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Abstract—In this paper we propose two multichannel blind
deconvolution algorithms for the restoration of two-dimensional
(2D) seismic data. Both algorithms are based on a 2D reflectiv-
ity prior model, and use iterative multichannel deconvolution
procedures which deconvolve the seismic data, while taking
into account the spatial dependency between neighboring traces.
The first algorithm employs in each step a modified maximum
posterior mode (MPM) algorithm which estimates a reflectivity
column from the corresponding observed trace using the estimate
of the preceding reflectivity column. The second algorithm takes
into account estimates of both the preceding and subsequent
columns in the estimation process. Both algorithms are applied to
synthetic and real data and demonstrate better results compared
to those obtained by a single-channel deconvolution method.
Expectedly, the second algorithm which utilizes more information
in the estimation process of each reflectivity column is shown to
produce better results than the first algorithm.

Index Terms—Reflectivity estimation, multichannel deconvo-
lution, seismic signals, Markov Chain Monte Carlo, maximum
posterior mode method.

I. I NTRODUCTION

Reflection seismology is a common method in oil and
natural gas exploration, in which a picture of the subsurface
sedimentary layers of the earth is generated from surface
measurements. Seismic data is obtained by transmitting an
acoustic wave into the ground and measuring the reflected
energy resulting from impedance discontinuities. The seismic
pulse (wavelet) is time-varying, however here we make the
usual assumption that it is approximately time-invariant for the
received section of the seismic data. Therefore, the observed
seismic data can be modeled as a convolution between a two-
dimensional (2D) reflectivity section and the wavelet, which
has been further degraded by additive noise. Deconvolution
is used to minimize the effect of the wavelet and produce an
increased resolution estimate of the reflectivity, where closely
spaced reflectors can be identified.

Many methods utilize the fact that the wavelet is a one-
dimensional (1D) vertical signal and break the multichannel
deconvolution problem into independent vertical 1D decon-
volution problems. A 1D reflectivity column appears in the
vertical direction as a sparse spike train where each spike
(reflector) corresponds to a boundary between two adjacent
homogenous layers. Mendel et al. [1], [2] use an autore-
gressive moving average model for the wavelet and model
the reflectivity as a Bernoulli-Gaussian (BG) process [3], [4].
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For each sample of the reflectivity sequence, a Bernoulli
variable characterizes the presence or absence of a reflector,
and the amplitude of the reflector follows a Gaussian dis-
tribution given the Bernoulli variable is nonzero. They use
second order statistics methods to estimate the wavelet and
recover the reflectivity by maximum likelihood estimation.
The maximum likelihood criterion is maximized using the
Single Most Likely Replacement (SMLR) algorithm [2], which
improves the likelihood by iteratively choosing a reflectivity
sequence that varies at each iteration by only one sample.
Kaaresen and Taxt [5] introduced an algorithm which al-
ternately estimates a finite impulse response wavelet and a
Bernoulli-Gaussian reflectivity. The wavelet is estimatedusing
a least-squares fit and the reflectivity is recovered using the
iterated window maximization algorithm [6]. This algorithm
is similar to the SMLR, but produces better results since
it updates many samples at each step instead of only one.
Cheng, Chen and Li [7] simultaneously estimate a Bernoulli-
Gaussian reflectivity and a moving average wavelet using a
Bayesian framework in which prior information is imposed
on the seismic wavelet, BG reflectivity parameters and the
noise variance. These parameters along with the reflectivity
sequence are estimated using a Markov Chain Monte Carlo
(MCMC) method called a Gibbs sampler [8], [9]. Rosec
et al. [10] use a moving average wavelet and model the
reflectivity sequence as a mixture of Gaussian distributions
[11]. They propose two parameter estimation methods. The
first method performs maximum likelihood estimation and use
the stochastic expectation maximization (SEM) algorithm [12],
[13] to maximize the likelihood criterion. The second method
performs a Bayesian estimation resembling the method of
Cheng et al. [7]. The estimated parameters are employed by the
maximum posterior mode (MPM) algorithm [14], which uses
realizations of the reflectivity simulated by a Gibbs sampler
to estimate the reflectivity.

Application of 1D restoration methods to 2D seismic data is
clearly suboptimal, as it does not take into account the correla-
tion between neighboring columns of the seismic data (traces),
which stems from the presumed continuous and roughly
horizontal structure of the earth layers. Idier and Goussard
[15] proposed two versions of a multichannel deconvolution
method which takes into account the stratification of the layers.
The two versions are based on two 2D reflectivity models:
Markov-Bernoulli-Gaussian (MBG) I and II. Each model is
composed of a Markov-Bernoulli random field (MBRF) [16],
which controls the geometrical characteristics of the reflectiv-
ity, and an amplitude field, defined conditionally to the MBRF.
The deconvolution is carried out using a suboptimal maximum
a posteriori (MAP) estimator, which iteratively recovers the
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columns of the reflectivity section. Each reflectivity column is
estimated from the corresponding observed trace and the esti-
mate of the previous reflectivity column, using an SMLR-type
method. Kaaresen and Taxt [5] also suggest a multichannel
version of their blind deconvolution algorithm, which accounts
for the dependencies across the traces. However, this method
encourages spatial continuity of the estimated reflectors using
an optimization criterion which penalizes non-sparse and non-
continuous configurations. Heimer, Cohen and Vassiliou [17],
[18] introduced a multichannel blind deconvolution method
which combines the algorithm of Kaaresen and Taxt with
dynamic programming [19], [20] to find continuous paths of
reflectors across the channels of the reflectivity section. How-
ever, layer discontinuities are not taken into account by this
method. Heimer and Cohen [21] also proposed a multichannel
blind deconvolution algorithm which is based on the MBG I
reflectivity model. They first define a set of reflectivity states
and legal transitions between configurations of neighboring
reflectivity columns. Then they apply the Viterbi algorithm
[22] for finding the most likely sequences of reflectors that are
connected across the reflectivity section by legal transitions.

In this paper we propose two multichannel blind deconvo-
lution algorithms. Both algorithms are based on the MBG I
reflectivity model and iteratively deconvolve the seismic data,
while taking into account the spatial dependency between
neighboring traces. The first algorithm employs in each step
a modified version of the maximum posterior mode (MPM)
algorithm which estimates the current reflectivity column from
the corresponding observed trace and the estimate of the
preceding reflectivity column. The modified MPM algorithm
is a two step procedure. First, it employs a Gibbs sampler to
simulate realizations of the MBRF and amplitude variables by
iteratively sampling from their conditional distributions, which
depend on the estimate of the preceding reflectivity column.
Then, a decision step takes place in which the MBRF and
amplitude variables are estimated from their realizations. The
second algorithm is an extension of the first. It takes into
account the dependency between each reflectivity column and
both the preceding andsubsequent neighbors, in the decon-
volution process. It employs in each step a further modified
maximum posterior mode algorithm which simultaneously
estimates both the current and subsequent reflectivity columns.
These columns are determined from the corresponding ob-
served traces and the estimate of the preceding reflectivity
column. Again, the estimation is carried out in two steps.
First, a Gibbs sampler is employed to simulate realizations
of the MBRF and amplitude variables corresponding to the
current and subsequent reflectivity columns, by iteratively
sampling from their conditional distributions. Then, the MBRF
and amplitude variables are determined from their realizations
in a decision step. Out of the two obtained estimates, only
the estimate of the current reflectivity column is kept. The
estimate of the subsequent column is discarded, as this column
will be determined from estimates of both its preceding and
subsequent neighbors in the next step.

Both multichannel deconvolution algorithms are applied to
synthetic and real data, and demonstrate better results com-
pared to those obtained by the single-channel deconvolution

method of Rosec el al. [10]. The second algorithm which
utilizes more information in the estimation process of each
reflectivity column is shown to produce better results than the
first algorithm.

The paper is organized as follows: In Section II we for-
mulate the multichannel blind deconvolution problem. Then
we describe the MBG I reflectivity model and the parameter
estimation method. In Section III and IV we introduce the
first and second proposed algorithms, respectively. In section
V we present simulation and real data results demonstrating
the performance of both proposed algorithms compared to
a single-channel deconvolution. We summarize the paper in
section VI.

