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Relative Transfer Function Identification
Using Speech Signals

Israel Cohen, Senior Member, IEEE

Abstract—An important component of a multichannel
hands-free communication system is the identification of the
relative transfer function between sensors in response to a de-
sired source signal. In this paper, a robust system identification
approach adapted to speech signals is proposed. A weighted
least-squares optimization criterion is introduced, which con-
siders the uncertainty of the desired signal presence in the
observed signals. An asymptotically unbiased estimate for the
system’s transfer function is derived, and a corresponding recur-
sive online implementation is presented. We show that compared
to a competing nonstationarity-based method, a smaller error
variance is achieved and generally shorter observation intervals
are required. Furthermore, in the case of a time-varying system,
faster convergence and higher reliability of the system identifi-
cation are obtained by using the proposed method than by using
the nonstationarity-based method. Evaluation of the proposed
system identification approach is performed under various noise
conditions, including simulated stationary and nonstationary
white Gaussian noise, and car interior noise in real pseudo-sta-
tionary and nonstationary environments. The experimental results
confirm the advantages of proposed approach.

Index Terms—Acoustic noise measurement, adaptive signal pro-
cessing, array signal processing, signal detection, spectral analysis,
speech enhancement, system identification.

I. INTRODUCTION

AN IMPORTANT component of a multichannel hands-free
communication system is the identification of the relative

transfer function (RTF) between sensors in response to a desired
source signal [1]–[3]. This transfer function, often referred to as
the acoustical transfer function ratio [2], represents the coupling
between sensors in response to a desired source. In reverberant
and noisy environments, the RTF identification enables one to
construct adaptive blocking channels and noise cancellers [4].
The blocking channel is used for blocking the desired signal
and deriving a reference noise signal, and the noise canceller is
used for eliminating directional or coherent noise sources. The
RTF identification also facilitates multichannel signal detection
and postfiltering techniques, which employ the transient power
ratio between the beamformer output and the reference signals
[5], [6].

Shalvi and Weinstein [1] have proposed to identify the RTF
between sensors by using the nonstationarity of the desired
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signal. They assumed that the sensors contain additive inter-
fering signals whose cross-correlation function is stationary,
while the autocorrelation function of the desired signal is
highly nonstationary. Then, dividing the observation interval
into a sequence of subintervals, and computing for each subin-
terval the cross power spectral density (PSD) of the sensors,
they obtained an overdetermined set of equations for the two
unknown quantities: the RTF and the (presumably stationary)
cross-PSD of the primary sensor and a noise component. An
asymptotically unbiased estimate for the RTF was derived by
using a weighted least-squares (WLS) approach for minimizing
the error variance under certain assumptions.

A major limitation of the nonstationarity-based system iden-
tification is that both the RTF identification and noise estima-
tion are carried out through the same WLS optimization crite-
rion. The WLS optimization consists of two conflicting require-
ments: One is minimizing the error variance of the system’s
transfer function estimate, which pulls the weight up to higher
values on higher SNR subintervals. The other requirement is
minimizing the error variance of the noise estimate, which rather
implies smaller weights on higher SNR subintervals. Another
major limitation of this method is that the observation interval
should be adequately long, so that for all frequency bands it in-
cludes a few subintervals that contain the desired signal. Un-
fortunately, in case the desired signal is speech, in some fre-
quency bands the presence of speech may be sparse, which en-
tails a very long observation interval. Furthermore, the RTF is
assumed to be constant during the observation interval. Hence,
very long observation intervals also restrict the capability of this
technique to track time-varying systems (e.g., tracking moving
talkers in hands-free communication scenarios [7]–[9]). Addi-
tionally, a fundamental assumption is that the interfering signals
remain stationary during the entire observation interval. This is
a very restrictive assumption, particularly in view of the gener-
ally long observation interval required for obtaining a reliable
RTF identification in the case of speech signals.

