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Identification of Speech Source Coupling Between
Sensors in Reverberant Noisy Environments

Israel Cohen, Senior Member, IEEE

Abstract—An important component of a multichannel
hands-free communication system is the identification of the
coupling between sensors in response to a desired speech signal.
In this letter, a system identification approach adapted to speech
signals is proposed. A weighted least-squares optimization crite-
rion is introduced, which incorporates an indicator function for
the presence of the desired signal in the observed signals. We show
that compared to a competing nonstationarity-based method, a
significantly smaller error variance is achievable.

Index Terms—Array signal processing, speech enhancement,
system identification.

I. INTRODUCTION

AN important component of a multichannel hands-free
communication system is the identification of the cou-

pling between sensors in response to a desired speech signal
[1]–[3]. This coupling, often referred to as the acoustical
transfer function (ATF) ratio, represents the relation between
the impulse responses of the sensors to the desired source. In
reverberant and noisy environments, the coupling identification
enables to construct an adaptive blocking channel, for an accu-
rate derivation of a reference noise signal, and an adaptive noise
canceller, for eliminating directional or coherent noise sources.
Furthermore, it facilitates multichannel signal detection and
postfiltering techniques, which employ the transient power
ratio between the beamformer output and the reference signals
[4].

We consider the following model:

(1)

where and are signals measured by a primary and ref-
erence sensors, is the desired signal received by the pri-
mary sensor, and are additive interfering signals that
are uncorrelated with the desired signal, represents the cou-
pling of the desired signal to the reference sensor, and denotes
convolution1 . Our objective is to identify in the general
case where is statistically correlated with . An equiva-
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1Note that s(t) is generally a reverberated version of the source signal, i.e.,
s(t) = a (t) � s (t), where s (t) is the source signal and a (t) is the impulse
response of the primary sensor to the desired source. In that case, a (t) = a(t)�
a (t) represents the impulse response of the reference sensor to the desired
source.

lent problem is to consider a linear time-invariant (LTI) system,
whose input and output are related by

(2)

where represents the impulse response of the system that
we want to identify, denotes additive noise that is generally
correlated with , and is the sum of a desired signal
and an interfering signal as in (1). It is assumed that
and are statistically uncorrelated with . Then, the two
above-mentioned problems are equal, with

(3)

Shalvi and Weinstein [1] have proposed to use the nonsta-
tionarity of the desired signal. They assumed that the inter-
fering signals are stationary, while the desired signal is nonsta-
tionary. Then, dividing the observation interval into a sequence
of subintervals, and computing for each subinterval the cross
power spectral density (PSD) of the sensors, they obtained an
overdetermined set of equations for the two unknown quantities:
the system’s transfer function and the (presumably stationary)
cross-PSD of and . An asymptotically unbiased esti-
mate for the system’s transfer function was derived by using
a weighted least-squares (WLS) approach for minimizing the
error variance under certain assumptions.

A major limitation of the nonstationarity-based system
identification is that both the system identification and noise
estimation are carried out through the same WLS optimization
criterion. The WLS optimization consists of two conflicting
requirements: One is minimizing the error variance of the
system’s transfer function estimate, which pulls the weight
up to higher values in higher SNR subintervals. The other
requirement is minimizing the error variance of the noise
estimate, which rather implies smaller weights in higher SNR
subintervals. Furthermore, the observation interval is required
to be sufficiently long, so that for all frequency bands it
includes quite a few subintervals that contain the desired signal.
This, together with the assumption that the interfering signals
remain stationary during the entire observation interval, restrict
the capability of this technique to track time-varying systems
(e.g., tracking moving talkers in hands-free communication
scenarios).

In this letter, a system identification approach adapted to
speech signals is proposed. An indicator function for the speech
presence in the time-frequency domain is incorporated into the
optimization criterion, and a minimum variance WLS estimate
for the system’s transfer function is derived. We show that the
error variance obtained by using the proposed method is gen-
erally smaller than that obtained by using the nonstationarity

1070-9908/04$20.00 © 2004 IEEE



614 IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 7, JULY 2004

method. Experimental results under various noise conditions
demonstrate the performance of the proposed method.

