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Relaxed Statistical Model for Speech Enhancement
and a Priori SNR Estimation

Israel Cohen, Senior Member, IEEE

Abstract—In this paper, we propose a statistical model for speech
enhancement that takes into account the time-correlation between
successive speech spectral components. It retains the simplicity as-
sociated with the Gaussian statistical model, and enables the exten-
sion of existing algorithms to noncausal estimation. The sequence
of speech spectral variances is a random process, which is gener-
ally correlated with the sequence of speech spectral magnitudes.
Causal and noncausal estimators for the a priori SNR are derived
in agreement with the model assumptions and the estimation of
the speech spectral components. We show that a special case of
the causal estimator degenerates to a “decision-directed” estimator
with a time-varying frequency-dependent weighting factor. Experi-
mental results demonstrate the improved performance of the pro-
posed algorithms.

Index Terms—Parameter estimation, sequential estimation,
spectral analysis, speech enhancement, time-frequency analysis.

I. INTRODUCTION

ONE OF THE most popular methods for enhancing speech,
degraded by uncorrelated additive noise, is the spectral

enhancement algorithm of Ephraim and Malah [1], [2]. This
algorithm and its derivatives (e.g., [3]–[5]) have been applied
to single-channel and multi-channel speech enhancement in
speech recognition systems [6], [7], speech coders [8]–[10] dig-
ital hearing-aids [11], [12], voice activity detectors [13]–[15],
and hands-free mobile communication systems [16]–[18].
The algorithm is based on a Gaussian statistical model [19].
Accordingly, the individual short-term spectral components
of the speech and noise signals are modeled as statistically
independent Gaussian random variables. The assumption that
speech spectral components in the time-frequency domain (i.e.,
coefficients of the short-time Fourier transform of the speech
signal) are statistically independent facilitates a mathematically
tractable derivation of useful estimators for various distortion
measures. In [2], Ephraim and Malah derived a short-term
spectral amplitude (STSA) estimator, which minimizes the
mean-square error of the spectral magnitude. In [1], based on
the same Gaussian statistical model, they derived a log-spectral
amplitude (LSA) estimator, which minimizes the mean-square
error of the log-spectra. They found that the LSA estimator is
superior to the STSA estimator, since it results in a much lower
residual noise level without further affecting the speech itself.

Manuscript received October 1, 2003; revised July 29, 2004. The Associate
Editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Peter Vary.

The author is with the Department of Electrical Engineering, The
Technion—Israel Institute of Technology, Haifa 32000, Israel (e-mail:
icohen@ee.technion.ac.il; http://www.ee.technion.ac.il/Sites/People/Israel-
Cohen).

Digital Object Identifier 10.1109/TSA.2005.851940

Cappé [20] showed that the dominant factor in the Ephraim-
Malah algorithm is the decision-directed estimation approach
for the a priori signal-to-noise ratio (SNR). The a priori SNR
estimate is obtained as a weighted sum of two terms. One rep-
resenting the a priori SNR resulting from the processing of the
previous frame. The other term is a maximum likelihood esti-
mate for the a priori SNR, based entirely on the current frame.
A weighting factor, which represents the importance (weight)
of each term, controls the trade-off between the noise reduction
and the transient distortion brought into the signal [2], [20]. In
practice, the weight of the first term is substantially larger than
that of the latter. This indicates that the a priori SNRs in suc-
cessive short-term frames are highly correlated. Unfortunately,
the decision-directed estimation approach applies a constraint
on the response to speech onsets. The a priori SNR estimator
cannot respond too fast to an abrupt increase in the instanta-
neous SNR, since it inevitably yields an increase in the level of
musical residual noise.

Martin [12] and Breithaupt and Martin [21] considered a dif-
ferent statistical model, where the clean speech spectral com-
ponents are gamma distributed, and the noise spectral compo-
nents are either Gaussian or Laplace distributed. They assumed
that distinct spectral components are statistically independent,
and derived an estimator for the complex speech spectral coef-
ficients, which minimizes the mean-square error (i.e., a Wiener
filter), and a spectral amplitude estimator, which minimizes the
mean-square error of the spectral power. However, to estimate
the a priori SNR they still used the decision-directed approach
of Ephraim and Malah.