In this paper, a robust system identification approach adapted
to speech signals is proposed. The speech presence probability
in the time-frequency domain is incorporated into the optimiza-
tion criteria for RTF identification and noise spectra estimation.
An RTF estimate is derived based on subintervals that contain
speech, while subintervals that do not contain speech are of
more significance when estimating the noise spectra. The
estimate for the auto-PSD of the desired signal is obtained
by applying a first-order recursive smoothing to its optimally
modified log-spectral amplitude (OM-LSA) estimate [10]. The
cross-PSD of the interfering signals is estimated by using the
minima controlled recursive averaging (MCRA) approach [11],
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[12]. Subsequently, minimum variance WLS estimate [13] for
the system’s transfer function is derived, and a recursive online
solution is obtained based on the normalized least-mean-square
(LMS) algorithm. We show that the error variance obtained
by using the proposed method is generally smaller than that
obtained by using the nonstationarity method. Furthermore, the
contribution of a given time-frequency bin to the error-variance
minimization depends on the relative power of the desired
signal in that bin. The higher the SNR is, the shorter the
observation interval required for obtaining a reliable RTF
identification. Whereas the nonstationarity method requires a
relatively long observation interval, regardless of the SNR, to
retain the desired signal sufficiently nonstationary. Moreover,
in contrast to the nonstationarity method, in the proposed
method the statistical properties of the interfering signals are
allowed to change during time-frequency windows that do not
contain desired signal components. Accordingly, in the case of
a time-varying system, faster convergence and higher reliability
of the RTF identification are achieved by using the proposed
method. Evaluation of the proposed method is performed under
various noise conditions, including simulated stationary and
nonstationary white Gaussian noise, and real car interior noise
in pseudo-stationary and nonstationary environments. The
experimental results confirm that the proposed algorithm is
advantageous to the nonstationarity-based algorithm.

The paper is organized as follows. In Section II, we formu-
late the system identification problem. In Section III, we re-
view the nonstationarity-based system identification technique,
which heavily relies on the stationarity of the interfering signals
and nonstationarity of the desired signal. In Section IV, we intro-
duce a system identification approach that is more appropriate
to speech signals. The optimal estimate for the system’s transfer
function is derived based on time-frequency bins which contain
the desired signal components. In Section V, we describe the
system identification algorithm and its online implementation.
Finally, in Section VI, we present experimental results, which
demonstrate the improvement gained by the proposed approach.

II. PROBLEM FORMULATION

Let denote a desired source signal, and let and
denote additive interfering signals that are uncorrelated with the
desired signal. The signals measured by a primary and reference
sensors are given by

(1)

(2)

where represents the coupling of the desired signal to the
reference sensor, and denotes convolution. Our objective is
to identify in the general case where is statistically
correlated with .

It worth noting that is often a reverberated version of
the source signal, i.e., , where is the
source signal and is the impulse response of the primary
sensor to the desired source. In that case,
represents the impulse response of the reference sensor to the

desired source, and represents the relative impulse response
between the reference and primary sensors with respect to the
desired source.

An equivalent problem is to consider a linear time-invariant
(LTI) system, whose input and output are related by

(3)

where represents the impulse response of the system that
we want to identify, and denotes additive noise. The system
input is assumed to be the sum of a desired signal and a
noise signal as in (1). The signal is assumed statisti-
cally uncorrelated with and .

It is easy to verify that the two above-mentioned problems are
equivalent, with the following relation between the interfering
signals:

(4)

Equation (4) reveals that not only is generally correlated
with the system input (both contain ), but also depends
on the impulse response of the system. Therefore, conventional
system identification techniques, which assume that is in-
dependent of and , are inapplicable.

III. SYSTEM IDENTIFICATION USING NONSTATIONARITY

In this section, we review the system identification technique
of Shalvi and Weinstein [1]. This method heavily relies on the
assumption that is stationary, the desired signal is non-
stationary, and that the support of is finite.1

Dividing the observation interval into subintervals, such
that the support of each subinterval is sufficiently large com-
pared with the duration of , and computing for each subin-
terval the cross-PSD between and ,
we obtain from (3)

(5)

where is the Fourier transform of (i.e., the RTF of the
system), and is independent of the subinterval index
due to the stationarity of and , and the lack of correla-
tion between and . Let , , and
be estimates for , , and , respectively.
Then

(6)

where

(7)

1Note that a(t) is generally of infinite length, since it represents the impulse
response of the ratio of room transfer functions. However, in real environments,
the energy of a(t) often decays exponentially for t > T , where T depends
on the reverberation time [2]. Therefore, the finite support assumption is prac-
tically not very restrictive.
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This can be written in a matrix form as

...
...

...

...

(8)

The WLS estimate of is obtained by

(9)

where is a positive Hermitian weight matrix, denotes con-
jugate-transpose, and is required to be invertible.

