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Abstract. An overall strategy for the very difficult problem of object detec-
tion using uncooled infrared (UCIR) sensors is discussed. The UCIR sensors
are based on micro-bolometer technology and thus differ significantly from
cooled infrared sensors that employ photon-counting detectors. As such, UCIR
imagery tends to be very low contrast, since the sensor operates over a broad
spectral band; and blurry, because of the long integration times. Ideally, the
UCIR imagery would be preprocessed using an appropriate image reconstruc-
tion/restoration algorithm. If the sources of image degradation are understood
and lend themselves to accurate modelling, the image reconstruction can be
solved as an inverse problem. Most often this is not the case and the problem is
solved using minimization approaches, such as blind deconvolution. Because
image reconstruction/restoration approaches tend to be very throughput in-
tensive, they are rarely performed in a tactical environment. More typically, a
detection algorithm is applied directly to the UCIR imagery. In this paper,
Local Singular Value Decomposition (LSVD) is evaluated for anomaly detec-
tion. LSVD uses local statistics to identify anomalous regions and is very good
at identifying local texture differences; it appears to work quite well on UCIR
imagery. Target detection results are presented for a simulated data set.

1. Introduction
Infrared imaging sensors that operate without cryogenic cooling have the

potential to provide the military user with exceptional night vision capabilities
packaged in a device of extremely small size, weight, and power. This would
significantly reduce the cost and accelerate the implementation of sensors for
applications such as targeting, surveillance, and threat warning. However, the
performance of uncooled infrared sensors is still inferior to that of cooled sensors.
This performance gap limits the number of applications and precludes the wide-
spread use of uncooled infrared sensors in military missions. While uncooled
sensors are being considered as replacements for cooled sensors in some applica-
tions, perhaps more importantly, the unique characteristics of the uncooled
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sensors are spawning novel uses of the technology. Very small, low-power sensors
with moderate levels of performance are possible with the uncooled infrared
technology. In addition, applications such as micro-vehicles and robotics demand
an extremely lightweight imaging sensor.

There is currently a great deal of interest in uncooled IR sensors within the
Department of Defense community for Automatic Target Acquisition (ATA) for
smart munitions. The obvious attraction of uncooled IR sensors over the more
traditional cooled sensors is their low cost. This cost advantage should become
even more pronounced with the economies-of-scale expected from commercial
applications, particularly the automotive industry. The trade-off for achieving this
greatly reduced cost is degradation in image quality that places a significantly
greater burden on the ATA algorithms. There are a number of very exciting new
approaches, such as multiplexed imaging [1–3], currently being investigated to
improve the performance of uncooled sensors; however, they are not mature
enough to be implemented in current generations of munitions.

The remainder of this manuscript is structured as follows. Section 2 briefly
describes Raytheon’s UCIR sensor. We discuss in section 3 the UCIR imagery
that was available for algorithm evaluation. This imagery consists of both high
fidelity simulation data as well as data collected during a recent captive flight test
(CFT). Image reconstruction is introduced in section 4 and a specific example is
provided. An overview of the Local Singular Value Decomposition (LSVD)
anomaly detection algorithm is given is section 5. The results from processing a
set of simulated UCIR imagery is presented in section 6. Finally, we summarize
our results and conclusions in section 7, which also contains a discussion of further
research.

2. Description of UCIR sensor
Raytheon’s uncooled IR camera is based on the SB-246 detector array devel-

oped by Santa Barbara Research Centre. The SB-246 is a 320� 240 room-
temperature focal plane array (FPA). This FPA is based upon silicon microbol-
ometer technology. The bolometer material is vanadium oxide (VOx). A picture of
the FPA is shown in figure 1. The FPA specifications are detailed in table 1.
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Figure 1. SB-246 focal plane array.



3. Description of test imagery

For the processing described in the current paper, we use Raytheon’s model-

ling environment—simulation technology image generation (STIG)—that was

specifically developed for uncooled IR scene generation. STIG is a high fidelity

modelling tool that uses a collection of measured backgrounds, a series of turntable

target data, a detailed model of the IR sensor and a target facet model to generate

realistic scenes of targets in clutter. This simulation allows the target-to-back-

ground contrast to be adjusted and permits the inclusion a variety of discrete

clutter types. A flow diagram for the STIG simulation is shown in figure 2.

In addition to the simulated imagery, we also had available for analysis data

from two CFTs. One CFT was conducted in Yuma, Arizona. For this test, the

clutter was dominated by large discretes—ocotillo shrubs. The second CFT was

conducted in Huntsville, Alabama. For this test, the clutter was more benign.

Figure 3 shows some examples of simulated UCIR imagery under a variety of

conditions.

Clearly, this imagery presents a very challenging ATA problem. We note that

the images shown in figure 3 have been amplitude-scaled for viewing purposes, so

the object detection problem is even more difficult than it appears from the images.

In the next section, we introduce the idea of image restoration and then, in the
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Table 1. UCIR sensor specifications.

