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Abstract—In this paper, we address the problem of monaural
source separation of a mixed signal containing speech and
piano components. We use Discrete Energy Separation Algorithm
(DESA) to estimate frequency-modulating (FM) signal energy.
We design a time-varying filter in the time-frequency domain
for rejecting the interfering signal. An estimation of the FM
signal energy employs instantaneous signal properties that are
localized both in time and frequency. We present experimental
results which demonstrate the advantages of the proposed method
using real audio signals.

I. INTRODUCTION

Blind source separation (BSS) of audio signals has been an
active area of research in recent years. BSS from a single
audio channel is a special case of general BSS problem
where data from only one sensor is available to the algorithm.
This problem is generally manageable when the separated
audio signals belong to different signal classes, which are
distinguishable based on prior knowledge.

Different attempts to solve this problem in various contexts
were made, including: statistical modeling, such as Gaussian
Mixture Model (GMM) [1], or Hidden Markov Model (HMM)
[2]; Computational Auditory Scene Analysis (CASA) [3];
Non-negative Matrix Factorization (NMF) [4] and others.
Single-audio-channel BSS is an under-determined problem
with arbitrary many solutions, so some prior knowledge is
required to perform the separation. Many existing solutions
produce satisfactory results in special cases, the general prob-
lem of single-audio-channel BSS remains unsolved.

Teager and Teager [5] studied airflow and fluid dynamics
of human speech apparatus, and described several nonlinear
phenomena as well as their sources. Later, Kaiser [6] formu-
lated the Teager Energy Operator (TEO). In [7] the TEO was
used to derive a discrete energy separation algorithm (DESA)
that separates a signal into its amplitude (AM) and frequency
modulating (FM) components.

In this work, we propose a source separation algorithm
that segregates audio sources from a single channel. Different
signal classes may posses different statistical properties of
subband FM components. The proposed algorithm uses these

differences to separate sources. Our algorithm uses AM-FM
analysis and the properties of the FM signal to differentiate
between audio signal classes. First we filter the input signal
by a short time Fourier Transform (STFT) filterbank. Then we
use the DESA algorithm to estimate a frequency modulating
signal in each of the filterbank outputs and the energy of the
frequency modulating signal (EFMS). In the training stage
a statistical model of the EFMS values is learned for each
signal class. In the separation stage, time-frequency (TF) bins
in the STFT domain are classified into one of the target
signal classes using EFMS values. The interfering signal is
suppressed by zeroing TF bins attributed to the interfering
signal. Finally, we reconstruct the separated component by
inverting the STFT. Repeating the process twice, each time
selecting a different audio source class as interfering, we
recover segregated signals. The method is described in [8] in
greater details.

The remainder of this paper is structured as follows. In
Section II, we describe the TEO operator and the DESA
algorithm used for the AM-FM analysis. In Section III, we
explain why the proposed method should perform well in the
separation task. Section IV defines the evaluation procedure
of the EFMS. Section V describes a simple training procedure
used to learn EFMS features and a Bayesian approach used
for the creation of an STFT domain binary mask. In Section
VI we present experimental results .

II. DISCRETE ENERGY SEPARATION ALGORITHM

In this section, we introduce mathematical notations and
define AM-FM analysis using TEO (DESA algorithm [7]).

Let xc (t) be a continuous time signal and x (n) = xc (nT )
be its sampled version with sampling period of T . We assume
the following signal model

x (n) = a (n) cos

(
Ωcn+

n∑
i=0

q (i)
1

T
+ θ

)
, (1)

where n is a discrete time index, Ωc is an angular frequency
of a carrier, θ is some constant phase value, and a (n) and



q (n) are the amplitude and frequency modulating signals,
respectively.

A discrete version of TEO is an operator Ψ [x (n)] defined
as:

Ψ [x (n)] = x2 (n)− x (n− 1)x (n+ 1) . (2)

The instantaneous frequency of a continuous signal is
defined by Ωi , d

dt∠x (t). Ψ [x (n)] is used for estimating
the instantaneous frequency Ω̂i (n) and the instantaneous
amplitude â (n):

Ω̂i (n) ≈ 1

2
arccos

(
1− Ψ [x (n+ 1)− x (n− 1)]

2Ψ [x (n)]

)
(3)

≈ Ωc + q (n) (4)

|â (n)| ≈ 2Ψ [x (n)]√
Ψ [x (n+ 1)− x (n− 1)]

. (5)

These approximations are valid if some mild conditions on
highest non-zero angular frequencies of a (n), q (n) and AM
modulation index hold [7]. This version of DESA algorithm
is called DESA-2 [7].