II. PROBLEM FORMULATION AND REFLECTIVITY MODEL

A. Problem Formulation

Multichannel blind seismic deconvolution aims at restoring
a 2D reflectivity section and an unknown seismic wavelet
from a 2D observed seismic data. The seismic waveleth =
[h(1), ..., h(Nh)]

T is a 1D vertical vector of lengthNh, which
is assumed to be invariant in both horizontal and vertical
directions. The reflectivity sectionR is a matrix of sizeNr×J
and the 2D seismic dataY is a matrix of sizeNy × J , where
Ny = Nh + Nr − 1. Y can be modeled as the following
noise-corrupted convolution product:

Y = h ∗R+W (1)

whereW is a matrix of sizeNy×J which denotes an additive
white Gaussian noise independent ofR with zero mean and
varianceσ2

w.
We use the MBG I reflectivity model so that the stratification

of the layers of the Earth will be taken into account in the
deconvolution process. Since the deconvolution problem is
blind, i.e.,h, σ2

w and the MBG I model parameters are un-
known, a suitable estimation method needs to be derived. We
next describe the MBG I reflectivity model and subsequently
propose a method for estimating the missing parameters.

B. Prior Model

The Markov-Bernoulli-Gaussian I reflectivity model [15] is
a 2D extension of the 1D Bernoulli-Gaussian representation.
It is composed of a Markov-Bernoulli random field, which
controls the geometrical characteristics of the reflectivity, and
an amplitude field, defined conditionally to the MBRF. The
MBRF comprises two types of binary variables: location
variables and transition variables. The location variables, set in
a Nr × J matrix Q, indicate the position of layer boundaries.
Let qk,j denote the location variable in the(k, j) position of
Q. Then qk,j is set to one if a reflector exists in the(k, j)
position of R, and is set to zero otherwise. The transition
variables, set in threeNr × J − 1 matricesT/, T− andT\,
determine whether adjacent location variables belong to the
same layer boundary or not. Lett/k,j , t−k,j , t

\
k,j denote the

transition variables in the(k, j) positions ofT/, T− andT\,

respectively. Thent/k,j is set to one ifqk,j andqk−1,j+1 belong
to the same layer boundary and to zero otherwise. Similarly



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. Y, MONTH 2010 3

(1,1)

k

j /
,k jt

,k jt −

\
,k jt

,k jq

1, 1k jq − +

, 1k jq +

1, 1k jq + +

1, 1k jq − −

, 1k jq −

1, 1k jq + −

\
1, 1k jt − −

, 1k jt − −

/
1, 1k jt + −

(a) (b)

Fig. 1: Location and transition variables: (a) Layer boundaries repre-
sentation. (b) Location variableqk,j and other location and transition
variables affected by it.

t−k,j and t
\
k,j are set to one ifqk,j belongs to the same layer

boundary asqk,j+1 and qk+1,j+1, respectively, and to zero
otherwise. Therefore,t/k,j , t−k,j and t

\
k,j determine whether

layer boundaries whose orientation is diagonally ascending,
horizontal, and diagonally descending, respectively, exist in
the (k, j) position ofQ. Figure. 1(a) shows a representation
of layer boundaries and their orientation in several locations
using location and transitions variables. Gray squares denote
the presence of a layer boundary and arrows facing upward,
rightward and downward correspond to positions in which
t
/
k,j , t

−
k,j and t

\
k,j , respectively, are set to one. Figure. 1(b)

shows the location variableqk,j , all the location variables
which may be on the same boundary with it, and the transition
variables between them.

Let p (·) denote a probability distribution function. Then the
MBRF has the following properties:

1) Separability property:
p
(
t
/
k,j , t

−
k,j , t

\
k,j

)
= p

(
t
/
k,j

)
p
(
t−k,j

)
p
(
t
\
k,j

)
.

2) The jth columns ofQ, T/, T− andT\, denotedqj ,

t
/
j , t−j and t

\
j , respectively, are white and Bernoulli

distributed marginally from the rest of the field.
3) The characteristic parameters of the Bernoulli distribu-

tions are given by:
λ = p (qk,j = 1), µ/ = p

(
t
/
k,j = 1

)
,

µ− = p
(
t−k,j = 1

)
, µ\ = p

(
t
\
k,j = 1

)
.

4) Horizontal symmetry: p
(
qk,j , t

/
k,j , t

−
k,j , t

\
k,j

)
=

p
(
qk,j , t

/
k+1,j−1, t

−
k,j−1, t

\
k−1,j−1

)
.

5) Isolated transition variables cannot be set to one:
p
(
t
/
k,j = 0, t−k,j = 0, t

\
k,j = 0 |qk,j = 0

)
= 1.

6) Discontinuities along layer boundaries are possible:
p
(
qk,j = 1

∣∣∣t/k+1,j−1 = 0, t−k,j−1 = 0, t
\
k−1,j−1 = 0

)
=

ε.
7) λ is related to

{
µ/, µ−, µ\, ε

}
according to:λ = 1 −(

1− µ/
)
(1− µ−)

(
1− µ\

)
(1− ε) .

We now turn to the amplitude fieldR. The MBG I
model assumes that the amplitudes of the reflectors are
independent in the vertical direction and that marginally
from the rest of the field, the amplitude of each reflector
is normally distributed with zero mean and variance equal
to σ2

r . The conditional probability of the amplitude field

of the reflectivity p
(
R
∣∣T/, T−, T\, Q

)
is assumed to

have a first-order Markov chain structure, and each reflec-
tor is assumed to be correlated only with reflectors lo-
cated on the same boundary. Letrj denotes thejth col-
umn of R, and let rk,j denote thekth reflector in rj .
Then the correlation betweenrk,j and reflectors in previous
columns depends on the local geometry of the layers and
is described throughp

(
rk,j

∣∣∣qk,j , t/j−1, t
−
j−1, t

\
j−1, rj−1

)
. Let

t
/
k+1,j−1 (respectively,t−k,j−1, t

\
k−1,j−1) be set to one, then

we will further refer to the reflectorrk,j as a successor
of rk+1,j−1 (respectivelyrk,j−1, rk−1,j−1) and symmetri-
cally rk+1,j−1 (respectivelyrk,j−1, rk−1,j−1) will be referred
to as a predecessor ofrk,j . The conditional probabilities

p
(
rk,j

∣∣∣qk,j , t/j−1, t
−
j−1, t

\
j−1, rj−1

)
can be separated into

four cases which depend on the existence and uniqueness of
successors and predecessors:

1) If qk,j = 0 then there is no reflector at position(k, j),
andrk,j = 0.

2) If qk,j = 1, and if rk,j is the unique successor of
a unique predecessorrk+dk,j−1 (−1 ≤ dk ≤ 1) , then
rk,j is sampled from a first-order autoregressive (AR)
process, conditionally tork+dk,j−1. This case corre-
sponds to interactions along a single layer boundary.
Let a ∈ [0, 1] control the degree of correlation between
reflector amplitudes along the same boundary and let
wr ∼ N

[
0,
(
1− a2

)
σ2
r

]
, then the AR process is defined

by
rk,j = ark+dk,j−1 + wr. (2)

3) If qk,j = 1 and if rk,j has no predecessor, thenrk,j is
sampled from the basic Gaussian distributionN

(
0, σ2

r

)
.

4) If qk,j = 1 and if rk,j has more than one predecessor,
or symmetrically whenrk,j is not a unique predecessor,
thenrk,j is sampled from the basic Gaussian distribution
N
(
0, σ2

r

)
.

Before the deconvolution can be performed, the parameters
of the 2D reflectivity model described above need to be
estimated from the data, along with the seismic wavelet and
the noise variance. We next describe the parameter estimation
method.

