNh =

lmodNh and
⌊

m
Nh

⌋
=

⌊
l

Nh

⌋
, therefore m = l. In addition, n satisfies both

nmodNh = mmodNh (81)

and (
k −K +

⌊
n

Nh

⌋)
modN =

⌊
m

Nh

⌋
, (82)

where (82) can be rewritten as

k −K +
⌊

n

Nh

⌋
=

⌊
m

Nh

⌋
+ hN, for h = 0,±1,±2, . . . . (83)
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Writing n as n =
⌊

n
Nh

⌋
Nh + nmodNh, we obtain

n = m− (k −K − hN) Nh, for h = 0,±1,±2, . . . . (84)

From (84), one value of n, at the most, contributes to ω2 for a fixed value of m. Therefore, we

can bound the range of m, such that values outside this range will not contribute to ω2. Since n ∈
{0, 1, ..., (2K + 1)Nh − 1}, we can use (84) to obtain

m ∈ {(k −K − hN)Nh + n| n ∈ {0, 1, ..., (2K + 1)Nh − 1} , h = 0,±1,±2, . . .}

= {(k −K + n1 − hN) Nh + n2| n1 ∈ {0, 1, ..., 2K} ,

n2 ∈ {0, 1, ..., Nh − 1} , h = 0,±1,±2, . . .} . (85)

Now, since the size of Ωk is NhN ×NhN, m should also range from 0 to NNh− 1 and therefore, (85)

reduces to

m ∈ { [(k −K + n1)modN ] Nh + n2| n1 ∈ {0, 1, ..., 2K} , n2 ∈ {0, 1, ..., Nh − 1}} . (86)

Finally, since ω2 is independent of both r and q, it can be written as

ω2 = σ4
xN2

xδ (m− l) δ (m ∈ Lk(K)) (87)

where Lk(K) = { [(k −K + n1)modN ]Nh + n2| n1 ∈ {0, 1, ..., 2K} , n2 ∈ {0, 1, ..., Nh − 1}}. Sub-

stituting (80) and (87) into (77), and writing the result in a vector form yields (41).
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