III. MOTIVATION FOR ANALYSIS IN FREQUENCY
MODULATION DOMAIN

In this section, we demonstrate frequency modulation analy-
sis on some examples of speech and piano signals. We define
the energy of the frequency modulating signal (EFMS) and
show that EFMS of speech and piano signals can be used
as a local TF discriminating factor and used for rejecting the
interfering source.

Harmonic signals, such as vowels in speech or musical notes
played by a harmonic musical instrument, contain harmonic
partials, which are sine signal components located at integer
multiples of the fundamental frequency. Partials of voiced
phonemes in speech signals have a stronger frequency mod-
ulating component than partials of piano signals. Unvoiced
phonemes, such as plosive and fricative phonemes, do not con-
tain harmonic partials. An AM-FM decomposition of unvoiced
phoneme subbands produces a noisy FM component with
stronger frequency modulating component than the AM-FM
decomposition of voiced phonemes. To define an algorithm
that exploits this property we need to formulate a quantitative
measure for this phenomenon. Let x (n) denote a time signal.
We assume x (n) is an harmonic signal with one or more har-
monic partials. We treat each partial as a separate carrier. Most
of the AM-FM demodulation algorithms, including DESA,
cannot deal with multiple carriers in the analyzed signal. To
apply the analysis we note that each of the signals produced
by filtering the analyzed signal with a narrow band filterbank
likely contains a single AM-FM modulated carrier. In our work
we use STFT filterbank.

Let Xk (m) be the STFT transform of x (n), where k and
m are frequency and time indices. In one of its forms it can
be written as:

Xk (m) = e−j 2π
N mM (x ∗ wa) (mM) . (6)

where wa (n) is an analytic bandpass filter and M is time
subsampling factor.

The time series Xk (m) indexed by m, can be treated as a
time domain bandpass version of the analytic signal of x (n)
with bandpass center frequency shifted to zero. We assume
that only a single partial is present in Xk (m). This allows
us to use AM-FM decomposition algorithm. In the AM-FM
decomposition, each harmonic partial will act as a carrier.
Instantaneous deviations from the carrier frequency (caused
by intonation in speech and speech production nonlinearities)
will appear as a frequency-modulating signal.

IV. EFMS CALCULATION

Assume the AM-FM model (1) for the l-th harmonic partial
xl (n) and assume that almost all the energy of xl (n) resides
in the k-th subband of the STFT filterbank. The following
procedure describes evaluation of the EFMS. Let α ∈ R, 0 <
α < 1. Each STFT frequency band Xk (m) is modulated to an
intermediate frequency Ωif = απ by multiplying Xk (m) by
ejΩifm. DESA operates on the real valued signals, we use only
the in-phase component of the modulated filterbank output
X̃k (n) = ℜ

(
Xk (n) e

jΩifn
)
. It can be shown [8] that M

has to satisfy M ≤ min {αN, (1− α)N} in order to avoid
aliasing. DESA estimator (3) can now be used to find the
instantaneous frequency Ω̂i,k (m) in each frequency band.

The instantaneous frequency Ω̂i,k (m) also includes a con-
stant term that originates from the carrier frequency. To remove
it we filter Ω̂i,k (m) with a high-pass filter hq and get an
estimate of q (n) . Note that Ωc is not necessarily constant in
time, but we assume that it changes slowly compared to q (n),

q̂ (n) ≈
((

Ω̃c +Ωif + q (n)
)
∗ hq

)
(n) .

We define the EFMS by

Êk (m) ,
(
u ∗ q̂2k

)
(m) , (7)

where u (n) is an Nu points Hamming window designed to
reduce the variance of the energy estimator q̂2k (m). In the rest
of the paper we denote the EFMS of a time signal x (n) by
Ê {x}k (m) and omit x and the indices k and m when the
meaning is clear from the context.

