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On Multiplicative Transfer Function Approximation
in the Short-Time Fourier Transform Domain

Yekutiel Avargel and Israel Cohen, Senior Member, IEEE

Abstract— The multiplicative transfer function (MTF) approx-
imation is widely used for modeling a linear time invariant
system in the short-time Fourier transform (STFT) domain. It
relies on the assumption of a long analysis window compared
with the length of the system impulse response. In this paper,
we investigate the influence of the analysis window length on
the performance of a system identifier that utilizes the MTF
approximation. We derive analytic expressions for the minimum
mean-square error (MMSE) in the STFT domain and show
that the system identification performance does not necessarily
improve by increasing the length of the analysis window. The
optimal window length, that achieves the MMSE, depends on
the signal-to-noise ratio and the length of the input signal. The
theoretical analysis is supported by simulation results.

Index Terms— Short-time Fourier transform, multiplicative
transfer function, system identification.

I. INTRODUCTION

IDENTIFICATION of linear time-invariant (LTI) systems
in the short-time Fourier transform (STFT) domain is a

fundamental problem in many practical applications [1]–[6].
To perfectly represent an LTI system in the STFT domain,
cross-band filters between subbands are generally required [1],
[7]. A widely-used approach to avoid the cross-band filters is
to approximate the transfer function as multiplicative in the
STFT domain. This approximation relies on the assumption
that the support of the STFT analysis window is sufficiently
large compared with the duration of the system impulse
response, and it is useful in many applications, including
frequency-domain blind source separation (BSS) [5], acoustic
echo cancellation [2], relative transfer function (RTF) identi-
fication [3] and adaptive beamforming [6].

As the length of the analysis window increases, the mul-
tiplicative transfer function (MTF) approximation becomes
more accurate. On the other hand, the length of the input signal
that can be employed for the system identification must be
finite to enable tracking during time variations in the system.
Therefore, increasing the analysis window length while re-
taining the relative overlap between consecutive windows (the
overlap between consecutive analysis windows determines the
redundancy of the STFT representation), a fewer number of
observations in each frequency-band become available, which
increases the variance of the system estimate. Consequently,
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the mean-square error (MSE) in each subband may not nec-
essarily decrease as we increase the length of the analysis
window.

In this paper, we investigate the influence of the analysis
window length on the performance of a system identifier that
utilizes the MTF approximation. The MTF in each frequency-
band is estimated offline using a least squares (LS) criterion.
We derive an explicit expression for the MMSE in the STFT
domain and show that it can be decomposed into two error
terms. The first term is attributable to using a finite-support
analysis window. As we increase the support of the analysis
window, this term reduces to zero, since the MTF approxi-
mation becomes more accurate. However, the second term is
a consequence of restricting the length of the input signal.
As the support of the analysis window increases, this term
increases, since less observations in each frequency-band can
be used for the system identification. Therefore, the system
identification performance does not necessarily improve by
increasing the length of the analysis window. We show that
the optimal window length depends on both the SNR and the
input signal length. As the SNR or the input signal length
increases, a longer analysis window should be used to make
the MTF approximation valid and the variance of the MTF
estimate reasonably low. The theoretical analysis is supported
by simulation results.

The paper is organized as follows. In Section II, we present
the MTF approximation and address the relation between the
analysis window length and system identification performance.
In Section III, we derive an explicit expression for the MMSE
obtainable by using the MTF approximation. In Section IV, we
investigate the influence of the window length on the MMSE.
Finally, in Section V, we present simulation results that verify
the theoretical derivations.