Enhancement schemes based on hidden Markov models
(HMMs) try to circumvent the assumption of specific dis-
tributions for the speech and noise processes [22]–[25]. The
probability distributions of the two processes are first estimated
from long training sequences of clean speech and noise sam-
ples, and then used jointly with a given distortion measure to
derive an estimator for the speech signal. Normally, vectors
generated from a given sequence of states are assumed statisti-
cally independent. However, the HMM can be extended to take
into account the time-frequency correlation of speech signals
by using nondiagonal covariance matrices for each subsource,
and assuming that a sequence of vectors generated from a given
sequence of states is a nonzero-order autoregressive process
[23], [26]. First-order HMMs, for example, with a mixture of
Gaussian distributions in each state and minimum mean-square
error estimation result in a weighted sum of conditional mean
estimators, one for each mixture component in each state. The
weights are the posterior probabilities of the states and mixture
components given the noisy signal [27]. Unfortunately, the
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Fig. 1. Spectral estimation approach.

HMM-based speech enhancement relies on the type of training
data [28]. It works best with the trained type of noise, but
often worse with other type of noise. Furthermore, improved
performance generally entails more complex models and higher
computational requirements.

In this paper, we propose a statistical model for speech en-
hancement that takes into account the time-correlation between
successive speech spectral components. It retains the simplicity
associated with the Ephraim-Malah statistical model, provides
insight into the decision-directed approach [41], and most im-
portantly enables the extension of existing algorithms to non-
causal estimation [42]. In the proposed model, the sequence of
speech spectral variances is a random process, which is cor-
related with the sequence of the speech spectral components.
Causal and noncausal estimators for the a priori SNR are de-
rived in agreement with the model assumptions and the estima-
tion of the speech spectral components.

The causal estimator for the a priori SNR combines two
steps, a “propagation” step and an “update” step, following the
rational of Kalman filtering, to recursively predict and update
the estimate for the speech spectral variance as new data arrive.
The causal a priori SNR estimator is closely related to the de-
cision-directed estimator of Ephraim and Malah. A special case
of the causal estimator degenerates to a “decision-directed”
estimator with a time-varying frequency-dependent weighting
factor. The weighting factor is monotonically decreasing as a
function of the instantaneous SNR, resulting effectively in a
larger weighting factor during speech absence, and a smaller
weighting factor during speech presence. This reduces both the
musical noise and the signal distortion.

The noncausal a priori SNR estimator employs future spec-
tral measurements to better predict the spectral variances of the
clean speech. A comparison of the causal and noncausal esti-
mators indicates that the differences are primarily noticeable
during speech onsets. The causal a priori SNR estimator, as
well as the decision-directed estimator, cannot respond too fast
to an abrupt increase in the instantaneous SNR, since it neces-
sarily implies an increase in the level of musical residual noise.
By contrast, the noncausal estimator, having a few subsequent
spectral measurements at hand, is capable of discriminating be-
tween speech onsets and noise irregularities. Experimental re-
sults show that the noncausal estimator yields a higher improve-
ment in the segmental SNR and lower log-spectral distortion,
than the decision-directed method and the causal estimator. The
advantages of the noncausal estimator are particularly perceived
during onsets of speech and noise only frames. Onsets of speech
are better preserved, while a further reduction of musical noise
is achieved.

The paper is organized as follows. In Section II, we formu-
late the speech enhancement problem. In Section III, a statis-
tical model is proposed that relaxes the independence assump-
tion of spectral components. In Section IV, we derive estima-
tors for the clean speech spectral components and the a priori
SNR. We present causal and noncausal recursive speech en-
hancement algorithms, and address their relation to the decision-
directed estimation approach. Finally, in Section V, we eval-
uate the proposed algorithms, and present experimental results,
which demonstrate their improved performance.

II. PROBLEM FORMULATION

Let and denote speech and uncorrelated additive
noise signals, respectively, where is a discrete-time index.
The observed signal , given by , is
transformed into the time-frequency domain by applying the
short-time Fourier transform (STFT). Specifically

(1)

where is the frequency-bin index is
the time frame index is an analysis window
of size (e.g., Hamming window), and is the framing step
(number of samples separating two successive frames). Given
an estimate for the STFT of the clean speech (see Fig. 1),
an estimate for the clean speech signal is obtained by applying
the inverse STFT

(2)

where is a synthesis window that is biorthogonal to the
analysis window [29], and the inverse STFT is efficiently
implemented by using the weighted overlap-add method [30].