C. Parameter estimation

Our goal is to estimate the parametersθ = (h, λ, σr , σw)
and the MBG I parametersθMBG =

(
a, µ/, µ−, µ\, ε

)
from

the observed traceY. The parametersθ can be estimated using
the stochastic expectation maximization algorithm of Rosec et
al. [10]. Letyj denote thejth trace of the seismic data. Then
we apply the SEM algorithm to each of the tracesyj and ob-
tain from each trace an estimateθ̂j . Since the parametersθ are
assumed common to all the seismic traces, the final estimate
θ̂ =

(
ĥ, λ̂, σ̂r, σ̂w

)
is obtained by averaging the estimates

θ̂j . We now proceed to estimate the parametersθMBG by
employing the parameterŝθ to deconvolve each of the traces
yj using the maximum posterior mode algorithm of Rosec et
al. [10]. Subsequently, we remove all the isolated reflectors
from the obtained reflectivity estimate and term the result



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. Y, MONTH 2010 4

R̂c
TBT . Letting I/, I− andI\ denote the number of positions

in R̂c
TBT in which the orientation of the layer boundaries is

ascending, horizontal and descending, respectively, we propose
the following estimators:

µ̂/ =
I/

(J − 1)Nr

µ̂− =
I−

(J − 1)Nr

µ̂\ =
I\

(J − 1)Nr

ε̂ = 1− (1− λ̂)/(1− µ̂/)/(1− µ̂−)/(1− µ̂\). (3)

For the estimation ofa, we use a heuristic estimator, which
calculates the average attenuation ratio between neighboring
reflectors. LetIl be the number of layer boundaries in̂Rc

TBT ,
and letlm = [lm(1), ..., lm(Lm)]

T be the reflectors of themth
boundary arranged in a vector of lengthLm. Note that when
R̂c

TBT contains layer boundaries which split or merge, each
section of a boundary before and after the node where the
splitting or merging occurs, is treated as a separate boundary
layer. Then:

â =
1

Il

Il∑

m=1

[
1

Lm − 1

Lm−1∑

k=1

min

(
lm (k + 1)

lm (k)
,

lm (k)

lm (k + 1)

)]
.

(4)
Once all the missing parameters are known, multichannel

deconvolution can be performed. We next describe the first
proposed multichannel deconvolution procedure.

III. R ECURSIVE CAUSAL MULTICHANNEL BLIND

DECONVOLUTION

In this section we propose a multichannel blind deconvo-
lution algorithm, which iteratively deconvolves the seismic
data, while taking into account the spatial dependency between
neighboring traces. The proposed method is based on the MBG
I reflectivity prior model and employs the parameter estimation
method proposed in the previous section. We next describe the
deconvolution scheme of the proposed algorithm.

A. Deconvolution Scheme

The MAP estimator of the matrices
{
T/,T−,T\,Q

}
,

comprising the MBRF, and the amplitude fieldR is:
(
T̂/, T̂−, T̂\, Q̂, R̂

)
=

argmax
T/,T−,T\,Q,R

p
(
T/,T−,T\,Q,R |Y

)
. (5)

Obtaining the exact MAP solution is very difficult, even when
the efficient Viterbi algorithm is used, because of the large
dimension of the state-space of

{
T/,T−,T\,Q

}
. However,

Idier and Goussard [15] showed that the a posteriori likelihood
p
(
T/,T−,T\,Q,R |Y

)
can be expressed as:

p
(
T/,T−,T\,Q,R |Y

)
∝

p (q1, r1,y1)

J∏

j=2

p (tj−1,qj , rj ,yj |qj−1, rj−1 ) (6)

where tj−1 =
{
t
/
j−1, t

−
j−1, t

\
j−1

}
. This formula led them

to propose the following suboptimal iterative maximization
procedure:

(1) First column: (r̂1, q̂1) = argmax
r1,q1

p (q1, r1,y1) (7)

(2) For j ∈ [2, J ] :
(
r̂j , q̂j , t̂j−1

)
=

argmax
rj ,qj,tj−1

p (rj ,qj , tj−1,yj |q̂j−1, r̂j−1 ) (8)

where SMLR-type algorithms were used for the optimization
of the partial criteria (7) and (8). In the first stepr1 andq1 are
determined from the first observed tracey1. In each following
step, the reflectivity columnrj , j ∈ [2, J ] and corresponding
hidden binary vectorstj−1,qj are determined from the current
observed traceyj and the estimates ofrj−1 andqj−1, obtained
in the previous step. This maximization procedure is subopti-
mal since forj > 1 each partial criterion is maximized only
with respect torj ,qj , tj−1 and all the previously estimated
quantities remain unchanged. Also, the determination ofrj is
based on observations only up toyj and subsequent columns
of the observed data, which are very informative aboutrj ,
are not taken into account in its estimation. On the other
hand, this method is much simpler than global maximization
of p

(
T/,T−,T\,Q,R |Y

)
, and does take into account the

dependency between neighboring reflectivity columns, unlike
single-channel deconvolution methods.

Here we use a similar iterative maximization procedure,
which employs MCMC methods for the optimization of its
partial criteria. We first rewrite (7) and (8) as:

(1) First column: (r̂1, q̂1) = argmax
r1,q1

p (r1,q1 |y1 ) (9)

(2) For j ∈ [2, J ] :
(
r̂j , q̂j , t̂j−1

)
=

argmax
rj ,qj,tj−1

p (rj ,qj , tj−1 |yj , r̂j−1, q̂j−1 ) (10)

The first partial criterion can be optimized using the maxi-
mum posterior mode algorithm presented by Rosec et al. [10].
Finding an optimal solution for the maximization problem (10)
is a very hard, since it requires examination of all the possible
configurations ofqj , tj−1, whose number ranges from2Nr

to 8Nr . Therefore, we apply instead a modified version of
the MPM algorithm. This algorithm estimates the vectors
rj ,qj , tj−1 from realizations simulated by a Gibbs sampler,
described next.

B. Gibbs Sampler

The Gibbs sampler generates samples ofrj ,qj , tj−1

from the joint distribution p (rj ,qj , tj−1 |yj , r̂j−1, q̂j−1 ) .
Let v−k,j denote a vectorvj without its k’th sample, i.e.
v−k,j = [v1,j , ..., vk−1,j , vk+1,j , ..., vNr ,j]

T . Also, let B (α)
denote a Bernoulli distribution with parameterα. Then instead
of sampling directly from the joint distribution, the Gibbs
sampler iteratively samples from the conditional distributions:
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• p
(
t
/
k,j−1

∣∣∣rj ,qj , t
/
−k,j−1, t

−
j−1, t

\
j−1, r̂j−1, q̂j−1

)

∼ B
(
µ
/
k,j−1

)

• p
(
t−k,j−1

∣∣∣rj ,qj , t
/
j−1, t

−
−k,j−1, t

\
j−1, r̂j−1, q̂j−1

)

∼ B
(
µ−
k,j−1

)

• p
(
t
\
k,j−1

∣∣∣rj ,qj , t
/
j−1, t

−
j−1, t

\
−k,j−1, r̂j−1, q̂j−1

)

∼ B
(
µ
\
k,j−1

)

• p (rk,j , qk,j |yj , r−k,j ,q−k,j , tj−1, r̂j−1 )

∼ λb
k,jN

(
mb

k,j , V
b
k,j

)
+
(
1− λb

k,j

)
δ (rk,j)

where the derivation ofµ/
k,j−1, µ

−
k,j−1, µ

\
k,j−1, λ

b
k,j , m

b
k,j and

V b
k,j can be found in subsections I and II of the appendix.
For the simulation of the vectorsrj , qj , andtj−1, the Gibbs

sampler follows these steps iteratively:
1) Initialization: choice ofq(0)

j , r
(0)
j andt(0)j−1.

2) For i = 1, ..., I
For k = 1, ..., Nr

• computeµ/
k,j−1 using (36) and simulate

t
/ (i)
k,j−1 ∼ B

(
µ
/
k,j−1

)

• computeµ−
k,j−1 using (37) and simulate

t
− (i)
k,j−1 ∼ B

(
µ−
k,j−1

)

• computeµ\
k,j−1 using (38) and simulate

t
\ (i)
k,j−1 ∼ B

(
µ
\
k,j−1

)

• computeλb
k,j using (26) and simulate

q
(i)
k,j ∼ B

(
λb
k,j

)

• simulater(i)k,j ∼ N
(
mb

k,j , V
b
k,j

)
if q

(i)
k,j = 1, other-

wise r
(i)
k,j = 0.

