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Abstract—Sparse Spike Inversion (SSI) and Basis Pursuit In-

version (BPI) are two methods for seismic inversion which util-
ize sparse inversion techniques. A LARS-LASSO solver is used 
for comparison of their performances. We propose the use of the 
F-measure to better evaluate the methods’ capability to correctly 
identify reflections from layers' boundaries.  We also show that 
flexible l1 penalization in the LASSO solution holds potential for 
improving performance.  
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1 INTRODUCTION 

In the seismic inversion problem we aim to find the ground 
layers' structure from measurements of acoustic echoes of a 
given, or estimated, signal. 
A short seismic pulse is transmitted from the earth surface. A 
sensor array deployed on the ground receives the reflected 
pulses from the interface between ground layers with different 
impedance. Following some simplifying assumption and a 
pre-processing stage, the data can be regarded as a series of 
one dimensional traces. In this 1D forward model ([8],[7]), a 
seismic wavelet is convolved with the reflectivity series to 
produce the seismic trace. The reflectivity pattern is assumed 
to be sparse as only boundaries between adjacent layers may 
cause a reflection of the seismic wave. It is desirable to per-
form a de-convolution of the seismic traces to obtain esti-
mates of the reflectivity patterns. As noted in the literature, 
the band limited seismic wavelet imposes limitation on the 
accuracy of the inversion processes; specifically, high fre-
quencies components of the reflected wave may be more sus-
ceptible to noise or may not be retrievable at all.  
It was suggested to use inversion techniques which inherently 
exploit the sparsity of the reflection channels.  
In this paper, we examine the Sparse Spike Inversion (SSI) 
and the Basis Pursuit Inversion (BPI) [1]. Both methods use a 
dictionary of expected signal forms, based on the estimated 
seismic wavelet. The solution for both methods is based on 
the LASSO convex relaxation of the classical sparse inver-
sion problem. We compare the performances of these two 
methods under various scenarios. We suggest the F-measure, 
a fidelity criterion additional to the correlation, to evaluate 
the algorithms performances. We also refer to the sparsity 
promoting l1-penalty term of the LASSO. We show that a 
variable selection of the penalty for each specific trace can 
improve the result compared to a fixed penalty even for fixed 
SNR scenario. In addition, we observe that the selection of 

the dictionary resolution for the inversion process, can greatly 
affects the algorithms' performances. Lastly, based on our 
observed results we suggest further research directions.  
The paper is organized as follows. In Section 2, we introduce 
the mathematical model and the mathematical approach for 
the solution. In Section 3, we refer to several implementation 
issues in the sparse solution approach. In Section 4, we intro-
duce the simulation results and fidelity criteria. In Section 5, 
we demonstrate experimental  results. 

2 MODELING AND SOLUTION APPROACHES 

We adopt the 1-D "forward model" also utilized in [1] 

(2.1) ( ) ( ) ( ) ( )s t w t r t n t= ∗ + . 

According to this model, the earth structure is laminated in 
planar horizontal layers. Each such layer is assumed to have 
uniform characteristics or "impedance". An acoustic signal 

( )w t  traveling within this medium will exhibit reflections at 

the boundaries of such layers with different impedances. 

Thus, the reflectivity pattern  ( )r t  encapsulates the desired 

data on the ground's structure.  

In typical scenarios, ( )r t is a sparse signal. The seismic 

wavelet ( )w t  is assumed to be known. Practically it is esti-

mated in a pre-processing stage. The measured signal is the 
convolution of the seismic wavelet with the reflectivity pat-
tern. Random additive noise with supposedly known statistics 
often contaminates the measurement. The final measurement 

( )s t  is usually referred to as the seismic trace. The objective 

of the inversion is to find the reflectivity ( )r t  from the seis-

mic trace ( )s t . The seismic wavelet ( )w t  is band limited in 

its nature. Hence, even in the absence of noise one can hope 

to recover ( )r t  up to the bandwidth resolution ( )w t  permits. 

In practice this translates to a minimal layer thickness below 
which we do not expect to detect. 