Let denote a set of spectral measurements
, and let be a given

distortion measure between and . Our objective
is to find an estimator , which minimizes the conditional
expected value of the distortion measure, given the set of
spectral noisy measurements

(3)

We consider a causal estimation of (in which case ),
as well as a noncausal estimation (in which case )1, while

1Note that causality is defined with respect to the spectral components, rather
that with respect to the samples in the time domain.
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Fig. 2. Scatter plots for successive spectral magnitudes of (a) white Gaussian noise signal and (b) speech signal at center frequency 500 Hz (k = 17). The overlap
between successive frames is 50%.

the spectral components are not assumed statistically indepen-
dent.

Let and denote respectively the magnitude and
phase of . Then, distortion measures that are of particular
interest for speech enhancement applications are as follows.

1) The squared-error distortion [31]

(4)

2) The spectral amplitude distortion [2]

(5)

3) The log-spectral amplitude distortion [1]

(6)

4) The spectral power distortion [21], [27], [32]

(7)

The last three distortion measures are insensitive to the estima-
tion error of . Therefore, it is constructive to combine them
with the following constrained optimization problem [2]:

(8)

This yields an estimator for the complex exponential of the
phase, constrained to not affecting the spectral magnitude es-
timate. Alternatively, an estimate for the spectral phase
is obtained by minimizing the expected value of the following
distortion measure [2]:

(9)

This measure is invariant under modulo transformation of the
estimation error , and for small estimation errors
it closely resembles the squared-error distortion measure, since

for .

III. SPEECH SPECTRAL MODEL

In this section, we propose a statistical model that takes into
account the time-correlation between successive spectral com-
ponents of the speech signal. To see graphically the relation
between successive spectral components of a speech signal, in
comparison with a noise signal, we present scatter plots for suc-
cessive spectral magnitudes, and investigate the sample autocor-
relation coefficient sequences (ACS) of the STFT coefficients
along time-trajectories (the frequency-bin index is held fixed).
We consider a speech signal that is constructed from six dif-
ferent utterances, without intervening pauses. The utterances,
half from male speakers and half from female speakers, are
taken from the TIMIT database [33]. The speech signal is sam-
pled at 16 kHz, and transformed into the STFT domain using
Hamming analysis windows of 512 samples (32 ms) length,
and 256 samples framing step (50% overlap between succes-
sive frames).

Fig. 2 shows an example of scatter plots for successive spec-
tral magnitudes of white Gaussian noise (WGN) and speech
signals. It implies that 50% overlap between successive frames
does not yield a significant correlation between the spectral
magnitudes of the WGN signal. However, successive spectral
magnitudes of the speech signal are highly correlated. Fig. 3
shows the ACSs of the speech spectral components along
time-trajectories, for various frequency-bins and framing steps.
The 95 percent confidence limits (e.g., [34]) are depicted as
horizontal dotted lines. In order to prevent an upward bias of the
autocovariance estimates due to irrelevant (nonspeech) spectral
components, the ACSs are computed from spectral components
whose magnitudes are within 30 dB of the maximal magnitude.
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Fig. 3. Sample autocorrelation coefficient sequences (ACSs) of clean speech STFT coefficients along time-trajectories, for various frequency-bins and framing
steps. The dotted lines represents 95 percent confidence limits. (a) ACS of the spectral magnitude at frequency-bin k = 17 (center frequency 500 Hz), framing
step M = N=2 (50% overlap between frames); (b) ACS of the spectral phase, k = 17;M = N=2; (c) ACS of the spectral magnitude, k = 65 (center frequency
2 kHz), M = N=2; and (d) ACS of the spectral magnitude, k = 17;M = N=4 (75% overlap between frames).