II. SYSTEM IDENTIFICATION

Using the short-time Fourier transform (STFT) and assuming
the support of the window function is sufficiently large com-
pared with the duration of , (2) can be written in the time-fre-
quency domain as

(4)

where is the transfer function of the system, represents
the frequency bin index , and is the
frame index . The cross-PSD between
and is therefore given by

(5)

Since the desired signal is uncorrelated with the interfering
signals and , (1) and (3) imply

(6)

Writing this equation in terms of the PSD estimates, we have

(7)

where denotes an estimation error. This gives us equa-
tions, which may be written in a matrix form as

(8)

where

, and the argument has
been omitted for notational simplicity. Since represents
the coupling associated with the desired source signal, the
optimization criterion for its identification has to take into
account only short-time frames which contain desired signal
components. Specifically, let denote an indicator func-
tion for the signal presence (i.e., if ,
and otherwise), and let represent a diagonal
matrix with the elements on its
diagonal. Then the WLS estimate of is obtained by

(9)

Recognizing the product as the equivalent weight matrix,
the variance of is given by [5, p. 405]

(10)

where is the covariance matrix of . The matrix that
minimizes the variance of therefore satisfies [5, prop. 8.2.4]

(11)

The resulting estimator

(12)

is known as the minimum variance or Markov estimator, and its
variance is given by

(13)

The elements of are asymptotically given by
(Appendix I)

(14)
Assuming that the interfering signals and are sta-
tionary, (3) implies that is independent of the frame
index (in practice, as demonstrated in the next section, it
suffices that the statistics of the interfering signals is slowly
changing compared with the statistics of the desired signal).
Denoting by an average operation over the frame index

(15)

and substituting (14) into (12) and (13) we obtain

(16)

(17)

The proposed identification approach requires estimates for
and . An estimate for the

cross-PSD of the observed signals is obtained by
. To obtain an estimate for the PSD of the de-

sired signal, we apply the Optimally Modified Log-Spectral Am-
plitude (OM-LSA) estimator [6] to , and compute the
resulting periodogram

(18)

where denotes the log-spectral amplitude gain function
[7], is the speech presence probability [6], and is
the minimal spectral gain. The cross-PSD of the interfering sig-
nals, and , is estimated by using the Minima Controlled
Recursive Averaging (MCRA) approach [8]. Specifically, past
spectral cross-power values of the noisy observed signals are
recursively averaged using a time-varying frequency-dependent
smoothing parameter. An estimator for the indicator function is
obtained by

(19)

where is a threshold for the speech presence
probability. The parameter controls the trade-off between the
detection and false alarm probabilities, which are defined by

and
. A smaller value of increases the detection

probability and allows for more short-time frames to be involved
in the estimation of . However, a smaller value of also in-
creases the false alarm probability, which may cause a mis-mod-
ification of due to frames that do not contain desired speech
components.

For the comparison with the nonstationarity method, we re-
place the subinterval index in [1, Eq. 28] with the frame index
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, and normalize the window function so that ,
where is the frame’s length. Accordingly, the variance of
obtained using the nonstationarity method is

(20)

The ratio between the variances obtained by the proposed and
the nonstationarity methods is given by

(21)

Let denote the a priori SNR at the pri-
mary sensor. Then approximating

(22)

and substituting into (21), we
obtain (Appendix II)

(23)

Thus, the variance of obtained by using the proposed method
is generally smaller than that obtained by using the nonsta-
tionarity method, as long as the approximation (22) is valid.
Additionally, the nonstationarity method requires a sufficiently
long observation interval, to account for the nonstationarity of

, and the interfering signals must remain stationary
during the entire observation interval. On the other hand in
the proposed method, not only a shorter observation interval
suffices, but also the interfering signals are not required to
be stationary during time-frequency windows that do not
contain desired signal components. Accordingly, in case of a
time-varying system, a faster convergence and higher reliability
of the system identification is achieved by using the proposed
method.

III. EXPERIMENTAL RESULTS

A quantitative comparison between the proposed and the non-
stationarity system identification methods is obtained by evalu-
ating the signal blocking factor (SBF), defined by

(24)

where is the energy contained in the clean speech
signal, and is the energy contained in the leakage
signal

(25)

The leakage signal represents the difference between the re-
verberated clean signal at the reference sensor and its estimate

given the desired signal at the primary sensor. It
has a major affect on the amount of distortion introduced by
the Transfer Function GSC [2]. The SBF measure is associated
with the capability to block the desired signal and produce a
noise-only signal by computing .