In this paper, we examine the performance of two techniques 
aimed to recover the reflectivity pattern, namely SSI and BPI 
[1]. In the following, we briefly present the models and the 
solution approach. We refer the reader to [1] for further de-
tails. Both the SSI and BPI rely on the knowledge of the 

seismic wavelet ( )w t . As (2.1) implies, the seismic trace con-

sists of a sum of ( )w t  and its time shifts, according to the 

non-zero reflectors in ( )r t . After time discretization, and an 

addition of random noise, (2.1) takes the form of: 



(2.2) 1 1 1N N M M N
s W r n× × × ×= + . 

In the SSI inversion method, N M

N M
W

×
× ∈� , also known as 

the Dictionary, is the convolution matrix formed column by 

column by samples' shifts of the seismic wavelet [ ]w k . The j-

th column of 
N M

W ×  can be seen as the measured response to a 

clean "reflection impulse" at time  j: [ ] [ ]j
r k k j

δ δ− = − . N is 

the number of measurements in the seismic trace. M is the 
discretized possible locations of layers' boundaries.   

The BPI method is aimed to capture thinner layers. As such, 
Zhang and Castagna [1] propose to construct the Dictionary 

N M
W × as even and odd wedge reflectivity pairs. Essentially 

the BPI Dictionary is comprised of a discretized (
s

t k T= ∆ ) 

version of the signals: 

(2.3) [ ]( , , , ) ( )* ( ) ( )
e s s s s

A t m n T w t t m T t m T n Tδ δ∆ = − ∆ + − ∆ − ∆
 

for the even atoms, and similarly 

(2.4) [ ]( , , , ) ( )* ( ) ( )
o s s s s

A t m n T w t t m T t m T n Tδ δ∆ = − ∆ − − ∆ − ∆
 

for the odd atoms. The indexes m,n assume all the legitimate 

values. The inversion problem of finding 
1M

r ×  from the noisy 

measurement 
1N

s ×  is formulated as 

(2.5)
2

1 1 10 2
min

M N N M M
r subject to s W r ε× × × ×− < . 

The convex relaxation of (2.5) after an additional Lagrangian 
relaxation of the constraint is given by: 

(2.6)
1

2

1 1 12 1

1
min

2M

N N M M M
r

s W r rλ
×

× × × ×− + . 

The problem formulated in the form of (2.6) is named 
"LASSO". The use of l1 penalty in similar support recovery 
problems proved to promote sparsity (see [2], [3]) of the so-

lution
1M

r × . 

3 SIMULATION SETTINGS 

Both the SSI and BPI methods were simulated. We focused 
on performance evaluation of the SSI and BPI methods for 
inversion on synthetic data under various settings. In this sec-
tion, we describe the following aspects of the simulation envi-
ronment: (i) Synthetic generation of the reflection channel 
and the seismic wavelet; (ii) Generation of the seismic trace;   
(iii) The dictionary; (iv) LARS-LASSO solver.   We note that 
we were aided by [1] for choosing some of the simulation 
parameters 

I. Synthetic generation of the reflection channel the 

seismic wavelet 

The simulation was performed in two operational sampling 
rates of 500Hz and 166.667Hz. Most results shown were tak-
en from the 500Hz setting. The Ricker wavelet of 40Hz 
bandwidth served as the seismic wavelet. Its sampled version

1
 

with (25 ( / 500))
W s

L round F= ⋅  samples is denoted by 
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[ ]w k was generated  with the aid of the MATLAB© function 

s=ricker(npt,freq,dt,nsw).No tapering was used and so nsw was set to 0. 

[ ]w k . The reflectivity pattern maximal delay was set to 

0.5sec. Hence, For the aforementioned sampling rates 
s

F , the 

reflection pattern [ ]r k  translates into a 251 taps and 84 taps 

FIR filters, respectively. The channel coefficients were gener-

ated in pairs with a fixed but customizable delay 
p

D . This 

spacing between adjacent reflections is a crucial factor in the 
inversion algorithms. Hence we would rather control this 
spacing rather than setting it at random to better evaluate the 
methods' performances. Another customizable parameter is 

the channels' sparsity ( p ). The delay between one pair to the 

next adjacent one was randomly chosen as ( )
p

D p+ ∆ where 

( ) ~ ( )p Geom p∆ . When we question the effects of the dif-

ferent sampling rate, the reflection channels were synthesized 
in the low sampling rate and up-converted to the higher rate 
by adding zeros between samples. This scheme allows a fair 
comparison of the two as the number of reflections is kept 
constant.  Lastly, the magnitude of each reflection was drawn 
independently from a uniform distribution in the range [-0.2, 
0.2]. 