Specifically, the sample autocorrelation coefficients of the
spectral magnitudes are calculated by

(10)

where

denotes the sample mean, is the lag in frames, and repre-
sents the set of relevant spectral components

The corresponding sample autocorrelation coefficients of the
spectral phases are obtained by

(11)

Fig. 4 shows the variation of the correlation between succes-
sive spectral magnitudes on frequency and on overlap between
successive frames. Figs. 3 and 4 demonstrate that for speech sig-
nals, successive spectral magnitudes are highly correlated, while
the correlation is generally larger at lower frequencies, and it in-
creases as the overlap between successive frames increases.

Fig. 5 shows, for a realization of WGN, the variation of
the correlation between successive spectral magnitudes on
the overlap between frames. A comparison of Figs. 5 and 4
reveals that for a sufficiently large framing step ( ,

i.e., overlap between frames %), successive spectral com-
ponents of the noise signal, but clearly not of the speech signal,
can be assumed uncorrelated. For smaller framing steps, the
correlation between successive spectral noise components
has also to be taken into consideration. Furthermore, since
the length of the analysis window cannot be too large (its
typical length is 20–40 ms [2]), for a given frame adjacent
Fourier expansion coefficients of the noise signal, and

, as well as adjacent coefficients of the speech
signal, and , are also correlated to a certain
degree. Nevertheless, our primary goal is to propose a valid and
consistent statistical model for both the spectral enhancement
and the a priori SNR estimation, while keeping the resulting
algorithms simple. Therefore, we continue with the statistical
independence assumption for distinct frequency-bins (
and are assumed statistically independent if ),
as implied in the estimation problem (3).

In conclusion of the above discussion, we propose the fol-
lowing statistical model for the speech and noise spectral com-
ponents.

1) The noise spectral components are statistically
independent zero-mean complex Gaussian random vari-
ables. The real and imaginary parts of are indepen-
dent and identically distributed (iid).

2) The speech spectral phases are iid uniform
random variables on .

3) The random processes and
are statistically independent for

.
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Fig. 4. Variation of the correlation between successive spectral magnitudes
of the speech signal. (a) Variation of �(1) on frequency for M = N=2 (50%
overlap between frames) and (b) Variation of �(1) on overlap between frames
for k = 33 (center frequency 1 kHz; solid line) and k = 65 (center frequency
2 kHz; dashed line).

Fig. 5. Variation of the correlation between successive spectral magnitudes on
the overlap between frames for a realization of white Gaussian noise.

4) For fixed and , a speech spectral component
is conditionally a zero-mean complex Gaussian random
variable, given its variance .

5) The sequence of speech spectral variances
is a random process, generally correlated

with the sequence of speech spectral magnitudes
. However, given

is statistically independent of for all .

Clearly, the first assumption does not hold when the overlap be-
tween successive frames is too large (see Fig. 5). Therefore, we
assume that the STFT is implemented in accordance with this
assumption (e.g., the overlap is not grater than 50%). The third
assumption allows to formulate independent estimation prob-
lems for each frequency bin , which greatly simplifies the re-

sulting algorithms. The fifth assumption allows to further sim-
plify the algorithms, as shown in the next section, by splitting
the estimation problem into two parts: the first part is spectral
variance estimation from a given set of noisy measurements; the
second part is spectral amplitude estimation from a single spec-
tral noisy measurement, using the spectral variance estimate ob-
tained in the first part. Note that successive spectral compo-
nents are still assumed correlated, since the random processes

and are not in-
dependent.

IV. SIGNAL ESTIMATION

In this section, we derive estimators for based on the
proposed statistical model and the various distortion measures
specified in Section II. We show that similar to conventional
spectral estimators, is obtained by applying a real-valued
gain function to the corresponding spectral measurement .
The spectral gain depends on two parameters: the a priori and
a posteriori SNRs. However, rather than evaluating the a priori
SNR by the decision-directed approach, the a priori SNR esti-
mation relies on the statistical model. For notational simplicity,
the frequency-bin index is henceforth omitted, since according
to the statistical model, an estimate can be found inde-
pendently for each . Furthermore, we assume knowledge of
the noise power spectral density (PSD), which in practice can
be estimated by using the Minima Controlled Recursive Aver-
aging approach [35].