Spectral band 8–12 mm Array size 320 � 240
IFOV 0.22 mrad Frame rate 4 60 Hz
Pitch 25 mm NETD 80 mK (f/1 aperture)
Non-uniformities 4 100 mV (peak-to-peak)

Figure 2. Simulated UCIR image generation.



following section, we discuss one target detection algorithm that has shown some
significant promise for this set of UCIR imagery.

4. Image restoration
Image restoration is a particular case of the more general field of inverse

problems [4] that arise in many scientific fields [5]. In some cases, a direct
approach of predicting the experimental data (i.e. the perceived image) using
theoretical models from first principles may be applied. In the case of uncooled IR
images, however, one of the fundamental characteristics of this inverse problem is
that the theoretical understanding of the formation of these entities is either
somewhat limited or, more often, not amenable to direct modelling with a great
degree of accuracy.

The restoration problem can be cast in the form of a Fredholm integral
equation of the first kind:

gðxÞ ¼
ð
Hðx; yÞfðyÞdy ð1Þ

In equation (1), fðyÞ is the function of interest, gðxÞ is the function accessible to
measurement, and Hðx; yÞ is the kernel of the integral equation. Equation (1) is the
basic mathematical form of the restoration problem. A general form that may be
used for the class of imaging systems where the spatial degradation can be
modelled by a linear-shift-invariant impulse response is given as:

fOðx; yÞ ¼
ð1
�1
fIð�; �ÞhDðx� �; y� �Þd�d� þ nðx; yÞ ð2 aÞ

or
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Figure 3. Sample UCIR imagery from simulation.



fOðx; yÞ ¼ fIðx; yÞ � hDðx; yÞ þ nðx; yÞ ð2 bÞ

In equation ð2 aÞ, fOðx; tÞ is the observed image field, fIð�; �Þ is an ideal image
passed through a linear spatial degradation system with an impulse response
hDðx� �; y� �Þ, and nðx; yÞ is additive noise.

4.1. Examples of algorithms
The linear-shift-invariant filter defined by the impulse response hRðx; yÞ may

be assumed as a model for the restoration system when the spatial degradation may
be approximated by equation (2). In this case, the reconstructed image becomes:

f̂fIðx; yÞ ¼
ð1
�1
fOð�; �ÞhRðx� �; y� �Þd�d� ð3 aÞ

or

fIðx; yÞ ¼ fOðx; yÞ � hRðx; yÞ ð3 bÞ

After substituting and Fourier transforming, the continuous reconstruction may
be represented as:

F̂FIð!x; !yÞ ¼ ½FIð!x; !yÞHDð!x; !yÞ þNð!x; !yÞ
HRð!x; !yÞ ð4Þ

Examples of restoration algorithms include the simple inverse filter, the Wiener
filter and constrained restoration. Constrained restoration is discussed in more
detail in the next subsection.

4.2. Image restoration using constrained restoration
The image restoration techniques described above consider the images as

arrays of numbers. A natural extension to these described is to impose physical
constraints on the image produced by the restoration process. The physics of the
image formation process constrain pixel amplitudes to be non-negative. Also,
natural scenes are generally smooth. A discrete form will now be assumed for the
degradation model. A vector-space model for this representation of image degra-
dation

g ¼ Df þ n ð5Þ

where g is a vector representation of the observed image, D is a matrix represent-
ing the degradation function, fI is the ideal image and n is additive noise.

The constrained restoration approach is to minimize the cost function

ðg�Df̂f Þ
T
Mðg�Df̂f Þ ð6Þ

with the constraint

f̂fTSf̂f ¼ d ð7Þ

where S is a smoothing matrix, M is an error weighting matrix and the scalar d is
the degree of smoothing. The error weighting matrix is often chosen to be the
inverse of the noise covariance matrix ðKNÞ. The solution is obtained by applying
the method of Lagrange multipliers. The Lagrangean function is:

Gðf̂f ; �Þ ¼ ðg�Df̂fÞMTðg�Df̂fÞ þ �ðf̂fTSf̂f � dÞ ð8Þ
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After differentiating equation (6) with respect to f and � and setting the derivatives
to zero, the stationary point is found to be:

f̂f ¼ S�1DTðDS�1DT þ �M�1Þ�1g ð9Þ

The Lagrange multiplier in equation (8) can be chosen to create a satisfactory
compromise between restoration error and smoothness. The results of applying
the constrained restoration filter to an uncooled IR image degraded by out-of-
focus optics and high levels of sensor noise are shown in figure 4. Note that the
result obtained using the larger Lagrange multiplier is smoother.