II. Generation of the seismic trace 

Once the seismic wavelet and the reflectivity pattern are set, 
the generation of the seismic trace is rather straightforward. 
Yet we want to focus attention on some fine details. The 
seismic trace is generated by convolving the seismic wavelet 

[ ]w k  with the reflectivity pattern [ ]r k . Then, an additive 

[ ]n k  IID zero-mean Gaussian noise with pre-specified vari-

ance matrix, say 
2

T Tn L LIσ ×  ,is added to obtain the seismic 

trace [ ]s k . The variance is chosen to reach a desired SNR:

  

(2.7) [ ] [ ]* [ ] [ ]s k w k r k n k= + . 

Since we are dealing with sparse inversion techniques, it is 
not only the SNR that matters but also the distribution and 

magnitude of the reflectivity coefficients [ ]r k . We take a 

standard approach and set the noiseless response to have a 

unit norm 
2

2
[ ]* [ ] 1w k r k → . Then, the noise is generated 

such that 
2

2

1
[ ]E n k

SNR
=  

III. The Dictionary 

The Dictionary is synthesized according to the guidelines 

explained in the previous section. We keep in mind that [ ]r k  

is an 
FIR

L  length vector, the seismic wavelet [ ]w k  is an 
W

L  

length vector. We denote by [ ] [ ]jr k k jδ δ− = −  the 
FIR

L  

length vector with a single non-zero unit value at k j= . 

Then, The SSI dictionary SSI

Ns Ms
W ×  j-th column is simply given 

by: [ ]* [ ]jw k r kδ −  . The BPI dictionary BPI

Nb Mb
W ×  synthesis is a 

bit more involved as it should include all the possible odd and 
even pairs responses to the seismic wavelet as implied by 

(2.3) and (2.4). Let 
FIR

L  be the channel length, then the total 

number of dictionary atoms Nb  is given 



by
1

1

2 ( 1)
L

FIR FIR

l

Nb L l L
−

=

= − − +∑ . The first term corresponds to 

all even (and odd) pairs deployment over the channel; For a 

pair with its early reflection at time index l , we identify 

2( 1)
FIR

L l− +  possible late reflection companions. The 

second term corresponds to the single reflection scenario 
where the late pair companion is outside the FIR scope. This 
second part is, as a matter of fact, a duplication of the SSI 
dictionary. Practically, for the sake of reducing computation 
time, we synthesized the dictionary by taking only reflection 
pairs with spacing lower or equal to 12 taps. 

We note that the shift-invariance property of atoms' groups in 
the dictionary could be utilized to reduce complexity of the 
inversion algorithms 

IV. LARS-LASSO solver 

The LARS algorithm [4] can be adjusted to solve the LASSO 

(2.6) for the whole path ofλ . The LARS method alternately 

augments or, at times, drops, atoms from the active support 

of 1M
r × . Uniqueness of the solution is guaranteed by convex-

ity [5, 3]. In our simulation, we used the SpaSM toolbox [6] 
for both the SSI and BPI inversion methods. 

We call the function 'lasso.m'
2
 with ' 'X  being either the SSI 

or BPI dictionary, ' 'y  the seismic trace and ' 0 'stop =  so 

that we get the whole λ  path. The function has two outputs - 

' 'b  and 'info' The output ' 'b  is a matrix of size 
FIR

L P×  

where 
FIR

L  is the number of reflection coefficients (251). P 

is the number of junction points
3
. The 1

st
 column of 'b' is al-

ways the zero vector corresponding to the λ → ∞  solution. 