C. MPM algorithm

We estimate each columnrj , 1 < j ≤ J using a modified
version of the MPM algorithm. This algorithm employs the
Gibbs sampler described above to generate realizations of
rj ,qj and tj−1 drawn fromp (rj ,qj , tj−1 |yj , r̂j−1, q̂j−1 ).
The Gibbs sampler performsI0 iterations until it reaches a
steady state period. The samples

(
r
(i)
j ,q

(i)
j , t

(i)
j−1

)
produced

in the following iterationsI0 < i ≤ I are used to first estimate
each ofqk,j , t

/
k,j−1, t

−
k,j−1, t

\
k,j−1, and then determinerk,j

conditionally to the estimate ofqk,j . The modified MPM
algorithm follows these steps iteratively:

1) For i = 1, ..., I simulate
(
r
(i)
j ,q

(i)
j , t

(i)
j−1

)
using the

Gibbs sampler.
2) For k = 1, ..., Nr

• detection step:

t̂
/
k,j−1 =





1, if 1
I−I0

I∑
i=I0+1

t
/ (i)
k,j−1 > 0.5

0, otherwise
,

t̂−k,j−1 =





1, if 1
I−I0

I∑
i=I0+1

t
− (i)
k,j−1 > 0.5

0, otherwise
,

t̂
\
k,j−1 =





1, if 1
I−I0

I∑
i=I0+1

t
\ (i)
k,j−1 > 0.5

0, otherwise
,

q̂k,j =





1, if 1
I−I0

I∑
i=I0+1

q
(i)
k,j > 0.5

0, otherwise
• estimation step

r̂k,j =





I
∑

i=I0+1

q
(i)
k,jr

(i)
k,j

I
∑

i=I0+1

q
(i)
k,j(k)

, if q̂k,j = 1

0, otherwise

3) r̂j = [r1,j , ..., rNr ,j]
T .

IV. RECURSIVE NON-CAUSAL MULTICHANNEL BLIND

DECONVOLUTION

The algorithm proposed in this section is an extended
version of the first proposed algorithm, and uses the same
reflectivity model and parameter estimation method. However,
it takes into account the dependency between each reflectivity
column and both the preceding and subsequent neighbors, in
the deconvolution process. We next describe the deconvolution
scheme of this algorithm.

A. Deconvolution Scheme

Our goal is to improve the performance of the first proposed
algorithm, by taking into account information from both
preceding and subsequent traces in the deconvolution process
of each trace. More specifically, we wish to utilize estimates of
bothrj−1 andrj+1, in the estimation process ofrj . However,
an estimate ofrj+1 is not available from previous steps in the
jth step of the algorithm, in whichrj is estimated. Therefore,
instead of estimating onlyrj in thejth step, we simultaneously
estimate bothrj and rj+1, conditionally to the estimate of
rj−1, obtained in the previous step. This way, the dependency
betweenrj and rj+1 is taken into account when the former
is estimated. In each step besides the last, only the estimate
of rj is kept out of the two obtained estimates. The estimate
of rj+1 is discarded, as this column will be reestimated in
the next step. It is kept only in the last step, as the estimate
of the last column in the 2D reflectivity sectionrJ . We
note that extending the algorithm to utilize more than one
subsequent reflectivity column in the estimation process ofrj
is straightforward. However, simulation results showed that
only a small improvement in the performance is gained when
more than one reflectivity column is estimated along withrj ,
at the cost of a larger computational burden. We next define
the following vectors:
ȳj =

[
yT
j ,y

T
j+1

]T
, r̄j =

[
rTj , r

T
j+1

]T
, q̄j =

[
qT
j ,q

T
j+1

]T
,

t̄
/
j−1 =

[(
t
/
j−1

)T
,
(
t
/
j

)T ]T
, t̄−j−1 =

[(
t−j−1

)T
,
(
t−j
)T ]T

,

t̄
\
j−1 =

[(
t
\
j−1

)T
,
(
t
\
j

)T]T
, j = 1, ..., J − 1,

where t
/
0 = t−0 = t

\
0 = 0Nr×1 and 0Nr×1 denotes a

vector ofNr zeros. Using these concatenated vectors in the
deconvolution process allows us to simultaneously estimate
the amplitude, location and transition variables associated with
bothrj andrj+1. The deconvolution is carried out iteratively,
using the following maximization procedure:
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(1) First column:
(
̂̄r1, ̂̄q1 , ̂̄t0

)
= argmax

r̄1,q̄1,̄t0

p (r̄1, q̄1, t̄0 |ȳ1 )

(11)

(2) j ∈ [2, J − 1] :
(
̂̄rj , ̂̄qj ,

̂̄tj−1

)

= argmax
r̄j ,q̄j ,̄tj−1

p (r̄j , q̄j , t̄j−1 |ȳj , r̂j−1, q̂j−1 ) (12)

wheret̄j−1 =
{
t̄
/
j−1, t̄

−
j−1, t̄

\
j−1

}
.

Similarly to the deconvolution scheme of the first proposed
algorithm, a single partial criterion is optimized in each
step. Direct optimization of these partial criteria is practically
impossible, since it requires examination of all the possi-
ble configurations of̄qj , t̄j−1, whose number ranges from
22Nr to 82Nr . Instead, we apply a further modified version
of the MPM algorithm to these partial criteria. This MPM
algorithm estimates in the first step̄t0, q̄1 and r̄1 from ȳ1,
and estimates in thejth step,j ∈ [2, J − 1], t̄j−1, q̄j and
r̄j from ȳj , r̂j−1 and q̂j−1. The first Nr samples of the
estimates of̄rj , q̄j , t̄

/
j−1, t̄

−
j−1 and t̄

\
j−1, j ∈ [1, J − 1] are

kept as the desired estimatesr̂j , q̂j , t̂j−1. In the J − 1th
step the lastNr samples of the estimates are also kept as
r̂J , q̂J , t̂

/
J−1, t̂

−
J−1, t̂

\
J−1.

The MPM algorithm employs two different Gibbs samplers
in the estimation process ofr1 and rj , j ∈ [2, J − 1]. We
describe these Gibbs samplers next.

B. Gibbs Samplers

In the estimation process of the first reflectivity column, we
employ a Gibbs sampler to generate samples ofr̄1, q̄1, t̄0 from
the joint distributionp (r̄1, q̄1, t̄0 |ȳ1 ) . Instead of sampling di-
rectly from this joint distribution, the Gibbs sampler iteratively
samples from the conditional distributions ofr̄k,1, q̄k,1, t̄/k,0,

t̄−k,0 and t̄
\
k,0. The firstNr samples of̄t/0, t̄

−
0 , t̄

\
0 equal zero

and the firstNr samples of̄r1, q̄1 are sampled from:

• p (rk,j , qk,j |yj , r−k,j ,q−k,j , rj+1,qj+1, tj )

∼ λf
k,jN

(
mf

k,j , V
f
k,j

)
+
(
1− λf

k,j

)
δ (rk,j)

where the derivation ofλf
k,j , mf

k,j and V f
k,j can be found

in subsection III of the appendix. The lastNr samples of
r̄1, q̄1, t̄

/
0, t̄

−
0 , t̄

\
0 are sampled from:

• p
(
t
/
k,j

∣∣∣rj+1,qj+1, t
/
−k,j , t

−
j , t

\
j , rj ,qj

)
∼ B

(
µ
/
k,j

)

• p
(
t−k,j

∣∣∣rj+1,qj+1, t
/
j , t

−
−k,j , t

\
j , rj ,qj

)
∼ B

(
µ−
k,j

)

• p
(
t
\
k,j

∣∣∣rj+1,qj+1, t
/
j , t

−
j , t

\
−k,j , rj ,qj

)
∼ B

(
µ
\
k,j

)

• p (rk,j+1, qk,j+1 |yj+1, r−k,j+1,q−k,j+1, tj , rj )

∼ λb
k,j+1N

(
mb

k,j+1, V
b
k,j+1

)
+
(
1− λb

k,j+1

)
δ (rk,j+1)

For the simulation of the vectors̄r1, q̄1 and t̄0, the Gibbs
sampler follows these steps iteratively:

1) Initialization: choice of̄r(0)1 , q̄
(0)
1 , t̄

(0)
0 .

2) For i = 1, ..., I
For k = 1, ..., Nr

• computeλf
k,j using (54) and simulate

q̄
(i)
k,j ∼ B

(
λf
k,j

)

• if q̄k,j = 1 simulater̄(i)k,j ∼ N
(
mf

k,j , V
f
k,j

)
, other-

wise r̄
(i)
k,j = 0.

For k = Nr + 1, .., 2Nr

• computeµ/
k−Nr ,j

using (36) and simulate

t̄
/ (i)
k,j−1 ∼ B

(
µ
/
k−Nr ,j

)

• computeµ−
k−Nr ,j

using (37) and simulate

t̄
− (i)
k,j−1 ∼ B

(
µ−
k−Nr ,j

)

• computeµ\
k−Nr ,j

using (38) and simulate

t̄
\ (i)
k,j−1 ∼ B

(
µ
\
k−Nr ,j

)

• computeλb
k−Nr ,j+1 using (26) and simulate

q̄
(i)
k,j ∼ B

(
λb
k−Nr ,j+1

)

• simulate r̄
(i)
k,j ∼ N

(
mb

k−Nr,j+1, V
b
k−Nr ,j+1

)
if

q̄
(i)
k,j = 1, otherwiser̄(i)k,j = 0.