The first experiment was performed on a speech signal (fe-
male speaker) sampled at 8 kHz. Similar to the experiment in
[1], the noise is a stationary zero-mean Gaussian process

Fig. 1. Speech waveforms. (a) s(t). (b) a(t) � s(t). (c) Noisy signal at
the primary sensor (SNR = 3:0 dB). (d) Noisy signal at the reference
sensor (SNR = �4:3 dB). (e) Signal leakage using the nonstationarity
method (SBF = 8:5 dB). (f) Signal leakage using the proposed method
(SBF = 18:3 dB).

whose average power is half the average power of the speech
( dB). The impulse response of the reference sensor
to the desired signal is

, where ms is the sampling period. In
addition, the reference sensor noise is generated by

, where .
Fig. 1(a)–(d) show the clean speech signals at the primary and
reference sensors, and the observed noisy signals. We have ap-
plied the nonstationarity-based system identification algorithm
[1] to a 4-s observation interval (32 000 samples) that was arbi-
trarily divided into disjoint subintervals of 128 samples length.
As is suggested in [2], only subintervals in which speech is ac-
tive (SNR in the subinterval is greater than 0 dB) were taken
into account. The leakage signal is plotted in Fig. 1(e). The
resultant SBF is 8.5 dB.

In the proposed method, the STFT is implemented with
Hamming windows of 256 samples length (32 ms) and 128
framing step (50% overlap between frames). We restricted the
spectral gain in (18) to a minimum dB, and used
a speech presence probability threshold in (19). The
leakage signal is plotted in Fig. 1(f). The resultant SBF
is 18.3 dB, which is significantly higher than that obtained by
using the nonstationarity method.

In the second experiment, two microphones with 10 cm
spacing are mounted in a car on the visor. Clean (reverberated)
speech signals are recorded at a sampling rate of 8 kHz in the
absence of background noise (standing car, silent environment).
Car noise signals are recorded while the car speed is about
60 km/h, and the window next to the driver is either closed or
slightly open (about 5 cm; the other windows remain closed).
The noise PSD is pseudo-stationary in the former case, while
varies substantially in the latter case due to wind blows and
passing cars. The input microphone signals are generated by
mixing the speech and noise signals at various SNR levels in
the range dB. Fig. 2 shows experimental results of
the average SBF obtained under various car noise conditions
using the competing system identification algorithms. Clearly,
the proposed system identification method is considerably
more efficient than the nonstationarity-based method. The
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Fig. 2. Average signal blocking factor under various car noise conditions.

rationale is that subintervals with low SNR are more useful for
noise estimation, whereas subintervals with high SNR are more
useful for system identification. Therefore, by weighting the
subintervals for noise estimation differently than the weighting
for system identification, improved performance is achieved.
Moreover, the proposed algorithm is less sensitive to variations
in the noise statistics in case the noise is nonstationary. For a
given input SNR, the performance of the proposed algorithm
in a nonstationary noise environment might be even slightly
better than that obtained in a stationary noise environment.
This is related to the fact that for a given input SNR and
nonstationary noise, there are necessarily subintervals where
the instantaneous noise power is lower than its average, and
these subintervals are given higher weights in the system
identification process. On the contrary, the performance of the
nonstationarity-based algorithm, which is based on the nonsta-
tionarity of the desired signal alone, is essentially impaired in
nonstationary noise environments.

IV. CONCLUSION

We have proposed a system identification approach for the
coupling between sensors in response to speech signals. The op-
timization criterion takes into account only short-time frames
which contain desired speech components. The proposed esti-
mator incorporates estimators for the auto-PSD of the desired
signal, cross-PSD of the interfering signals, and indicator func-
tion of speech presence. These estimates are derived by using
the OM-LSA [6] and MCRA [8] estimation techniques, which
also provide the speech presence probability and are particu-
larly useful for enhancing speech signals acquired in nonsta-
tionary noisy environments. We showed that the proposed min-
imum variance WLS estimate for the system’s transfer function
generally yields a smaller error variance than that obtained by
the nonstationarity method. Using the proposed method for the
identification of the acoustical transfer function ratios, as part
of the Transfer-Function GSC [2], may improve the adaptation
of the blocking matrix and noise canceller, and as a result may
improve the performance of the beamformer.

APPENDIX I
ASYMPTOTIC COVARIANCE OF

From (6) and (7), we have

(26)

Using (2), (3) and the relation we obtain

(27)

Since we use the cross-periodogram as an estimate for the
cross-PDS, under the assumption that observations in the
time-frequency domain associated with different frames are
statistically independent, we have (e.g., [5, ch. 5])

(28)

APPENDIX II
DERIVATION OF (23)

By (21)

(29)

where, for notational simplicity, the arguments and
are omitted. Denoting by the a priori SNR
at the primary sensor, and using and

, together with the assumption that
is stationary ( is independent of the frame index ),

we have

(30)
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