A. Spectral Enhancement

Let denote the conditional probability den-
sity function (pdf) of a speech spectral component given its
variance and the noisy measurements . Let
denote the conditional pdf of the clean speech spectral variance
at frame given . Then, the spectral estimator is obtained
from

(12)

The proposed statistical model implies

(13)

To simplify the algorithm, we first derive a minimum mean-
squared error (MMSE) estimate for from the set of noisy
measurements

(14)

Then, given , we derive a conditional estimate for
which minimizes the expected value of the distortion measure

(15)
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Substituting (13) into (15), the spectral estimate is obtained
from

(16)

The latter problem, when the a priori SNR is defined appropri-
ately, reduces to the classical spectral enhancement problem as
formulated by Ephraim and Malah [1], [2]. Accordingly, it is
unnecessary to assume that speech spectral components are sta-
tistically independent (e.g., [3], [12], [15], [21], [32]). It is suf-
ficient to assume that given a speech spectral variance
is statistically independent of for all (see model as-
sumptions no. 5 and 2). This enables to derive estimators for
and under consistent model assumptions.

An estimate for is obtained by applying a spectral gain
function to each noisy spectral component of the speech signal

(17)

where the a priori and a posteriori SNRs are defined respec-
tively by2

(18)

(19)

and where denotes the noise spectral vari-
ance. The specific expression for the spectral gain function

depends on the particular choice of a distortion
measure . For squared-error distortion (see (4)), the
gain function is given by [31]

(20)

In case of combining the spectral amplitude, the log-spectral
amplitude, or the spectral power distortion measures (see
(5)–(7)) with the constrained optimization problem (8), the gain
functions can respectively be written as [1], [2], [27], [32]

(21)

(22)

(23)

where and denote the modified Bessel functions

of zero and first order, respectively, and is defined by

2Note that in [2], the a priori SNR is defined by � = � =� , where the
variance � is a parameter of the prior pdf of X .

. It still remains to estimate the a priori SNR
, as defined in (18) and (14), based on the statistical model.

B. Causal Recursive Estimation

In this section, we propose a causal conditional estimator
for the a priori SNR given the noisy measurements up to frame
. The estimator combines two steps, a “propagation” step and

an “update” step, following the rational of Kalman filtering, to
recursively predict and update the estimate for as new data
arrive.

Suppose we are given an estimate , which is condi-
tioned on the noisy measurements up to frame , and a new
noisy spectral component is observed. Then, the estimate for

can be updated by computing the conditional variance of
given and

(24)

This is obtained by applying the gain function
to , and computing the squared absolute value of the result3

(25)

Dividing both sides of (25) by , we have

(26)

We call (26) the “update” step.
Computation of the update step requires the estimate

(27)

for the a priori SNR given . Note that in (27), is
divided by rather than by , since given the measure-
ments up to frame the noise variance estimate at frame

is given by . Assume we are given at frame es-
timates for the spectral amplitude and the spectral vari-
ance , conditioned on . Then, these estimates can be
“propagated” in time to obtain an estimate for . Since
is correlated with both and , we propose to use an
estimate of the form

(28)

where is related to the degree of nonstationarity
of the random process , and is a lower
bound on the variance of . In case of a pseudo-stationary
process, is set to a small value, since .
In case of a nonstationary process, is set to a larger value,
since the variances at successive frames are less correlated, and

3Recall that G minimizes the expected spectral power distortion,
yielding the square root of the conditional expected spectral power. That is,
G (� ;  )jY j = [EfA j � ; Y g] .
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TABLE I
SUMMARY OF THE CAUSAL RECURSIVE SPEECH ENHANCEMENT ALGORITHM

the relative importance of to predict de-
creases. Dividing both sides of (28) by , we obtain the
“propagation” step

(29)

where is a lower bound on the a priori SNR. The steps of
the causal recursive spectral enhancement algorithm are sum-
marized in Table I. The algorithm is initialized at frame
with and . Then, for , the
propagation and update steps are iterated to obtain estimates for
the nonstationary a priori SNR. The gain function
employed for the spectral enhancement step is determined by
the particular choice of the distortion measure.

C. Relation to “Decision-Directed” Estimation

The proposed causal conditional estimator for the a
priori SNR is closely related to the decision-directed estimator
of Ephraim and Malah [2]. The decision-directed estimator is
given by

(30)

where is a weighting factor that controls the
trade-off between the noise reduction and the transient distortion
introduced into the signal [2], [20]. A larger value of results in
a greater reduction of the musical noise phenomena, but at the
expense of attenuated speech onsets and audible modifications
of transient components. As a compromise, a value 0.98 of
was determined by simulations and informal listening tests [2].