The 'lasso.m' function calls an internal function 'larsen.m'    

We made the following modifications in 'larsen.m':  
1. (Larsen.m-l.36) maxSteps = 12*maxVariables; 

2. (Larsen.m-l.13) Adding to the while loop a lower 

limit criteria to the residual's norm 
2

1 6r e> − .  

3. (Larsen.m-l.63) The error message in case of 'no 
positive direction' is replaced by a warning and a 
'break' command. 

4. (Larsen.m) The unbiased LS solution based on the 
support of 'b' is calculated and given as output of 
'lars.m' (see [3],  p. 100). 

The first three modifications were needed to enable calcula-

tion of a significant part of the λ  route while maintaining 

numerical stability. These changes became inevitable in the 
highly correlated BPI dictionary. The use of the unbiased LS 
solution gave a small improvement of the simulation results. 
The above modifications both contribute to the stability of the 
simulation and reduce the execution runtime. 

                                                           
2 [b info]=lasso(X, y, stop, storepath, verbose) 

3 "Junction" – λ  where new atom is augmented or an active atom is 

dropped. 

 

4 FIDELITY CRITERIA AND EXPERIMENTAL 

RESULTS 

Based on the aforementioned settings, we evaluated the per-
formances of the SSI and BPI methods on synthesized ran-
dom channels with random noise . 
We simulated several scenarios with different SNRs, chan-

nels' sparsity p, and spacing between reflected pairs 
p

D . We 

also show the possible importance of varying simulation 
sampling rate on the inversion performance. Simulation re-

sults for various triplets (SNR,p,
p

D ) are given below under 

different settings. For each scenario, we ran 100 tests. Two 
fidelity criteria, sometimes referred to as performance meas-
ures, were used to evaluate the performance in the different 
scenarios. The first criterion, also adopted by [1], is the aver-

age correlation between the actual reflectivity [ ]r n  and its 

estimate ˆ[ ]r n : 

(2.8)

2 2

ˆ[ ], [ ]

ˆ[ ] [ ]
corr

r n r n

r n r n
ρ

< >
=

⋅
. 

The second fidelity criterion offers a qualitative measure of 
the accuracy of the estimated layers' structure. Ultimately, one 
wishes to identify the locations of the interfaces between ad-
jacent layers; In the mathematical model (2.2), this translates 

into a correct identification of the support of [ ]r n . Using the 

standard definitions of precision and recall, we use a modi-
fied version of the "F measure" to estimate the performance 
of the support recovery: 

( )

Pr Re

1 1
Pr Re ( )

2 2

ecision call TP
F

ecision call TP FP FN

⋅
= =

+ + +
. 

The F measure takes a value in the range 0 1F≤ ≤ . 

As the F-measure relies on dichotomic values of the reflec-
tion coefficients – zero or nonzero, some thresholding is nec-
essary to mitigate the effects of noise and even numerical 
sensitivities. This basic, yet effective post-processing, greatly 

improves the active support detection. The minimum value γ  

we selected for a reflection coefficient to be considered active 
was set to: 

(2.9)
2

21
min 0.5 , 10

10

s

n n

FIR
L p

σ
γ σ σ

  
= + ⋅ ⋅ 

⋅  
. 

For sparsity p and signal variance 
2

s
σ , the average reflection 

coefficient amplitude  for non time overlapping reflections 

would be 
2

s

FIR

O
pL

σ 
 
 
 

. In practice, the high correlation be-

tween adjacent atoms, mostly observed in small 
p

D  scenar-

ios, may end up in smaller amplitudes. The expected contri-
bution of the noise to a specific reflection coefficient 

is
2( )
n

O σ . Thus, a reasonable threshold for reflection coeffi-



cient amplitude may take the form:  
2

2s

n

FIR

A B
L p

σ
σ+ ⋅

⋅
 

where different  

 

selections of ,A B  reflect a tradeoff between possible misde-

tection and possible false detection. 

The first term in γ , inherently introduces misdetection even 

in the noiseless case; hence, for scenarios with very high 

SNRs, a limit of 10
n

σ was set to significantly reduce such 

misdetections.  