The upper pane of Fig. 1 shows the 50 lower frequency
bands of the STFT filterbank output for a speech utterance.
We manually pick the 16-th frequency band which contains
the second harmonic partial for some period of time. The
second pane shows amplitude envelope â16 (m) of the selected
frequency band estimated by the DESA algorithm. There are
several amplitude peaks corresponding to voiced phonemes.
The third pane shows the Ω̂i,16 estimate. The lowest pane
shows a plot of Ê16 (m). In the voiced parts of the speech
fragment the energy of the FM component is low. Unvoiced
phonemes are not described well by the AM-FM model.
The DESA estimate of the instantaneous frequency has high
variance at these TF locations. As a result, the values of EFMS
at the location of unvoiced phonemes are high. The piano play
fragment depicted in Fig. 2 contains several piano notes. The
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Figure 1. The spectrogram (50 lower frequency bands) of the speech
utterance (vertical axis labels show frequency band numbers); the estimated
AM component â16, the estimated instantaneous frequency Ω̂i,16 and the
EFMS (Ê16 (n)) of the 16-th frequency band .
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Ê
1
7

Figure 2. The spectrogram (50 lower frequency bands) of the piano play
signal (vertical axis labels show frequency band numbers); the estimated AM
component â17, the estimated instantaneous frequency Ω̂i,17 and the EFMS
(Ê17 (n)) of the 17-th frequency band .

Ê17 (m) values are low while the note is being played. We
conclude that two signals can be distinguished by comparing
a one-dimensional value of the EFMS.

V. SOURCE SEPARATION PROCEDURE

Let s1 (n) and s2 (n) be time domain signals that belong to
different signal classes. Let x (n) be a mixture of s1 (n) and
s2 (n)

x (n) = s1 (n) + s2 (n) .

A linear mixture of two signals is a realistic assumption in
some real-life scenarios. It is irrelevant whether s1 or s2 are
filtered by some channel (convolutive mixture model) as long
as the training set signals undergo same filtering.

In the training stage we estimate the empirical probability
density functions p̂

(
Ê|H(1)

)
and p̂

(
Ê|H(2)

)
using normal-

ized histograms. Large non overlapping areas indicate that a
separation of these signals using only Ê {x} values should
be possible. Yilmaz et al. [9] defined approximate W-disjoint
orthogonality (W-DO) as an approximate “disjointness” of
several signals in the STFT domain. They introduced a quan-
titative WDO measure and provided evidence of the high level
of the W-DO for several speech signals. Since the EFMS
is a local TF property, the approximate W-DO of signals
guarantees robust EFMS estimation in the mixture. We verify
that speech and piano play signals have high value of WDO
in Section VI.

In the separation stage we use p̂
(
Ê|H(1)

)
and p̂

(
Ê|H(2)

)
to define a minimum risk decision rule for classification
of the STFT TF bins based on Ê {x}. Let ηk (m) ,
p̂(Ê{x}k(m)|H(1))p(H(1))
p̂(Ê{x}k(m)|H(2))p(H(2))

. The p
(
H(1)

)
and p

(
H(2)

)
reflect

prior belief of either class to be present in a TF bin. Let
λij be a penalty for assigning a TF bin to class i when in
fact the sample belongs to class j and λr is a penalty for not
assigning a TF to neither class. Using Bayes risk minimization,
the decision rule can be written as

R1 =

{
(k,m) |λ12

λ21
< ηk (m) ∩ λr

λ12
>

1

1 + ηk (m)

}
,

R2 =

{
(k,m) |λ12

λ21
> ηk (m) ∩ λr

λ12
>

1

1 + ηk (m)

}
,

Rr =

{
(k,m) | λr

λ12
≤ 1

1 + ηk (m)
∩ λr

λ21
≤ 1

1 + 1/ηk (m)

}
,

where R1 and R2 are sets of TF bins assigned to different
audio classes and Rr is a set of rejected TF bins [10].