Shalvi and Weinstein suggested two choices of a weight ma-
trix. One choice is given by

(10)

where is the length of subinterval , so that longer intervals
obtain higher weights. In this case, (9) reduces to

(11)

with the average operation defined by

(12)

Another choice of that minimizes the covariance of is given
by

.
(13)

In which case, (9) yields

(14)

and the variance of is given by

(15)

where is the total observation interval, and
is related to the window’s bandwidth that is preselected for the
empirical cross-spectrum estimation [1].

A major limitation of the WLS optimization in (9) is that both
the identification of and the estimation of the cross-PSD

are carried out using the same weight matrix . That
is, each subinterval is given the same weight, whether we
are trying to find an estimate for or for . How-
ever, subintervals with higher SNRs are of greater importance
when estimating , whereas the opposite is true when esti-
mating . Consequently, the optimization criterion in (9)
consists of two conflicting requirements. One is minimizing the
error variance of , which pulls the weight up to higher
values on higher SNR subintervals. The other requirement is
minimizing the error variance of , which rather implies
smaller weights on higher SNR subintervals. For instance, sup-
pose we obtain observations on a relatively long low-SNR in-
terval of length , and on a relatively short high-SNR interval
of length . Then, the variance of in (15) is
inversely proportional to the relative length of the high-SNR in-
terval, . That is, the observation includes interval
additional segments that do not contain speech (i.e., increasing

) increases the variance of . This unnatural consequence
is a result of the desire to minimize the variance of by
using larger weights on the segments that do not contain speech,
while increasing the weights on such subintervals degrades the
estimate for .

Another major limitation of RTF identification using nonsta-
tionarity is that the interfering signals are required to be sta-
tionary during the entire observation interval. The observation
interval should include a certain number of subintervals that
contain the desired signal, such that is sufficiently non-
stationary for all . Unfortunately, in case the desired signal is
speech, the presence of the desired signal in the observed signals
may be sparse in some frequency bands. This entails a very long
observation interval, thus constraining the interfering signals to
be stationary over long intervals. Furthermore, the RTF is
assumed to be constant during the observation interval. Hence,
very long observation intervals also restrict the capability of
the system identification technique to track varying (e.g.,
tracking moving talkers in reverberant environments).

IV. SYSTEM IDENTIFICATION USING SPEECH SIGNALS

In this section, we propose a system identification approach
that is adapted to speech signals. Specifically, we assume
that the presence of the desired speech signal in the time-fre-
quency domain is uncertain, and employ the speech presence
probability to separate the tasks of system identification and
cross-PSD estimation. An estimate for is derived based
on subintervals that contain speech, while subintervals that do
not contain speech are of more significance when estimating
the components of .

Let the observed signals be divided in time into overlapping
frames by the application of a window function and analyzed
using the short-time Fourier transform (STFT). Assuming the
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support of is finite, and that the support of the window
function is sufficiently large compared with the duration of ,
(3) can be written in the time-frequency domain as

(16)

where is the RTF of the system, represents the frequency
bin index , and is the frame index

. Thus, similar to (5), we have

(17)

Since the desired signal is uncorrelated with the interfering
signals and , (1) and (4) imply

(18)

Writing this equation in terms of the PSD estimates, we obtain

(19)

where denotes an estimation error. This gives us equa-
tions, which may be written in a matrix form as

...

...
...

(20)

Since the RTF represents the coupling between the
primary and reference sensors with respect to the desired
source signal, the optimization criterion for the identification
of has to take into account only short-time frames which
contain desired signal components. Specifically, let
denote an indicator function for the signal presence (i.e.,

if , and otherwise),
and let represent a diagonal matrix with the elements

on its diagonal. Then the WLS
estimate of is obtained by

(21)

where the argument has been omitted for notational simplicity.
Recognizing the product as the equivalent weight matrix,
the variance of is given by [14, p. 405]

(22)

where is the covariance matrix of . The matrix that
minimizes the variance of therefore, satisfies [14, prop. 8.2.4]

(23)

This choice of yields an asymptotically unbiased estimator

(24)

which is known as the minimum variance or Markov estimator.
Substituting (23) into (22), we obtain the variance of the re-
sulting estimator

(25)

The elements of are asymptotically given by (see Ap-
pendix I)

if
otherwise.