Similarly, in the estimation process of thejth reflectiv-
ity column, j ∈ [2, J − 1], we employ a different Gibbs
sampler to generate samples ofr̄j , q̄j , t̄j−1 from the joint
distributionp (r̄j , q̄j , t̄j−1 |ȳj , r̂j−1, q̂j−1 ) . This Gibbs sam-
pler iteratively samples from the conditional distributions of
r̄k,j , q̄k,j , t̄

/
k,j−1 t̄

−
k,j−1 and t̄\k,j−1, where the firstNr samples

of r̄j , q̄j , t̄
/
j−1, t̄

−
j−1, t̄

\
j−1 are sampled from:

• p
(
t
/
k,j−1

∣∣∣rj ,qj , t
/
−k,j−1, t

−
j−1, t

\
j−1, r̂j−1, q̂j−1

)

∼ B
(
µ
/
k,j−1

)

• p
(
t−k,j−1

∣∣∣rj ,qj , t
/
j−1, t

−
−k,j−1, t

\
j−1, r̂j−1, q̂j−1

)

∼ B
(
µ−
k,j−1

)

• p
(
t
\
k,j−1

∣∣∣rj ,qj , t
/
,j−1, t

−
j−1, t

\
−k,j−1, r̂j−1, q̂j−1

)

∼ B
(
µ
\
k,j−1

)

• p (rk,j , qk,j |yj , r−k,j ,q−k,j , tj−1, r̂j−1, rj+1,qj+1, tj )

∼ λm
k,jN

(
mm

k,j , V
m
k,j

)
+
(
1− λm

k,j

)
δ (rk,j)

and the derivation ofλm
k,j , mm

k,j and V m
k,j can be found

in subsection IV of the appendix. The lastNr samples of
r̄j , q̄j , t̄

/
j−1, t̄

−
j−1, t̄

\
j−1 are sampled from the same conditional

distributions as the lastNr samples of̄r1, q̄1, t̄
/
0, t̄

−
0 , t̄

\
0.

For the simulation of the vectors̄rj , q̄j andt̄j−1, the Gibbs
sampler follows these steps iteratively:

1) Initialization: choice of̄r(0)j , q̄
(0)
j , t̄

(0)
j−1.

2) For i = 1, ..., I
For k = 1, ..., Nr

• computeµ/
k,j−1 using (36) and simulate

t̄
/ (i)
k,j−1 ∼ B

(
µ
/
k,j−1

)

• computeµ−
k,j−1 using (37) and simulate

t̄
− (i)
k,j−1 ∼ B

(
µ−
k,j−1

)

• computeµ\
k,j−1 using (38) and simulate

t̄
\ (i)
k,j−1 ∼ B

(
µ
\
k,j−1

)

• computeλm
k,j using (64) and simulate

q̄
(i)
k,j ∼ B

(
λm
k,j

)

• simulater̄(i)k,j ∼ N
(
mm

k,j , V
m
k,j

)
if q̄k,j = 1, other-

wise r̄
(i)
k,j = 0.
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For k = Nr + 1, .., 2Nr follow the same steps as the
Gibbs sampler described above.

C. MPM algorithm

The second proposed algorithm employs a further modified
MPM algorithm. This MPM algorithm estimates̄r1, q̄1, t̄0 in
the first step, and estimatesr̄j , q̄j , t̄j−1, j ∈ [2, J − 1] in the
following steps. It uses the two versions of the Gibbs sampler
described in the previous subsection to generate realizations of
r̄j , q̄j , and t̄j−1, where the firstI0 iterations are considered a

learning period. Only the samples
(
r̄
(i)
j , q̄

(i)
j , t̄

(i)
j−1

)
produced

in the subsequent steady state periodI0 < i ≤ I are used
to first estimate each of̄qk,j , t̄

/
k,j−1, t̄

−
k,j−1, t̄

\
k,j−1 and then

determiner̄k,j conditionally to the estimate of̄qk,j .
The further modified MPM algorithm follows these steps

iteratively:

1) For i = 1, ..., I simulate
(
t̄
(i)
j−1, q̄

(i)
j , r̄

(i)
j

)
using the

Gibbs samplers.
2) Use the same detection step as in Section III-C,

where rk,j , qk,j , t
/
k,j−1, t

−
k,j−1 and t

\
k,j−1 are replaced

by r̄k,j , q̄k,j , t̄
/
k,j−1, t̄

−
k,j−1 and t̄\k,j−1, respectively.

3) r̂j =
[̂̄r1,j , ..., ̂̄rNr,j

]T
.

V. EXPERIMENTAL RESULTS

A. Synthetic data

We generated a 2D reflectivity section of size76 × 100,
shown in Fig. 2(a), using the MBG I model. We then con-
volved it with a 25 samples long Ricker wavelet and added
white Gaussian noise, with signal to noise (SNR) ratios of 0
dB and 5 dB, where the SNR is defined as

SNR = 10 log10

(
λσ2

rEh

σ2
w

)
. (13)

We created 20 realizations for each SNR, two of them with
SNRs of 0 dB and 5 dB are shown in Figs. 2(b) and (c),
respectively. We then used the proposed parameter estimation
method to find the missing parameters corresponding to each
of the data sets. The total number of iterations of the SEM
algorithm was set to 4000, where the first 3000 iterations
served as the burn-in period after which the algorithm reaches
a steady state. The true wavelet, along with wavelets estimated
for the realizations in Figs. 2(b) and (c) are shown in Figs.
2(d) and (e), respectively. The true parameters are shown in
Table I, along with the means and standard deviations (in
brackets) of the parameters estimated from the realizations
with the different SNRs.

The true and estimated parameters were employed by the
deconvolution schemes of the two proposed multichannel
algorithms, and the single-channel MPM algorithm of Rosec et
al. [10]. The reflectivity sections recovered by single-channel
deconvolution and those obtained with the true parameters
were used for comparison reasons. The total number of
iterations I of the MPM algorithms of Rosec et al. and
the first and second proposed algorithms was set to 8000,

TABLE I: Synthetic 2D Example: True and Estimated Parameters
True Estimated (0 dB) Estimated (5 dB)

λ 0.0489 0.0479 (0.0033) 0.0553 (0.0013)
σr 1 1.2851 (0.0603) 1.152 (0.0249)

σw (0 dB) 0.2211 0.1742 (0.0035) -
σw (5 dB) 0.1243 - 0.1014 (0.0012)

a 0.999 0.7752 (0.0202) 0.7899 (0.0152)
µ/ 0.008 0.0058 (0.0007) 0.0076 (0.0008)
µ− 0.033 0.01 (0.0011) 0.0228 (0.0017)
µ\ 0.008 0.0061 (0.0008) 0.0086 (0.0007)
ε 0.0005 0.0266 (0.0034) 0.0174 (0.0019)

8000, and 16000, and the corresponding burn-in periodI0
was set to 4000, 4000, and 8000 iterations, respectively. The
average processing times of a data set of size100 × 100 on
Pentium Core 2 Duo E8400, by matlab implementations of the
single-channel and the first and second proposed algorithms,
were 8.86, 9.17 and 47.69 minutes, respectively. Note that
each reflectivity column estimated by the single-channel and
multichannel deconvolution algorithms had gone through a
postprocessing procedure. Whenever this procedure found two
or three successive reflectors, or two reflectors separated by
one sample, it replaced them by their center of mass. We will
hereafter refer to the first and second proposed algorithms
as Multi-channel I (MC-I) and Multi-channel II (MC-II),
respectively. The results of single-channel deconvolution and
the MC-I and MC-II algorithms, obtained with the true and
estimated parameters for the seismic data with SNR of 5 dB,
depicted in Figs. 2(c), are shown in Fig. 3. The results obtained
with the estimated parameters for the seismic data with SNR
of 0 dB depicted in Figs. 2(b), are shown in Fig. 4. Visual com-
parison between these results shows improved performance of
both the MC-I and MC-II algorithms over the performance
of the single-channel deconvolution algorithm. For both SNR
levels the estimates of MC-I and MC-II are more continuous,
contain less false detections and are generally closer to the
true reflectivity than the single-channel deconvolution results.
It can also be seen that, as one would expect, better results
are obtained with the true parameters than with the estimated
ones.