The update step (26) of the causal conditional estimator can
be written as (see the Appendix)

(31)

where is defined by

(32)

Substituting (29) into (31) and (32) with , and applying
the lower bound constraint to rather than , we have

(33)

(34)

The expression (33) with is actually a practical form of
the decision-directed estimator

(35)

that includes a lower bound constraint to further reduce the level
of residual musical noise [20]. Accordingly, a special case of the
causal recursive estimator with degenerates to a “deci-
sion-directed” estimator with a time-varying frequency-depen-
dent weighting factor .

It is interesting to note that the weighting factor , given
by (34), is monotonically decreasing as a function of the in-
stantaneous SNR, . A decision-directed estimator
with a larger weighting factor is indeed preferable during speech
absence (to reduce musical noise phenomena), while a smaller
weighting factor is more advantageous during speech presence
(to reduce signal distortion) [20]. The above special case of
the causal recursive estimator conforms to such a desirable be-
havior. Moreover, the general form of the causal recursive esti-
mator provides an additional degree of freedom for adjusting the
value of in (29) to the degree of spectral nonstationarity. This
may produce even further improvement in the performance.

The different behaviors of the causal recursive estimator

(Table I) and the decision-directed estimator (35) are illus-
trated in the example of Fig. 6. The analyzed signal contains
only white Gaussian noise during the first and last 20 frames,
and in between it contains an additional sinusoidal component
at the displayed frequency with 0 dB SNR.4 The signal is trans-
formed into the STFT domain using half overlapping Hamming
windows. The a priori SNR estimates, and , are ob-
tained by using the parameters dB,

. Employing as the distortion measure (see (6)), the
spectral amplitude estimate is recursively obtained by ap-
plying to the noisy spectral measurements [see
(22) and (17)].

Fig. 6 shows that when the a posteriori SNR is sufficiently
low, the proposed a priori SNR estimate is smoother than the de-
cision-directed estimate, which helps reducing the level of mu-
sical noise. When increases, the response of the a priori SNR

is initially slower than , but it then builds up faster to the

a posteriori SNR. When is sufficiently high, follows the

a posteriori SNR with a delay of 1 frame, whereas follows
the a posteriori SNR instantaneously. When decreases, the
response of is immediate, while that of is delayed by

4Note that the SNR is computed in the time domain, whereas the a priori
and a posteriori SNRs are computed in the time-frequency domain. Therefore,
the latter SNRs may increase at the displayed frequency well above the average
SNR.
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TABLE II
SUMMARY OF THE NONCAUSAL RECURSIVE SPEECH ENHANCEMENT ALGORITHM

Fig. 6. SNRs in successive short-time frames: A posteriori SNR  (dotted
line), decision-directed a priori SNR ^� (dashed line), and causal recursive a

priori SNR estimate ^� (solid line).

1 frame. As a consequence, we expect that the causal recursive
estimator, in comparison with the decision-directed estimator,
may produce a lower level of musical noise while not increasing
the audible distortion in the enhanced signal.

D. Noncausal Recursive Estimation

In this section, we propose a noncausal conditional estimator
for the a priori SNR, given the noisy measurements up to

frame , where denotes the admissible time delay in
frames. Similar to the causal estimator, the noncausal estimator
combines update and propagation steps to recursively estimate

as new data arrive. However, future spectral measurements
are also employed in the process to better predict the spectral
variances of the clean speech.

Let denote the conditional

spectral variance of given excluding the noisy mea-

surement at frame . Let denote
the conditional spectral variance of given the subsequent
noisy measurements . Then, similar to (25), the estimate
for given and can be updated by

(36)

where is the a priori SNR estimate

given and . Dividing both sides of (36) by , we
have the “update” step

(37)

To obtain an estimate for , we employ the estimates

and from the previous frame, and derive an
estimate for from the measurements . Suppose an es-
timate is given, we propose to propagate the esti-
mates from frame to frame by

(38)

where is related to the stationarity of the random
process , and is associated
with the reliability of the estimate in comparison
with that of . Dividing both sides of (38) by ,
we have the following “backward-forward propagation” step

(39)

An estimate for the a priori SNR given the measurements
is obtained by

if nonnegative,
otherwise

(40)

where is an over-subtraction factor to compensate
for a sudden increase in the noise level. This estimator is an an-
ticausal version of the maximum-likelihood a priori SNR esti-
mator suggested in [2].