(26)

Assuming that the interfering signals and are sta-
tionary, (4) implies that is independent of the frame
index (in practice, as demonstrated in Section VI, it suffices
that the statistics of the interfering signals is slowly changing
compared with the statistics of the desired signal). Denoting by

an average operation over the frame index

(27)

and substituting (26) into (24) and (25), we obtain

(28)

(29)

Note that for a given frequency-bin index , only frames that
contain speech influence the values of
and . In contrast with the nonstationarity method,
including in the observation interval additional segments that
do not contain speech does not increase the variance of for
any . However, the proposed identification approach requires
an estimate for , i.e., identifying which time-frequency
bins contain the desired signal. In practice, the speech
presence probability is estimated from the noisy signals
[10], and an estimate for the indicator function is obtained by

if
otherwise

(30)

where is a predetermined threshold.
The parameter controls the trade-off between the de-
tection and false alarm probabilities, which are defined
by and

. A smaller value of increases
the detection probability and allows for more short-time frames
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to be involved in the estimation of . However, a smaller value
of also increases the false alarm probability, which may
cause a mis-modification of due to frames that do not contain
desired speech components.

For the comparison with the nonstationarity method, we re-
place the subinterval index in (15) with the frame index ,
and normalize the window function so that where
is the frame’s length. Accordingly, the variance of obtained
by using the nonstationarity method is

(31)

Consequently, the ratio between the variance obtained by the
proposed method and that obtained by the nonstationarity
method is given by

(32)

Let denote the a priori SNR at the
primary sensor. Then approximating

(33)

and substituting into (32), we
obtain (see Appendix II)

(34)

Thus, as long as (33) is satisfied (i.e., desired speech compo-
nents are sufficiently detected), the variance of obtained by
using the proposed method is smaller than that obtained by using
the nonstationarity method. Additionally, (29) implies that the
contribution of a given time-frequency bin to the quality
(error variance minimization) of the proposed estimator depends
on the desired signal power contained in that bin, . The
higher the SNR is, the fewer the number of frames required
for setting a certain upper limit to the error variance. Whereas
with the nonstationarity method, regardless of the SNR, a large
number of frames is necessary to account for the nonstation-
arity of . Furthermore, in the nonstationarity method,
a fundamental assumption is that the interfering signals remain
stationary during the entire observation interval. This is a very
restrictive assumption, particularly in view of the generally long
observation interval required for obtaining a reliable esti-
mate by using the nonstationarity method. On the other hand in
the proposed method, not only a shorter observation interval suf-
fices, but also the statistical properties of the interfering signals
are not required to be time-invariant during time-frequency win-
dows that do not contain desired signal components. Accord-
ingly, in the case of a time-varying system, a faster convergence

and higher reliability of the system identification is achieved by
using the proposed method.

V. IMPLEMENTATION

Our algorithm requires estimates for , and
. An estimate for is obtained by applying a

first-order recursive smoothing to the cross-periodogram of the
observed signals, . Specifically

(35)

where the smoothing parameter determines
the equivalent number of cross-periodograms that are averaged,

. Typically, speech periodograms are
recursively smoothed with an equivalent rectangular window of

seconds length, which represents a good compromise
between smoothing the noise and tracking the speech spectral
variations [15]. Therefore, for a sampling rate of 8 kHz, a STFT
window length of 256 samples and a frame update step of 128
samples, we use

.
To obtain an estimate for the PSD of the desired signal, we

first estimate the STFT of the desired signal by using the op-
timally modified log-spectral amplitude (OM-LSA) estimation
technique [10]. Subsequently, the periodogram of the desired
signal is recursively smoothed

(36)

where denotes the log-spectral amplitude gain function
[16], is the speech presence probability [10], and is
the minimal spectral gain. The cross-PSD of the interfering sig-
nals, and , is estimated by using the minima controlled
recursive averaging (MCRA) approach [11], [12]. Specifically,
past spectral cross-power values of the noisy observed signals
are recursively averaged with a time-varying frequency-depen-
dent smoothing parameter

(37)

where is the smoothing parameter ,
and is a factor that compensates the bias when the
desired signal is absent [12]. The smoothing parameter is deter-
mined by the signal presence probability, , and a constant

that represents its minimal value

(38)

The value of is close to 1 when the desired signal is present
to prevent the noise cross-PSD estimate from increasing as a
result of signal components. It decreases linearly with the prob-
ability of signal presence to allow a faster update of the noise
estimate. The value of compromises between the tracking
rate (response rate to abrupt changes in the noise statistics) and
the variance of the noise estimate. Typically, in case of high
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TABLE I
SUMMARY OF ONLINE SPEECH-BASED SYSTEM IDENTIFICATION ALGORITHM

levels of nonstationary noise, a good compromise is obtained
by [12].