In order to quantify the performances of the MC-I and
MC-II algorithms and compare them to each other and to
the performance of the single-channel algorithm, we used
the four loss functions suggested by Kaaresen in [23]. Let
r be a 1D reflectivity sequence and̂r be its estimate, and
let ‖·‖1 and ‖·‖2 be the L1 and L2 norm, respectively.
Also, let Nmiss = #{n : r̂ (n) = 0, r (n) 6= 0} and
Nfalse = #{n : r̂ (n) 6= 0, r (n) = 0} denote the number of
missed and false detections in̂r, respectively. Then the loss
functions are:

Lmiss+false = ‖r̂− r‖1 +Nmiss +Nfalse

Lmiss = ‖r̂− r‖1 +Nmiss

Lfalse = ‖r̂− r‖1 +Nfalse

LSSQ = ‖r̂− r‖2 . (14)

Kaaresen also suggested to make the loss functions more
realistic, by regarding estimated reflectors that were close to
their true positions as partially correct. Therefore we added
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Fig. 2: Synthetic reflectivity, wavelet and data sets: (a) Synthetic 2D reflectivity section. (b) 2D seismic data (SNR=0 dB). (c) 2D seismic
data (SNR=5 dB). (d) True wavelet (solid) and its estimate (dashed) for SNR=0 dB. (e) True wavelet (solid) and its estimate (dashed) for
SNR=5 dB.
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Fig. 3: Synthetic 2D data deconvolution results obtained with the true parameters (TP) and the estimated parameters (EP) for SNR of 5 dB:
(a) Single-channel deconvolution results (TP). (b) MC-I results (TP). (c) MC-II results (TP). (d) Single-channel deconvolution results (EP).
(e) MC-I results (EP). (f) MC-II results (EP).
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Fig. 4: Synthetic 2D data deconvolution results: (a) Single-channel deconvolution results for SNR=0 dB. (b) MC-I results for SNR=0 dB.
(c) MC-II results for SNR=0 dB.

three loss functions which treated reflectors inr̂ with an offset
of one sample from their true location as if they were set
in their true locations, with half their amplitude. For theses
reflectors a penalty of 0.5 was added to both the missed and
false detection measures. The new loss functions are:

Lmiss+false
2 = D +Nmiss

2 +Nfalse
2

Lmiss
2 = D +Nmiss

2

Lfalse
2 = D +Nfalse

2 (15)

whereD =
∑
n

∣∣r̂ (n) + 1
2 r̂ (n− 1) + 1

2 r̂ (n+ 1)− r (n)
∣∣ is a

difference measure,Nmiss
2 = Nmiss − 1

2 ×#{n : r (n) 6= 0,
r̂ (n) = 0, r̂ (n− 1) 6= 0 or r̂ (n+ 1) 6= 0} is a missed detec-
tion measure andNfalse

2 = Nfalse − 1
2 ×#{n : r̂ (n) 6= 0,

r (n) = 0, r (n− 1) 6= 0 or r (n+ 1) 6= 0} is a false detection
measure. Since we are dealing with 2D reflectivity signals,
we calculated the loss functions for their column stack forms.
We also normalizedLSSQ by the L2 norm of the column
stack form of the true reflectivity and normalized the rest of
the loss functions by the number of reflectors contained in
the true reflectivity. The means and standard deviations of the
loss functions calculated for the estimates obtained by single-
channel deconvolution and the MC-I and MC-II algorithms are
shown in percents in Tables II and III. The values displayed in
Table II correspond to the results obtained with the true and
estimated parameters, from the seismic data with SNR of 5
dB. Similarly, the values in Table III correspond to the results
obtained from the data with SNR of 0 dB.

It can be seen that for both SNR levels, and for all the loss
functions, the mean values calculated for the estimates of the
MC-I and MC-II algorithms are smaller than the respective
mean values calculated for the estimates of the single-channel
deconvolution algorithm. This implies that both the MC-I
and MC-II algorithms produce better results than the single-
channel algorithm. It can also be seen that for both SNR levels
the MC-II algorithm outperforms the MC-I algorithm, and
that the improvement is getting smaller as the SNR increases.
Not surprisingly, lower mean values of the loss functions are
measured for all the higher SNR estimates, meaning that all
the algorithms performed better when the noise level was low.
Also, lower mean values of the loss functions are obtained
with the true parameters than with the estimated ones, however

TABLE IV: Real Data Example: Parameters Estimated for the Real
Data

λ σr σw a µ/ µ− µ\ ε

0.0385 3.945 0.701 0.901 0.0015 0.011 0.0009 0.0254

the difference between the mean values obtained in these two
cases is getting smaller as the SNR increases. Finally, MC-II
seems to be more robust to model parameter inaccuracies than
MC-I. Although MC-II performs only slightly better than MC-
I when the model parameters are known, it produces significant
improvement in the case of blind deconvolution.

B. Real Data

We applied the proposed parameter estimation method to
real seismic data from a small land 3D survey in North Amer-
ica (courtesy of GeoEnergy Inc., Texas) of size400 × 200,
shown in Fig. 5(a). Three-dimensional denoising was applied
to the data [24], which was subsequently decimated in both
time and space. The time interval is 8 ms and the in-line trace
spacing is 25m. The estimated wavelet is shown in Fig. 6, and
the estimated parameters are presented in Table IV. Similarly
to the case of the synthetic data, the estimated parameters
were employed by the deconvolution schemes of the MC-I
and MC-II algorithms, and the MPM algorithm of Rosec et
al. The reflectivity sections obtained by single-channel decon-
volution, MC-I and MC-II are shown in Figs. 5(b), (c) and (d)
respectively. Comparing these reflectivity sections, it can be
seen that the estimates obtained by MC-I and MC-II contain
layer boundaries which are more continuous and smooth than
the ones obtained by the single-channel deconvolution. These
algorithms also manage to detect parts of the layers that the
single-channel deconvolution missed. It can also be seen that
the estimates produced by the MC-I and MC-II algorithms
are quite close, however the latter managed to recover parts
of the layer boundaries missed by both the single-channel and
first proposed algorithms. Note that since the true reflectivity
section is unknown, the loss functions (14) and (15) cannot
be used to assess the performance of the proposed algorithms
on real data.
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TABLE II: Comparison Between the Quality of Restoration of the Single-Channel Deconvolution (SC), Multi-Channel I (MC-I) and Multi-
Channel II (MC-II) Algorithms, Obtained with the True and Estimated Parameters, for SNR of 5 dB.

SNR=5 dB Estimated parameters True parameters
SC MC-I MC-II SC MC-I MC-II

Lmiss+false 112.36 (10.89) 81.15 (13.61) 69.31 (10.42) 59 (5.81) 46.24 (8.74) 45.35 (5.43)
Lmiss 88.55 (7.95) 64.33 (10.02) 54.81 (7.67) 50.98 (4.8) 38.53 (6.58) 37.47 (3.88)
Lfalse 79.76 (8.38) 57.67 (10.11) 49.35 (7.92) 37.96 (4.01) 31.24 (6.42) 30.85 (4.29)
LSSQ 67.8 (4.32) 54.01 (5.68) 47.16 (5.31) 44.13 (3.57) 35.24 (5.9) 34.67 (3.73)

L
miss+false
2

76.38 (6.39) 54.13 (8.24) 46.48 (6.17) 44.45 (4.22) 33.7 (6.48) 31.54 (3.03)
Lmiss
2 59.78 (4.46) 42.95 (5.87) 36.98 (4.34) 39.34 (3.56) 28.75 (4.82) 26.83 (2.05)

L
false
2

51.14 (4.82) 36.54 (5.8) 31.73 (4.54) 26.39 (2.55) 21.7 (4.48) 20.54 (2.41)

TABLE III: Comparison Between the Quality of Restoration ofthe Single-Channel Deconvolution (SC), Multi-Channel I (MC-I) and Multi-
Channel II (MC-II) Algorithms, Obtained with the True and Estimated Parameters, for SNR of 0 dB.