A binary mask in the STFT domain is defined as

M
(c)
k (m) =

{
1 γk (m) ∈ Rc

0 otherwise
, c ∈ {1, 2} . (8)

For the binary mask to be effective, we assume that approxi-
mate W-disjoint orthogonality [9] holds. The interfering source
is removed by multiplying the STFT transform of the mixture
by M (c)

X̂
(c)
k (m) = M

(c)
k (m)Xk (m) . (9)

Inverse STFT transform gives a time domain estimate of the
demixed source:

x̂(c) (n) = ISTFT
{
X̂

(c)
k (m)

}
. (10)

VI. EXPERIMENTAL RESULTS

In this section we describe the simulation and the informal
listening test results of the proposed algorithm and compare
its performance to a Gaussian Mixture Model (GMM) monau-
ral separation algorithm [2]. We use 60 seconds of speech
(either male or female) taken from TIMIT database sampled
at 16 KHz and Chopin’s prelude for piano Opus 28 No.
6 for GMM training. We use 1024 points STFT transform,
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SEPARATION PERFORMANCE ANALYSIS.
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EFMS female 6.0 11.5 7.7 1.9 5.8 20.6 6.0 1.6
EFMS male 5.7 11.8 7.3 2.4 5.5 17.3 5.9 1.6

GMM 2.4 9.3 3.8 2.9 2.6 7.9 4.8 2.5

Hamming synthesis window, 50% overlap and 12 components
GMM. The parameters used for the proposed algorithm were:
N = 1024, M = 64, Nu = 121, δE = 15dB, λ12 = λ21 =
1, λr = ∞. The high-pass filter used for the removal of
Ωc component was a 122 taps FIR filter with stop angular
frequency of 0.01π.

The WDO value [9] for the pair of signals used in our exper-
iment is 0.94, which according to [9] guaranties perceptually
perfect separation using “oracle” masks defined in [11]. We
used speech and music excerpts different from the ones used
for training. Chopin’s prelude for piano Opus 28 No. 7 was
used as a test musical excerpt.

The signal-to-distortion ratio (SDR), signal-to-interference
ratio (SIR), signal-to-artifact ratio (SAR) [12] and log spectral
distance (LSD) were used for the performance evaluation. The
results are shown in Table I. A 0 dB mixture of test signals was
used in all experiments. We notice that the separation quality
of the mixture that contained female speech is slightly higher
than male speech. This can be explained by the absence of
low frequency pitch tracks that are falsely estimated as music
components.

Smaller amounts of interfering signal is audible in signals
recovered by the proposed method compared to the GMM
based algorithm. The overall audio quality is also more
plausible. The most disturbing artifact in the recovered piano
signal is the missing piano note onsets. The reason is that
piano strings excited by a strike of a felt covered hammer
produce a strong non harmonic component near the note onset.
Only harmonic components of piano play are detected by our
algorithm and the rest of the signal leaks into the estimated
speech component.

To find out which part of the speech signal leaks into the pi-
ano channel, we applied our algorithm to a clean speech signal
(instead of speech-piano mixture, i.e. x (n) = s1 (n)). Perfect
separation algorithm would estimate ŝ2 (n) = 0. The leaking
speech parts are harmonic in their nature, located mostly in
low frequencies and have constant pitch over relatively long
periods of time (0.5-1 sec). A certain amount of musical noise
is also present. Applying the algorithm to a clean piano play
signal reveals that most of the leaking signal results from
the piano hammer strikes. This conclusion was confirmed by
examination of spectrograms of the recovered signals.

VII. CONCLUSIONS

We have presented and evaluated a novel technique for
single-channel source separation based on the energy of fre-
quency modulating signal. The proposed method requires a

relatively simple training and produces separation results that
are superior to a more complicated GMM based method,
when compared in the speech/piano play separation scenario.
We demonstrated that the FM based instantaneous features
are well localized in time and frequency, and carry sufficient
information to allow signal classification and separation.

Non-harmonic components present in some types of mu-
sic are impossible to separate using our method. Additional
information must be employed by the algorithm to enable
separation of non-harmonic signals. It might be useful to
incorporate other features used in Music Information Retrieval
community, for example the GMM based algorithm proposed
by Benaroya et al. [13].

Despite the training signals availability requirement, our
method is applicable to various real life applications such
as audio tracks remastering or speech enhancement in the
presence of music. The proposed algorithm can also operate
in a semi-supervised manner as part of audio editing software.
The properties of subband frequency modulating signals may
provide additional information that may be useful in other
audio processing applications, such as speech enhancement,
audio coding or audio classification.
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