In the first simulation setting we evaluate the correlation fac-
tor and F-measure by averaging results for a specific (loga-

rithmic) set of λ 4
. Table 1 shows simulation results in this 

setting. For each triplet we get an average performance for 

each correspondingλ . The values in the table are the λ val-

ues which correspond to the maximal performance measures 
extracted for each scenario. The correlation measure is also 
compared to an oracle scenario where the actual support is 
given and LS estimation is applied.  In Figure 3, the perform-
ances of the two fidelity measures are presented for a whole 

set of λ  for a given scenario [triplet (SNR,p,
p

D )]. 

During the above simulations it became apparent that the 
maximal correlation or most accurate support recovery is 
achievable at different values of λ  for different channels' 

inversion. This can be accounted for the different number of 
reflections, the spacing between them, the varying reflection 
coefficients' magnitude and noise. Following this observation, 
each of the two fidelity criteria was evaluated under an addi-
tional setting.  

In the second simulation setting, whose results are partially 
given in Table 2, we register for each specific channel inver-
sion the actual value of λ  for which the performance meas-

ures actually achieve their maximal values. Interpolation of 
the measured performance to a fixed grid of λ -s then fol-

lows. When repeated for various channels, we get joint distri-

butions: for 
max max

( , )ρλ ρ− and for
max max

( , )
F

Fλ − . This second 

setting is applied only for the low 10SNR dB=  scenarios, 

since for high SNR scenarios we already observe almost per-

                                                           
4 Average performance measures are evaluated for λ  on a fixed grid points 

for which we have a minimum statistics from 50
2

trialsN = different runs 
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Figure 1 - Synthetic reflection channel and its corresponding 

noisy seismic trace. 
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Figure 2 - Reconstructed reflection channel Coefficients for 

different λ  values (thresholded coefficients). 
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Figure 3 – Comparison of SSI and BPI methods -  Average 

performance for fixed λ values and 100 runs. 



fect recovery for some fixed λ  . We also keep in mind that in 

practice the best matching λ  is not accessible but instead a 

smart stopping criterion for the LARS-LASSO should be 
applied to maximize performance.  In the scope of this paper 
we do not present the whole results of the second setting sim-
ulation. Yet we report a consistent improvement in the inver-
sion performance where the variance between different runs 
is much smaller than the improvement rate. 

In trying to understand the partial gap in performance be-
tween the reported results in [1] and our simulation results 
another test was performed. This test involves a change in the 
simulation sampling rate and hence dictionary atoms and the 
spacing between them. Figure 3 demonstrates that the inver-
sion performance is quite substantially influenced by the op-
erational sampling rate. For the same SNR and reflectance 
patterns statistics, it is observed that a lower sampling rate in 
the order of twice of the seismic wavelet Nyquist rate, per-
forms better than the densely sampled one. We see that both 
SSI and BPI "suffer" from over-sampled dictionaries but BPI 
is more sensitive. We believe that the sampling rate and dic-
tionary atoms depend not only on the seismic wavelet band-
width but also on the measurement SNR and the inversion 
resolution we aim to achieve. 

5 DISCUSSION AND FURTHER RESEARCH 

The results above reveal several interesting aspects of the 
sparse channel inversion methods. Also, they give rise to fur-
ther research directions. 
From Table 1 we see that for high enough SNR, the recon-
struction in both methods is perfect or very close to that. This 
result even holds true for pair spacing of 3 taps (at 500Hz) 

1
3 6 sec

500
t m∆ = ⋅ =  which is below the expected separation 

capabilities of our 40Hz seismic wavelet 

0

6 6
9.7 sec

2 2 40
t m

fπ π
∆ = = =

⋅
[1]. Also, following the ob-

servation in the previous section, the selection of the diction-
ary should be considered so as to maximize performance for a 
given SNR and seismic wavelet.  