SNR=0 dB Estimated parameters True parameters
SC MC-I MC-II SC MC-I MC-II

Lmiss+false 207.13 (13.76) 185.57 (18.01) 165.26 (16.67) 130.42 (6.61) 104.48 (8.09) 102.15 (9.01)
Lmiss 167.94 (9.51) 148.91 (13.54) 132.2 (12.05) 118.6 (5.18) 91.46 (6.46) 87.75 (7.04)
Lfalse 145.55 (11.82) 131.9 (14.08) 117.96 (13.57) 77.56 (5.19) 65.62 (5.97) 65.94 (6.83)
LSSQ 101.35 (4.46) 94.1 (6.23) 86.59 (6.06) 74.18 (3.35) 63.11 (4.16) 62.48 (4.26)

L
miss+false
2

146.65 (8.99) 123.08 (11.64) 106.65 (9.72) 105.67 (3.66) 76.52 (5.27) 70.63 (4.43)
Lmiss
2 118.4 (5.69) 98.16 (8.46) 84.93 (6.49) 98.31 (3.05) 68.89 (4.41) 62.36 (3.54)

L
false
2

96.05 (8.06) 81.17 (8.93) 70.7 (7.99) 57.27 (2.52) 43.07 (3.38) 40.58 (2.96)
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Fig. 5: Real data deconvolution results: (a) Real seismic data. (b) Single-channel deconvolution result. (c) MC-I results. (d) MC-II results.

VI. CONCLUSION

We have proposed two multichannel blind deconvolution
algorithms. Both algorithms, which take into account the
spatial dependency between neighboring traces in the de-
convolution process, produce visually superior deconvolution
results, compared to a single-channel deconvolution algorithm,
for synthetic and real data. The second algorithm uses more
information from neighboring traces in the deconvolution
process of each trace, and therefore performs better than the
first proposed algorithm, on synthetic and real data. Qualita-
tive assessment of synthetic data deconvolution results shows
improved performance of both proposed algorithms compared
to the single-channel algorithm. It also shows that the second
proposed algorithm improves on the first, but this improvement
is getting smaller as the SNR increases.

One topic for future research is developing new versions of

the two proposed algorithms, based on the MBG II model
[15]. This model uses a different amplitude field than the
MBG I model, which may lead to different quality of the
deconvolution results. The performance of the new algorithms
can be assessed and compared to that of the original ones.
Another topic for future research is the extension of the second
proposed algorithm to handle 3D input data. In this case the
recovered reflectivity is a 3D signal and a 3D estimation
window can be used so that neighboring reflectivity columns
from 8 directions will be taken into account in the estimation
process of each reflectivity column.

APPENDIX I
DERIVATION OF THE PARAMETERSλb

k,j ,m
b
k,j AND V b

k,j

Our goal is to derive the BG distribution
p (rk,j , qk,j |yj , r−k,j ,q−k,j , tj−1, rj−1 ). We start by
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Fig. 6: Real data estimated seismic wavelet.

factoring this distribution as:

p (rk,j , qk,j |yj , r−k,j ,q−k,j , tj−1, rj−1 )

∝ p (yj |rj ) p (rk,j |qk,j , tj−1, rj−1 )

× p
(
qk,j

∣∣∣t/k+1,j−1, t
−
k,j−1, t

\
k−1,j−1

)
. (16)

Noting that

p
(
qk,j

∣∣∣t/k+1,j−1, t
−
k,j−1, t

\
k−1,j−1

)
∼ B

(
λt
k,j

)
(17)

with λt
k,j = ε

(

1−t
/
k+1,j−1

)

(1−t
−
k,j−1)

(

1−t
\
k−1,j−1

)

, and defin-
ing

p (rk,j |qk,j = 1, tj−1, rj−1 ) ∼ N
(
mk,j , σ

2
k,j

)
(18)

we get, after some algebraic manipulations:

p (rk,j , qk,j = 1 |yj , r−k,j ,q−k,j , tj−1, rj−1 )

∝ λt
k,j

√
V b
k,j

σk,j
exp

[
−
m2

k,j

2σ2
k,j

+
(mb

k,j)
2

2V b
k,j

]

×
1√

2πV b
k,j

exp


−

(
rk,j −mb

k,j

)2

2V b
k,j


 (19)

with

V b
k,j =

(
1

σ2
k,j

+
Eh

σ2
w

)−1

,mb
k,j = V b

k,j

(
mk,j

σ2
k,j

+mw

)

(20)

mw =
1

σ2
w

Nh∑

i=1

h(i)


yk+i−1,j −

Nh∑

s=1
s6=i

h(s)ri+k−s,j


 (21)

Eh =

Nh∑

i=1

h2(i). (22)

Similarly, we get that

p (rk,j , qk,j = 0 |yj , r−k,j ,q−k,j , tj−1, rj−1 )

∝

(
1− λt

k,j

)
δ (rk,j) . (23)

Finally, from (19) and (23) we get that

p (qk,j |yj , r−k,j ,q−k,j , tj−1, rj−1 ) ∼ B
(
λb
k,j

)
(24)

and

p (rk,j , qk,j |yj , r−k,j ,q−k,j , tj−1, rj−1 )

∼ λb
k,jN

(
mb

k,j , V
b
k,j

)
+
(
1− λb

k,j

)
δ (rk,j) (25)

where

λb
k,j = p (qk,j = 1 |yj , r−k,j ,q−k,j , tj−1, rj−1 )

=



1 +

1− λt
k,j

λt
k,j

σk,j√
V b
k,j

exp

[
−
(mb

k,j)
2

2V b
k,j

+
m2

k,j

2σ2
k,j

]


−1

.

(26)

APPENDIX II
DERIVATION OF THE PARAMETERSµ

/
k,j−1, µ

−
k,j−1 AND

µ
\
k,j−1

We will now derive the conditional probabilities
for the three types of transition variables. Let
Sk,j = {−1 ≤ dk ≤ 1 : qk+dk,j = 1}, then we start with

p
(
t
/
k,j−1

∣∣∣rj ,qj , t
/
−k,j−1, t

−
j−1, t

\
j−1, rj−1,qj−1

)
, which can

be expressed by

p
(
t
/
k,j−1

∣∣∣rj ,qj , t
/
−k,j−1, t

−
j−1, t

\
j−1, rj−1,qj−1

)

∝ p
(
qk−1,j

∣∣∣t/k,j−1, t
−
k−1,j−1, t

\
k−2,j−1

)

× p
(
t
/
k,j−1, t

−
k,j−1, t

\
k,j−1 |qk,j−1

)

×
∏

dk∈Sk,j

p (rk+dk,j |qk+dk,j , tj−1, rj−1 ) . (27)

Let u
/
j−1 =

{
t
/
−k,j−1, t

−
j−1, t

\
j−1, rj−1

}
, then we first

note thatp
(
t
/
k,j−1 = 1

∣∣∣rj ,qj ,u
/
j−1,qj−1

)
6= 0 only when

qk,j−1 = 1 andqk−1,j = 1. Next, let

x
/
j−1 =

{
q−(k−1),j ,u

/
j−1,q−k,j−1

}
(28)

ρ
/
1,dk = p

(
rk+dk,j

∣∣∣qk+dk,j , t
/
k,j−1 = 1,u

/
j−1

)
(29)

ρ
/
0,dk = p

(
rk+dk,j

∣∣∣qk+dk,j , t
/
k,j−1 = 0,u

/
j−1

)
(30)

η
/
1 = p

(
t
/
k,j−1 = 1, t−k,j−1, t

\
k,j−1 |qk,j−1 = 1

)
(31)

η
/
0 = p

(
qk−1,j = 1

∣∣∣t/k,j−1 = 0, t−k−1,j−1, t
\
k−2,j−1

)

× p
(
t
/
k,j−1 = 0, t−k,j−1, t

\
k,j−1 |qk,j−1 = 1

)
(32)

Then using (27), (29) and (31) we get:

p
(
t
/
k,j−1 = 1

∣∣∣rj , qk−1,j = 1,x
/
j−1, qk,j−1 = 1

)

∝ η
/
1

∏

dk∈Sk,j

ρ
/
1,dk (33)

and using (27), (30) and (32) we get:

p
(
t
/
k,j−1 = 0

∣∣∣rj , qk−1,j = 1,x
/
j−1, qk,j−1 = 1

)

∝ η
/
0

∏

dk∈Sk,j

ρ
/
0,dk (34)
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Now, from (33) and (34) we get that

p
(
t
/
k,j−1

∣∣∣rj ,qj ,u
/
j−1,qj−1

)
∼ B

(
µ
/
k,j−1

)
(35)

with

µ
/
k,j−1 = p

(
t
/
k,j−1 = 1

∣∣∣rj ,qj ,u
/
j−1,qj−1

)