The steps of the noncausal recursive spectral enhancement al-
gorithm are summarized in Table II. The algorithm is initialized
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Fig. 7. SNRs in successive short-time frames: A posteriori SNR  (dotted
line), decision-directed a priori SNR ^� (dashed line), and noncausal
recursive a priori SNR estimate ^� with 3 frames delay (solid line).

at frame with and . Then,
for , the propagation and update steps are iterated
to obtain estimates for the a priori SNR and the speech spectral
components.

Fig. 7 demonstrates the behavior of the noncausal recursive
estimator in the same example of Fig. 6. The noncausal a priori
SNR estimate is obtained with the parameters

dB, , and frames delay. A com-
parison of Figs. 6 and 7 indicates that the differences between
the causal and noncausal recursive estimators are primarily no-
ticeable during onsets of signal components. Clearly, the causal
a priori SNR estimator, as well as the decision-directed esti-
mator, cannot respond too fast to an abrupt increase in , since
it necessarily implies an increase in the level of musical residual
noise. By contrast, the noncausal estimator, having a few sub-
sequent spectral measurements at hand, is capable of discrim-
inating between speech onsets and irregularities in corre-
sponding to noise only. Therefore, in comparison with the de-
cision-directed estimator, the noncausal a priori SNR estimator
is expected to produce even lower levels of musical noise and
signal distortion.

V. EXPERIMENTAL RESULTS

In this section, the performance of the causal and noncausal
recursive estimators are evaluated, and compared to that of the
decision-directed estimator. The evaluation includes two ob-
jective quality measures, and informal listening tests. The first
quality measure is the segmental SNR, in dB, defined by [36]
(41), shown at the bottom of the page, where represents the
number of frames in the signal, is the number of
samples per frame (corresponding to 32 ms half overlapping

frames), and confines the SNR at each frame to perceptu-
ally meaningful range between 35 dB and dB

. The operator prevents the segmental
SNR measure from being biased in either a positive or negative
direction due to a few silence or unusually high SNR frames,
that do not contribute significantly to the overall speech quality
[37], [38]. The second quality measure is log-spectral distortion
(LSD), in dB, which is defined by (42), shown at the bottom
of the page, where is the spectral
power, clipped such that the log-spectrum dynamic range is con-
fined to about 50 dB (that is, ).

The noise signals used in our evaluation are taken from the
Noisex92 database [39]. They include white Gaussian noise, car
interior noise, F16 cockpit noise, and babble noise. The speech
signal is constructed from six different utterances, without inter-
vening pauses. The utterances, half from male speakers and half
from female speakers, are taken from the TIMIT database [33].
The speech signal is sampled at 16 kHz and degraded by the
various noise types with segmental SNRs in the range
dB.

The noisy signals are transformed into the STFT domain
using half overlapping Hamming analysis windows of 512
samples length. The causal recursive estimation algorithm
(Table I) is applied to the noisy speech signals, with parameters

dB and . The noncausal recursive estima-
tion algorithm (Table II) is applied to the noisy signals, with
parameters dB, , and
frames delay. Alternatively, the a priori SNR is estimated by the
decision-directed method (30), with parameters
dB and (this value of was determined in [1], [2] by
simulations and informal listening tests).

The spectral gain function used in our evaluation is
(see (22)). The PSD of the noise is estimated by recursively
averaging past spectral power values of the noise signal:

In practice, the periodogram of the noise is unknown, and
can be estimated by using the Minima Controlled Recur-

sive Averaging approach [35]. However, to isolate the influence
of the a priori SNR estimator and to show its importance, a prac-
tical noise PSD estimator is not employed to produce the results.
In fact, including a practical noise estimator in the speech en-
hancement algorithms emphasizes the distinction between the
proposed and the decision-directed methods, since the noise es-
timator interacts with the speech estimator and causes the infe-
rior algorithm to be even worse.