II. THE MTF APPROXIMATION

Let an input x(n) and output y(n) of an unknown LTI
system be related by

y(n) = h(n) ∗ x(n) + ξ(n) , d(n) + ξ(n) , (1)

where h(n) represents the impulse response of the system,
ξ(n) is an additive noise signal, d(n) is the signal component
in the system output, and ∗ denotes convolution. The STFT
of x(n) is given by [8]

xpk =
∑
m

x(m) ψ̃∗pk(m) , (2)

where
ψ̃pk(m) = ψ̃(m− pL) ej 2π

N k(m−pL) (3)
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denotes a translated and modulated window function, ψ̃(n) is
a real-valued analysis window of length N , p is the frame
index, k represents the frequency-bin index, L is a discrete-
time shift and ∗ denotes complex conjugation. Applying the
STFT to d(n) yields

dpk =
∑
m

∑

`

h(`)x(m− `) ψ̃∗pk(m)

=
∑
m

x(m)
∑

`

h(`) ψ̃∗pk(m + `) . (4)

Let us assume that the analysis window ψ̃(n) is long and
smooth relative to the impulse response h(n) so that ψ̃(n) is
approximately constant over the duration of h(n). Then ψ̃(n−
m)h(m) ≈ ψ̃(n)h(m), and by substituting (3) into (4), we
obtain [9]

dpk ≈ hk xpk , (5)

where hk ,
∑

m h(m) exp (−j2πmk/N). The approximation
in (5) is the well-known MTF approximation for modeling
an LTI system in the STFT domain. In the limit, for an
infinitly long smooth analysis window, the transfer function
would be exactly multiplicative in the STFT domain. However,
since practical implementations employ finite length analysis
windows, the MTF approximation is never accurate.

Let P denote the number of samples in a time-trajectory of
xpk, let xk =

[
x0,k x1,k · · · xP−1,k

]T denote a time-
trajectory of xpk at frequency-bin k, and let the vectors yk,
dk and ξk be defined similarly. Then,

yk = dk + ξk , (6)

and the MTF approximation can be written in a vector form
as

dk = xk hk . (7)

The LS estimate of hk is therefore given by

ĥk = arg min
hk

‖yk − xk hk‖2

=
xH

k yk

xH
k xk

. (8)

Clearly, as N , the length of the analysis window, increases,
the MTF approximation becomes more accurate. However, the
length of the input signal is generally finite1 and the overlap
between consecutive analysis windows is chosen to be fixed
(the ratio N/L determines the redundancy of the STFT repre-
sentation). Hence, increasing N yields shorter time-trajectories
(smaller P ) and less observations in each frequency-band can
be used for the system identification, which increases the
variance of ĥk. Therefore, we need to find an appropriate
window length, which is sufficiently large to make the MTF
approximation valid, and sufficiently small to make the system
identification performance most satisfactory. In the following
sections, we investigate the relation between the analysis
window length and the system identification performance, and
show that the optimal window length depends on both the
SNR and the input signal length.

1Note that the length of the input signal is related to the update rate of ĥk

as we assume that during that period the system remains constant. Therefore,
a finite length input signal is practically employed for system identification,
to enable tracking the time variations in h(n).

III. MSE ANALYSIS

In this section, we derive an explicit expression for the
MMSE in the STFT domain under the assumptions of the
MTF approximation and a finite-length input signal. To make
the analysis mathematically tractable we assume that the input
signal x(n) and the noise signal ξ(n) are uncorrelated zero-
mean white Gaussian signals with variances σ2

x and σ2
ξ , re-

spectively. The system identification performance is evaluated
using the (normalized) MSE of the output signal in the STFT
domain, defined by

ε =

∑N−1
k=0 E

{∥∥∥dk − d̂k

∥∥∥
2
}

∑N−1
k=0 E

{
‖dk‖2

} . (9)

where d̂k = xkĥk. Substituting (8) into (9), the MSE can be
expressed as

ε = 1 + ε1 − ε2 , (10)

where

ε1 =

∑N−1
k=0 E

{(
xH

k xk

)−1
ξH

k xkxH
k ξk

}

∑N−1
k=0 E

{
‖dk‖2

} (11)

and

ε2 =

∑N−1
k=0 E

{(
xH

k xk

)−1
dH

k xkxH
k dk

}

∑N−1
k=0 E

{
‖dk‖2

} . (12)

Using (4) and the assumption that x(n) is white, we obtain

E
{
‖dk‖2

}
= Pσ2

x

∑
m

rψ̃(m) rh(m) e−j 2π
N km, (13)

where rf (n) =
∑

m f(n + m)f∗(m) denotes the cross-
correlation sequence of f(n). Assuming that xpk is
variance-ergodic and that P is sufficiently large, so that
1
P