4.3. Wavelet-based restoration
Although the Wiener filtering is the optimal trade-off of inverse filtering and

noise smoothing, in the case when the spatial degradation filter is singular, the
Wiener filter can actually amplify the noise. Wavelet-based denoising provides a
technique for removing the amplified noise. The overall reconstruction technique
employs Fourier-domain filtering and wavelet-domain regularization. The regu-
larized inverse filter looks like a modified Wiener filter:

H�ð!x; !yÞ ¼
H�
Dð!x; !yÞWFI ð!x; !yÞ

jHDð!x; !yÞj2WFI ð!x; !yÞ þ �WNð!x; !yÞ
ð10Þ

where � can be selected optimally to minimize the overall mean-square error.
Since wavelet transforms have good decorrelation properties, the wavelet coeffi-
cients of the image can be formulated in a stochastic model, and the power
spectrum can be better estimated. This implies that both inverse filtering and
noise smoothing can be performed in the wavelet domain. Specifically, the power
spectrum of the image in a same subband can be estimated under the assumption
that the wavelet coefficients are independent. Therefore, the power spectrum is
just the variance of the wavelet coefficients. This particular approach (i.e.
regularization in the wavelet domain) is only valid under the important assumption
that an undecimated wavelet transform is used and the spatial degradation function
is separable. This regularized inverse filter/wavelet transform restoration is
implemented in the form shown in figure 5.

If the above assumption is not valid then the implementation follows the form
shown in figure 6.
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Figure 4. Application of the constrained restoration filter.



5. LSVD algorithm description
In this section, we discuss the two primary algorithms used in processing the

UCIR imagery. The LSVD algorithm was developed for background estimation
and anomaly detection.1 The LSVD algorithm is based on local statistical analyses
and is a two-pass algorithm. The basic idea is to assign to each pixel an image block
centred at the pixel. In this way, it is possible to construct a distance metric from
one pixel (viewed as the distance between blocks) to another and, in particular, it is
possible to introduce a distance from each pixel to a selected background region.
Those pixels that are above a certain distance from the background are labeled as
anomalies. Moreover, by selecting a background region, it is possible to estimate
its local statistics and, in particular, to construct a set of singular values and right/
left singular vectors. The right singular vectors can be used to ‘rotate’ each pixel in
the image into the background coordinate system. The advantage of using this new
coordinate system is that there are only a very few significant singular values for
patterns that are man-made. We note that, since we are embedding a two-
dimensional image in a high-dimensional pattern space, no more than two singular
vectors are expected. The background clutter will have somewhat more complex-
ity, thereby simplifying the task of isolating and identifying pixels that are
significantly different from the local background. A flow diagram for the LSVD
algorithm is given in figure 7.

Sample output of the LSVD algorithm is shown in figure 8.

6. Results
The STIG was used to generate a set of imagery with a clutter background

collected from Yuma Proving Grounds. The data sets consisted of two different
subsets from the morning and afternoon. For each of these cases, we generated
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Figure 5. Wavelet-based restoration entirely in wavelet domain.

Figure 6. Generalized wavelet-based restoration.

1 Contact Fast Mathematical Algorithms and Hardware at http://www.fmah.com



images at two different acquisition ranges—1000 m and 1500 m—and with
different aspect angles—08, 1508 and 3008. Within these image sets, the target-
to-background contrast was selected randomly. Results are presented in figure 9.
The simulated imagery used a 320� 240, 25-micron pitch, VOx Bolometer array
for the UCIR sensor model.

7. Conclusions
An excellent source of information regarding the current state-of-the-art for

uncooled sensors can be found on the DARPA Microelectronics Technology
Office web site [6]. While the LSVD algorithm has shown great promise as a
detection algorithm for uncooled IR imagery, it is somewhat expensive computa-
tionally. This is a particularly significant drawback for many of the potential
weapons where uncooled IR sensors have the most utility—small, smart muni-
tions. In general, these weapons are severely constrained in volume, power, and
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Figure 7. LSVD flow diagram.

Figure 8. (a) Original image; (b) first anomalies; (c) second anomalies.



cost. As a result, they have limited processing capabilities and specialized accel-
erators are not really an option. We are exploring a number of strategies to
optimize the performance of LSVD. Since the LSVD algorithm does not use the
singular values and requires only (a subset) of the right eigenvectors, we can
replace the full SVD with a partial SVD [7]; however, the computational savings
have not proven to be significant. A much more promising approach is to process
the image in parallel. For example, the image can be broken down into subimages
(with appropriate pixel overlap) and each subimage processed separately. As long
as the subimages are large enough that the background can be estimated suffi-
ciently well, there is very little degradation in the performance of the LSVD
algorithm.

We have also been examining a number of other algorithms and approaches to
improve the object detection performance. One particularly promising approach is
a multiscale algorithm that uses complex (directional) wavelets. Results for this
approach as a target detection algorithm have been presented elsewhere [8]. We are
investigating the Borrowed Strength Algorithm (BSA) [9] as a post-detection
algorithm for the UCIR imagery. A partial differential equation based approach
to image processing, anisotropic diffusion or nonlinear diffusion filtering [10–16],
is being evaluated for use on the UCIR imagery. We are also looking at the use of
blind deconvolution or phase retrieval approaches [17], although they tend to
suffer from numerical difficulties [18–20]. Longer term, we will investigate the
incorporation of physical knowledge into image reconstruction algorithms as well
as multiplexing approaches being developed at Duke University and Fast Math-
ematical Algorithms & Hardware.
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Figure 9. Processing results for simulated UCIR imagery.
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