(41)

(42)
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TABLE III
SEGMENTAL SNR IMPROVEMENT FOR VARIOUS NOISE TYPES AND LEVELS, OBTAINED BY USING THE DECISION-DIRECTED APPROACH (DD), CAUSAL

RECURSIVE ESTIMATION (CRE), AND NONCAUSAL RECURSIVE ESTIMATION WITH 3 FRAMES DELAY (NCRE)

TABLE IV
LOG-SPECTRAL DISTANCE FOR VARIOUS NOISE TYPES AND LEVELS, OBTAINED BY USING THE DECISION-DIRECTED APPROACH (DD), CAUSAL

RECURSIVE ESTIMATION (CRE), AND NONCAUSAL RECURSIVE ESTIMATION WITH 3 FRAMES DELAY (NCRE)

Table III presents the results of the segmental SNR improve-
ment achieved by the causal and noncausal recursive estimators
and by the decision-directed method for various noise types and
levels. The noncausal recursive estimator consistently yields a
higher improvement in the segmental SNR, than the decision-
directed method and the causal recursive estimator, under all
tested environmental conditions. The results of the log-spectral
distance are summarized in Table IV. It shows that the non-
causal recursive estimator obtains lower LSD than the deci-
sion-directed method and the causal recursive estimator. A sub-
jective study of speech spectrograms and informal listening tests
confirm that the advantages of the noncausal recursive estimator
are particularly perceived during onsets of speech and noise only
frames. Onsets of speech are better preserved, while a further
reduction of noise irregularities (musical noise) is achieved. We
note that the results of the segmental SNR and the LSD obtained
by using the causal recursive estimator are very similar to those
obtained by using the decision-directed method. Therefore, in
case the delay between the enhanced speech and the noisy ob-
servation needs to be minimized, the decision-directed method
is perhaps preferable due to its computational simplicity. How-
ever, in applications where a few frames delay is tolerable, the
noncausal recursive estimation approach is definitely more ad-
vantageous than the decision-directed approach.

VI. CONCLUSION

We have introduced a statistical model for speech enhance-
ment and a priori SNR estimation, which realizes the signifi-
cance of the statistical dependence between successive speech
spectral components. Moreover, it enables consistent deriva-
tion of estimators for the speech spectral components and the
a priori SNR, while keeping the resulting algorithms simple.

We proposed causal and noncausal recursive estimators for the
a priori SNR. The causal estimator is closely related to the de-
cision-directed estimator of Ephraim and Malah. It degenerates,
as a special case, to a “decision-directed” estimator with a time-
varying frequency-dependent weighting factor, which is mono-
tonically decreasing as a function of the instantaneous SNR.
A larger weighting factor is engaged during speech absence,
to reduce musical noise phenomena, and a smaller weighting
factor evolves during speech presence to reduce signal distor-
tion. The general form of the causal recursive estimator provides
an additional degree of freedom, which is adjustable to the de-
gree of spectral nonstationarity. The noncausal recursive esti-
mator, when compared with the causal estimator, is particularly
useful during speech onsets. The causal estimator, alike the deci-
sion-directed estimator, cannot respond too fast to an abrupt in-
crease in the instantaneous SNR, since it inevitably increases the
level of musical residual noise. By contrast, the noncausal esti-
mator, having a few subsequent spectral measurements at hand,
is capable of discriminating between speech onsets and noise ir-
regularities. In comparison with the decision-directed estimator,
the noncausal estimator produces lower levels of musical noise
and signal distortion.

The proposed model can be extended to take into account the
statistical dependence between spectral components in distinct
frequency-bins. A simple strategy is to “propagate” the spectral
variances from frame to frame by considering the spectral
variances from all frequency bins, and weighting them in accor-
dance with the time-frequency correlation in the speech signal.
A further improvement of the speech enhancement results can
be achieved by utilizing the uncertainty of speech presence in
the noisy measurements [2]–[4], [40]. In this case, one needs to
find also an estimator for the speech presence probability, that
is consistent with the model assumptions and the a priori SNR
estimation.
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APPENDIX

Equation (26) can be written as

(43)

Define by

(44)

Then, (43) can be written as (31).
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