∑P−1
p=0 |xpk|2 ≈ E

{
|xpk|2

}
, we have

xH
k xk = P σ2

x rψ̃(0) . (14)

Using the STFT representations of x(n) and ξ(n) (as defined
in (2)), it can be verified that

E
{
ξH

k xkxH
k ξk

}
=

P−1∑

p,p′=0

E
{
ξ∗pkξp′k

}
E

{
xpkx∗p′k

}

= Pσ2
xσ2

ξ

∑
p

r2
ψ̃
(pL) . (15)

Substituting (13), (14) and (15) into (11), we obtain

ε1 =
σ2

ξ

σ2
x

N
∑

p r2
ψ̃
(pL)

rψ̃(0)
∑N−1

k=0

∑
m rψ̃(m)rh(m)e−j 2π

N km
. (16)

To simplify the expression for ε2, we substitute the STFT
representations of x(n) and d(n) into E

{
dH

k xkxH
k dk

}
=
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∑P−1
p,p′=0 E

{
d∗pkxpkdp′kx∗p′k

}
, and obtain

E
{
dH

k xkxH
k dk

}
=

P−1∑
p=0

∑
m,n

ψ̃pk(m)ψ̃∗pk(n)
P−1∑

p′=0

∑

m′,n′
ψ̃p′k(m′)ψ̃∗p′k(n′)

×
∑

i,j

h(m− i)h(n′ − j)E {x(i)x(n)x(j)x(m′)} .(17)

Define

θk(n) ,
∑
m

h(n−m)ψ̃∗0,k(m) (18)

φk(n) ,
∑
m

θk(n + m)ψ̃∗0,k(m) . (19)

Then, using the fourth-order moment factoring theorem for
zero-mean real Gaussian samples [10], we can express (17) as

E
{
dH

k xkxH
k dk

}
= σ4

xP 2

∣∣∣∣∣
∑
m

θk(m)ψ̃0,k(m)

∣∣∣∣∣

2

+ σ4
xP

∑
p

φk(pL)φ∗k(−pL)

+ σ4
xP

∑
p

rψ̃(m)rh(m)ej 2π
N kpL

(20)

where we assumed that ψ̃(n) is a symmetric function (i.e.,
ψ̃(n) = ψ̃(−n)). Using (13), (14) and (20) we obtain an
explicit expression for ε2 that, together with ε1 in (16), can
be substituted into (10), which yields

ε = 1− a +
1
P

(
b

η
− c

)
, (21)

where η = σ2
x/σ2

ξ denotes the SNR and

a , 1
R

N−1∑

k=0

∣∣∣∣∣
∑
m

θk(m)ψ̃0,k(m)

∣∣∣∣∣

2

, (22a)

b , N

R

∑
p

r2
ψ̃
(pL) , (22b)

c , 1
R

N−1∑

k=0

{∑
p

φk(pL)φ∗k(−pL)

+
∑

p

rψ̃(pL)rh(pL)ej 2π
N kpL

}
(22c)

where R , rψ̃(0)
∑N−1

k=0

∑
m rψ̃(m)rh(m)e−j 2π

N km. Expect-
edly, we observe from (21) that as the SNR increases, a lower
MSE can be achieved.

IV. OPTIMAL WINDOW LENGTH

In this section, we investigate the relation between the
length of the analysis window and the MMSE obtainable by
using the MTF approximation. Rewrite (21) as

ε = εN + εP , (23)

where εN = 1 − a and εP = 1
P (b/η − c). Then, the error

εN is attributable to using a finite-support analysis window.
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Fig. 1. Theoretical MSE curves as a function of the ratio between the analysis
window length (N ) and the impulse response length (Nh), obtained for a 0
dB SNR.

For sufficiently large N , we can apply the approximation
ψ̃(n −m)h(m) ≈ ψ̃(n)h(m) to (22a) and verify that a = 1
and εN (N → ∞) = 0. On the other hand, the error εP is
a consequence of restricting the length of the input signal. It
decreases as we increase P , and reduces to zero when P →∞.