=





(
1 +

η
/
0

η
/
1

∏
dk∈Sk,j

ρ
/
0,dk

ρ
/
1,dk

)−1

, if qk−1,j = qk,j−1 = 1

0, otherwise
(36)

Similarly, it can be shown that:

µ−
k,j−1 = p

(
t−k,j−1 = 1

∣∣rj ,qj ,u
−
j−1,qj−1

)

=





(
1 +

η−
0

η−
1

∏
dk∈Sk,j

ρ−
0,dk

ρ−
1,dk

)−1

if qk,j = qk,j−1 = 1

0 else
(37)

and

µ
\
k,j−1 = p

(
t
\
k,j−1 = 1

∣∣∣rj ,qj ,u
\
j−1,qj−1

)

=





(
1 +

η
\
0

η
\
1

∏
dk∈Sk,j

ρ
\
0,dk

ρ
\
1,dk

)−1

if qk+1,j = qk,j−1 = 1

0 else
(38)

APPENDIX III
DERIVATION OF THE PARAMETERSλf

k,j ,m
f
k,j AND V f

k,j

Our goal is to derive the BG distribution
p (rk,j , qk,j |yj , r−k,j ,q−k,j , rj+1,qj+1, tj ). Let
Sk,j+1 = {−1 ≤ dk ≤ 1 : qk+dk,j+1 = 1}, then this
distribution can be rewritten as:

p (rk,j , qk,j |yj , r−k,j ,q−k,j , rj+1,qj+1, tj )

∝ p (yj |rj ) p
(
t
/
k,j , t

−
k,j , t

\
k,j |qk,j

)
p (rk,j |qk,j ) p (qk,j)

×
∏

dk∈Sk,j+1

p (rk+dk,j+1 |qk+dk,j+1, tj , rj ,qj ) . (39)

Now, defining

g1 = p
(
t
/
k,j , t

−
k,j , t

\
k,j |qk,j = 1

)
p (qk,j = 1) (40)

σ̃2
r =

(
1− a2

)
σ2
r (41)

χdk =

{
1 if rk+dk,j+1 andrk,j are correlated
0 otherwise

(42)

fj = {tj , rj ,q−k,j} (43)

and

ρ1,dk = p (rk+dk,j+1 |qk+dk,j+1 = 1, fj , qk,j = 1, χdk = 0)
(44)

we get that

p (rk,j , qk,j = 1 |yj , r−k,j ,q−k,j , rj+1,qj+1, tj )

∝

√
V f
k,jg1

σr
exp

[
(mf

k,j)
2

2V f
k,j

]
(45)

×
1√

2πV f
k,j

exp


−

(
rk,j −mf

k,j

)2

2V f
k,j




×
∏

dk∈Sk,j+1

(ρ1,dk)
1−χdk

{
1√
2πσ̃2

r

exp

[
−
r2k+dk,j+1

2σ̃2
r

]}χdk

(46)

with

V f
k,j =


 1

σ2
r

+
Eh

σ2
w

+
∑

dk∈Sk,j+1

χdk
a2

σ̃2
r



−1

(47)

mf
k,j = V f

k,j




∑

dk∈Sk,j+1

χdk
ark+dk,j+1

σ̃2
r

+mw


 (48)

andmw, Eh as defined in (21) and (22), respectively.
Similarly, let

g0 = p
(
t
/
k,j , t

−
k,j , t

\
k,j |qk,j = 0

)
p (qk,j = 0) (49)

and

ρ0,dk = p (rk+dk,j+1 |qk+dk,j+1 = 1, fj, qk,j = 0, ) (50)

then

p (rk,j , qk,j = 0 |yj , r−k,j ,q−k,j , rj+1,qj+1, tj )

∝ g0δ (rk,j)
∏

dk∈Sk,j+1

ρ0,dk (51)

Finally, from (46) and (51) we get that

p (qk,j |yj , r−k,j ,q−k,j , rj+1,qj+1, tj ) ∼ Be
(
λf
k,j

)
(52)

and

p (rk,j , qk,j |yj , r−k,j ,q−k,j , rj+1,qj+1, tj )

∼ λf
k,jN

(
mf

k,j , V
f
k,j

)
+
(
1− λf

k,j

)
δ (rk,j) (53)

where

λf
k,j = p (qk,j = 1 |yj , r−k,j ,q−k,j , rj+1,qj+1, tj )

=



1 +

σrg0√
V f
k,jg1

∏

dk∈Sk,j+1

ρ0,dk
(
2πσ̃2

r

)χdk
2

(ρ1,dk)
1−χdk

× exp


−

(mf
k,j)

2

2V f
k,j

+
∑

dk∈Sk,j+1

χdk

r2k+dk,j+1

2σ̃2
r







−1

.

(54)
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APPENDIX IV
DERIVATION OF THE PARAMETERSλm

k,j ,m
m
k,j AND V m

k,j

The BG distribution
p (rk,j , qk,j |yj , r−k,j ,q−k,j , tj−1, rj−1, rj+1,qj+1, tj ) can
be rewritten as:

p (rk,j , qk,j |yj , r−k,j ,q−k,j , tj−1, rj−1, rj+1,qj+1, tj )

∝ p (yj |rj ) p
(
t
/
k,j , t

−
k,j , t

\
k,j |qk,j

)
p (rk,j |qk,j , tj−1, rj−1 )

× p
(
qk,j

∣∣∣t/k+1,j−1, t
−
k,j−1, t

\
k−1,j−1

)

∏

dk∈Sk,j+1

p (rk+dk,j+1 |qk+dk,j+1, tj , rj ) . (55)

Let

c1 = p
(
t
/
k,j , t

−
k,j , t

\
k,j |qk,j = 1

)

× p
(
qk,j = 1

∣∣∣t/k+1,j−1, t
−
k,j−1, t

\
k−1,j−1

)
(56)

then using (18), (41), (42) and (44) we get that

p (rk,j , qk,j = 1 |yj , r−k,j ,q−k,j , tj−1, rj−1, rj+1,qj+1, tj )

∝

√
V m
k,jc1

σk,j
exp

[
−
m2

k,j

2σ2
k,j

+
(mm

k,j)
2

2V m
k,j

]

1√
2πV m

k,j

exp


−

(
rk,j −mm

k,j

)2

2Vm
k,j




×
∏

dk∈Sk,j+1

(ρ1,dk)
1−χdk

{
1√
2πσ̃2

r

exp

[
−
r2k+dk,j+1

2σ̃2
r

]}χdk

(57)

with

V m
k,j =


 1

σ2
k,j

+
Eh

σ2
w

∑

dk∈Sk,j+1

χdk
a2

σ̃2
r



−1

(58)

mm
k,j = V m

k,j




∑

dk∈Sk,j+1

χdk
ark+dk,j+1

σ̃2
r

+
mk,j

σ2
k,j

+mw




(59)

andmw, Eh as defined in (21) and (22), respectively.
Similarly, let

c0 = p
(
t
/
k,j , t

−
k,j , t

\
k,j |qk,j = 0

)

× p
(
qk,j = 0

∣∣∣t/k+1,j−1, t
−
k,j−1, t

\
k−1,j−1

)
(60)

then using (50) we get that

p (rk,j , qk,j = 0 |yj , r−k,j ,q−k,j , tj−1, rj−1, rj+1,qj+1, tj )

∝ c0δ (rk,j)
∏

dk∈Sk,j+1

ρ0,dk (61)

Finally, from (57) and (61) we get that

p (qk,j |yj , r−k,j ,q−k,j , tj−1, rj−1, rj+1,qj+1, tj )

∼ B
(
λm
k,j

)
(62)

and

p (rk,j , qk,j |yj , r−k,j ,q−k,j , tj−1, rj−1, rj+1,qj+1, tj )

∼ λm
k,jN

(
mm

k,j , V
m
k,j

)
+
(
1− λm

k,j

)
δ (rk,j) (63)

where

λm
k,j = p (qk,j = 1 |yj , r−k,j ,q−k,j , tj−1, rj−1, rj+1,qj+1, tj )

=



1 +

σk,jc0√
V m
k,jc1

exp

[
−
(mm

k,j)
2

2Vm
k,j

+
m2

k,j

2σ2
k,j

+
∑

dk∈Sk,j+1

χdk

r2k+dk,j+1

2σ̃r
2




×
∏

dk∈Sk,j+1

ρ0,dk

(
2πσ̃2

r

)χdk
2

(ρ1,dk)
1−χdk





−1

. (64)
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