Another interesting observation which is also apparent is the 

rather strong correspondence between the λ -s for which the 

correlation and the F-measure take their maximal values in 
the noisy low SNR scenarios. In the high SNR case, the peak 
is quite flat so the actual maximum may not be of great sig-
nificance. It can be also observed that both fidelity criteria 
show better recovery for more sparse reflection patterns, 
higher pair spacing and higher SNRs. Our results also indi-
cate better performance of the SSI technique although with 
proper dictionary atom selection these differences seem to 
become significantly smaller. The results above encourage a 
further investigation of sparse inversion techniques and also a 
stopping  

criterion for the LARS-LASSO algorithm which may be data 
and SNR dependent. This has a potential for improving the 

inversion performance compared to the fixed λ  case.  It is 

also desirable to further examine the performance of the BPI 

method compared to the SSI. In that aspect, it may be benefi-
cial to use structured sparse inversion techniques. We saw 

that different λ  in (2.6) may end up in very different chan-

nels. Smart stopping criteria may also be crucial in the proc-
ess for selecting the best channel estimate. In that aspect, per-
forming wise thresholding or post-processing of the raw re-
flection estimate, based on probabilistic assumption, bulk of 
adjacent channels or some a-priori knowledge, may show 
improved performance 

REFERENCES 

[1] R.Zhang and J.Castagna, "Seismic sparse-layer reflectivity inver-

sion using basis pursuit decomposition", Geophysics vol.76 no.6, 

Nov-Dec 2011 

[2] SS Chen, DL Donoho et al, "Atomic decomposition by by basis 

pursuit: SIAM Rev., 43(1), p. 129–159. 

[3] M.Elad, "Sparse and Redundant Representations", Spring 2010 

[4] T.Efrom, T.Hastie et al, "Least Angle Regression", Annals of 

Statistics 2004, Vol. 32, No. 2, 407–499 

[5] R.J.Tibshirani, "The LASSO Problem and Uniqueness", Elec-
tronic Journal of statistics Volume 7 (2013), 1456-1490 
[6] SpaSM- Matlab Toolbox for performing sparse regression, 
http://www2.imm.dtu.dk/projects/spasm/ 
[7]  A.Heimer, I.Cohen, "Multichannel blond seismic deconvolution 
using dyanic programming", Journal of Signal Processing Volume 
Issue 7, p. 1839-1851 
Volume 7 (2013), 1456-1490 

[8] A.J. Berkhout, The seismic method in the search for oil 

andgas: current techniques and future developments, 

Proc.IEEE 74 (8) (August 1986) 1133–1159 

Table 1 - Fixed Lambda average Performance (Fs=500Hz). 

(SNR,p,
p

D ) 

Fs=500Hz 

Max. Correlation ρρρρ  

max ,ρλ − [ ]max E λλ
ρ  

Max. F-measure 

max F
λ − , [ ]max E Fλλ

 

 SSI BPI 
Oracle 

max
ρ  

SSI BPI 

(10dB,0.04,3) (0.02,0.76) (0.39,0.45) 0.996 (0.022,0.59) (0.049,0.38) 

(10dB,0.04,6) (0.07,0.95) (0.12,0.72) 0.996 (0.045,0.80) (0.19,0.58) 

(10dB,0.06,6) (0.045,0.93) (0.12,0.71) 0.995 (0.049,0.77) (0.1,0.57) 

(80dB,0.04,3) (4.7e-6,1) (5.6e-8,0.99) 1 (2.5e-6,1) (0.16,0.46) 

(80dB,0.04,6) (3.2e-5,1) (3.7e-8,0.99) 1 (6.8e-7,1) (0.31,0.54) 

Table 2 - Adaptive Lambda Average Performance 

(Fs=500Hz). 

(SNR,p,
p

D )

Fs=500Hz 

Max. Correlation ρρρρ  

[ ]max E λλ
ρmax ,ρλ − 

Max. F-measure 

[ ]max E Fλλmax F
λ −  

 SSI BPI SSI BPI 

(10dB,0.04,3) (0.036,0.83) (0.27,0.61) (0.027,0.68) (0.16,0.52) 

(10dB,0.04,6) (0.11,0.97) (0.17,0.8) (0.097,0.85) (0.20,0.69) 

(10dB,0.06,3) (0.023,0.75) (0.25,0.56) (0.019,0.60) (0.098,0.48) 