Substituting the above spectral estimates into (28) we obtain
an estimate for . Alternatively, a recursive online solution
to (20) based on the normalized LMS algorithm [17] is given by

(39)

where

(40)

represents the estimation error. Accordingly, the update of
in (39) is carried out only when the time-frequency

bin contains some desired signal energy (i.e., when
). The implementation of the online system identifi-

cation algorithm is summarized in Table I.

VI. EXPERIMENTAL RESULTS

In this section, the proposed system identification approach
is compared to the nonstationarity method in various noise
environments. The performance evaluation includes simulated
stationary and nonstationary white Gaussian noise (WGN),
as well as pseudo-stationary and nonstationary noise signals
recorded in a car environment. A quantitative comparison
between the system identification methods is obtained by
evaluating the signal blocking factor (SBF), defined by

(41)

where is the energy contained in the clean speech
signal, and is the energy contained in the leakage
signal

(42)

The leakage signal represents the difference between the re-
verberated clean signal at the reference sensor and its estimate

given the desired signal at the primary sensor. It
has a major effect on the amount of distortion introduced by
the transfer function GSC [4]. The SBF measure is associated
with the capability to block the desired signal and produce a
noise-only signal by computing .

The first experiment was performed on a speech signal (fe-
male speaker) sampled at 8 kHz. Similar to the experiment in
[1], the noise is a stationary zero-mean Gaussian process
whose average power is lower than the average power of the
speech by a factor of 2.5 . The impulse response
of the reference sensor to the desired signal is

where is the sampling period. In addition, the ref-
erence sensor noise is generated by

where

Fig. 1 shows the clean speech signals at the primary and ref-
erence sensors, and the observed noisy signals.

We have applied the nonstationarity-based system identifica-
tion algorithm (14) to a 4-s observation interval (32 000 sam-
ples) that was arbitrarily divided into disjoint subintervals of
128 samples length. As is suggested in [2], only subintervals
in which speech is active (SNR in the subinterval is greater than
0 dB) were taken into account. The leakage signal is plotted
in Fig. 2(a). The resultant SBF is 9.1 dB.

Fig. 2(b) and (c) show the leakage signals obtained by using
the proposed algorithms. Offline speech-based system identifi-
cation [see (28)] yields a SBF of 18.5 dB, whereas the online
speech-based system identification [see (39)] yields a SBF of
13.9 dB. Both algorithms achieve a significantly higher SBF
than the nonstationarity-based algorithm.

In the second experiment, a nonstationary WGN was
simulated by increasing the stationary WGN at a rate of 6 dB/s
for a period of 2 s, and then decreasing it back to the original
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Fig. 1. Speech waveforms. (a) Clean signal s(t) at the primary sensor: “draw every outer line first, then fill in the interior.” (b) Reverberated clean signal a(t)�s(t)
at the reference sensor. (c) The observed noisy signal at the primary sensor (SNR = 4:0 dB); (d) the observed noisy signal at the reference sensor (SNR =
�0:1 dB).

Fig. 2. Signal leakage r(t) in stationary noise environment. (a) Nonstationarity-based system identification (SBF = 9:1 dB). (b) Speech-based system
identification (SBF = 18:5 dB). (c) Online speech-based system identification (SBF = 13:9 dB).

Fig. 3. Signal leakage r(t) in nonstationary noise environment. (a) Nonstationarity-based system identification (SBF = 4:9 dB). (b) Speech-based system
identification (SBF = 13:8 db). (c) Online speech-based system identification (SBF = 11:5 db).

level at the same rate. We used again the same speech signal,
and the same impulse responses, and , of the refer-
ence sensor to the desired signal and the primary sensor noise
( at the primary sensor). The leakage sig-
nals produced by the above-mentioned algorithms are shown

in Fig. 3. As in the stationary noise environment, the proposed
speech-based algorithms achieve significantly higher SBFs than
the nonstationarity-based algorithm. Furthermore, the perfor-
mance degradation of the proposed algorithms, when compared
to the stationary noise case, is less substantial than that of the
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TABLE II
AVERAGE SIGNAL BLOCKING FACTOR (SBF) UNDER VARIOUS CAR NOISE