Figure 1 shows the MSE curves ε, εN and εP as a function
of the ratio between the analysis window length, N , and the
impulse response length, Nh, for a 0 dB SNR (for other
simulation parameters see Section V). Expectedly, we observe
that εN is a monotonically decreasing function of N , while
εP is a monotonically increasing function (since P decreases
as N increases). Consequently, the total MSE, ε, may reach
its minimum value for a certain optimal window length N∗,
i.e.,

N∗ = arg min
N

ε . (24)

In the example of Figure 1, we obtained that N∗ is approxi-
mately 32 Nh.

The optimal window length represents the trade-off between
the number of observations in time-trajectories of the STFT
representation and accuracy of the MTF approximation. Equa-
tion (23) implies that the optimal window length depends on
the relative weight of each error, εN or εP , in the overall
MSE ε. Since εP decreases as we increase either the SNR,
η, or the length of the time-trajectories, P , we expect that
the optimal window length N∗ would increase as η or P
increases. Denote by Nx the length of the input signal. Then,
the number of samples in a time-trajectory of the STFT
representation is P ≈ Nx/ L. For given analysis window and
overlap between consecutive windows (given N and N/ L),
P is proportional to the length of the input signal. Hence, the
optimal window length generally increases as Nx increases.
Recall that the impulse response is assumed time invariant
during Nx samples, in case the time variations in the system
are slow, we can increase Nx, and correspondingly increase
the analysis window length in order to achieve lower MMSE.
These points will be further demonstrated in the next section.

V. SIMULATION RESULTS

In this section, we present simulation results which verify
the theoretical analysis. We use a synthetic room impulse
response h(n) based on a statistical reverberation model,
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which generates a room impulse response as a realization
of a nonstationary stochastic process h(n) = u(n)β(n)e−αn,
where u(n) is a step function, β(n) is a zero-mean white
Gaussian noise and α is related to the reverberation time T60

(the time for the reverberant sound energy to drop by 60
dB from its original value). In the following simulations, the
length of the impulse response is set to 16 ms, the sampling
rate is 16 kHz, α corresponds to T60 = 50 ms and β(n)
is unit-variance zero-mean white Gaussian noise. We use a
Hamming synthesis window with 50% overlap (L = 0.5N ),
and a corresponding minimum energy analysis window which
satisfies the completeness condition [11]. The signals x(n)
and ξ(n) are uncorrelated zero-mean white Gaussian. Figure
2 shows the MSE curves, both in theory and in simulation,
as a function of the ratio between the analysis window length
and the impulse response length. Figure 2(a) shows the MSE
curves for SNR values of −10, 0 and 10 dB, obtained with a
signal length of 3 seconds (corresponding to Nx=48,000), and
Fig. 2(b) shows the MSE curves for signal lengths of 3 and 15
sec, obtained with a −10 dB SNR. The experimental results
are obtained by averaging over 100 independent runs. Clearly,
the theoretical analysis well describes the MSE performance
achievable by using the MTF approximation. As the SNR or
the signal length increases, a lower MSE can be achieved by
using a longer analysis window. Accordingly, as the power
of the input signal increases or as the time variations in the
system become slower (which enables one to use of a longer
input signal), a longer analysis window should be used to make
the MTF approximation appropriate for system identification
in the STFT domain.

VI. CONCLUSIONS

We have derived explicit relations between the MMSE and
the analysis window length, for a system identifier imple-
mented in the STFT domain and relying on the MTF ap-
proximation. We showed that the MMSE does not necessarily
decrease with increasing the window length, due to the finite
length of the input signal. The optimal window length that
achieves the MMSE depends on the SNR and length of the
input signal.

It is worthwhile noting, that the stationarity of the input
signal should also be taken into account when determining the
appropriate window length. For nonstationary input signals it
may be necessary to use a shorter analysis window for more
efficient representation in the STFT domain. Furthermore, the
performance analysis is evaluated based on a normalized MSE
in the STFT domain. One may also be interested to analyze the
MSE in the time-domain, which is a topic for further research.
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