CONDITIONS, OBTAINED BY USING THE NONSTATIONARITY-BASED

METHOD AND THE SPEECH-BASED (PROPOSED) METHOD

nonstationarity-based algorithm. This is due to the fact that in
the proposed algorithms the noise cross-PSD estimate is contin-
uously updated during speech presence and absence, whereas in
the nonstationarity-based algorithm the noise is assumed sta-
tionary and the system identification is entirely based on the
nonstationarity of the desired signal alone.

In the third experiment, two microphones with 10 cm spacing
are mounted in a car on the visor. Clean speech signals are
recorded at a sampling rate of 8 kHz in the absence of back-
ground noise (standing car, silent environment). Car noise sig-
nals are recorded while the car speed is about 60 km/h, and the
window next to the driver is either closed or slightly open (about
5 cm; the other windows remain closed). The noise PSD is
pseudo-stationary in the former case, while varies substantially
in the latter case due to wind blows and passing cars. The input
microphone signals are generated by mixing the speech and
noise signals at various SNR levels in the range .

Table II shows experimental results of the average SBF ob-
tained under various car noise conditions using the competing
system identification algorithms. Clearly, the proposed system
identification method is considerably more efficient than the
nonstationarity-based method even in the pseudo-stationary
noise environment. The rationale is that subintervals with low
SNR are more useful for noise estimation, whereas subinter-
vals with high SNR are more useful for system identification.
Therefore, by weighting the subintervals for noise estima-
tion differently than the weighting for system identification,
improved performance is achieved. Moreover, the proposed
algorithm is less sensitive to variations in the noise statistics
in case the noise is nonstationary. For a given input SNR, the
performance of the proposed algorithm in a nonstationary noise
environment might be even slightly better than that obtained
in a stationary noise environment. This is related to the fact
that for a given input SNR and nonstationary noise, there are
necessarily subintervals where the instantaneous noise power is
lower than its average, and these subintervals are given higher
weights in the system identification process. On the contrary,
the performance of the nonstationarity-based algorithm, which
is based on the nonstationarity of the desired signal alone,
essentially is impaired in nonstationary noise environments.

VII. CONCLUSION

We have proposed a robust system identification approach
for the relative transfer function between sensors in response to
speech signals. The optimization criterion takes into account

only time-frequency bins which contain the desired speech
components. The auto-PSD of the desired signal is estimated
by recursively smoothing the log-spectral amplitude estimate of
the signal. The cross-PSD of the interfering signals is estimated
by applying a time-varying frequency-dependent recursive
smoothing to the cross-PSD of the observed signals, and com-
pensating the bias in accordance with the MCRA method. We
showed that the proposed minimum variance WLS estimate for
the system’s transfer function yields a smaller error variance
than that obtained by the nonstationarity method. Generally
shorter observation intervals are required for obtaining a re-
liable system identification, and also the interfering signals
are not required to be stationary during absence of the desired
signal. In the case of a time-varying system, e.g., moving talkers
in hands-free communication scenarios, the proposed method
allows to faster and more reliably track the variations. Using
the proposed method for the RTF identification, as part of the
transfer-function generalized sidelobe canceller (TF-GSC) [2],
[4], essentially leads to improved adaptation of the blocking
matrix and the noise canceller, and facilitates multichannel
signal detection and postfiltering techniques, which employ the
transient power ratio between the beamformer output and the
reference signals [6], [18], and [19].

APPENDIX I
ASYMPTOTIC COVARIANCE OF

From (18) and (19), we have

(43)

Using the relations

we obtain

(44)

Cross-spectrum estimation by using the cross-periodogram
(e.g., [14, sec.5.4]) implies

(45)

Since we assume that the overlap between successive windows
of the short-time Fourier transform is small enough, such that
observations in the time-frequency domain associated with dif-
ferent frames can be regarded as statistically independent, we
have

.
(46)
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APPENDIX II
DERIVATION OF (34)

By (32),

(47)

where, for notational simplicity, the arguments and
are omitted. Denoting by the a priori SNR
at the primary sensor, and using and

, together with the assumption that
is stationary ( is independent of the frame index ), we

have

(48)
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