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ABSTRACT

In speech communication systems the received microphone signals
are degraded by room reverberation and ambient noise. This signal
degradation can decrease the fidelity and intelligibility of the desired
speaker. Reverberant speech can be separated into two components,
viz. an early speech component and a late reverberant speech com-
ponent. Reverberation suppression algorithms, that are feasible in
practice, have been developed to suppress late reverberant speech or
in other words to estimate the early speech component. The main
challenge is to develop an estimator for the so-called late reverber-
ant spectral variance (LRSV). In this contribution a generalized sta-
tistical reverberation model is proposed that can be used to estimate
the LRSV. Novel and existing estimators can be derived from this
model. One novel estimator is a so-called backward estimator that
uses an estimate of the early speech component to obtain an esti-
mate of the LRSV. Advantages and possible disadvantages of the
estimators are discussed, and experimental results using simulated
reverberant speech are presented.

1. INTRODUCTION

In general, acoustic signals radiated within a room are linearly dis-
torted by reflections from walls and other objects. These distortions
degrade the fidelity and intelligibility of the desired speaker, and the
recognition performance of automatic speech recognition systems.
In general, the degradation increases when the distance between the
source and the microphone increases. One effect of reverberation
on speech is the lengthening of speech phonemes. Consequently,
reverberation of one phoneme overlaps subsequent phonemes. Evi-
dence has been found that this phenomenon, which is referred to as
overlap-masking, decreases speech intelligibility [1].

Reverberation reduction methods are generally divided into two
categories. Methods of the first category are known as reverberation
cancellation methods. In general, a linear filter operation is applied
to the observed microphone signals to obtain an estimate of the ane-
choic signal. The filters are either estimated directly from the ob-
served signals or indirectly using an estimate of the acoustic impulse
responses (AIRs) of the acoustic channels between the source and
the microphones. Methods in the second category are known as re-
verberation suppression methods. These methods commonly apply
a non-linear operation to the observed microphone signals to sup-
press reverberation and require little or no a priori knowledge about
the AIRs. In both categories single and multiple microphone sig-
nals are exploited. While multi-microphone cancellation methods
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can achieve perfect dereverberation, suppression methods can only
achieve partial dereverberation.

Here we focus on a specific single microphone reverberation
suppression technique that suppresses late reverberation or in other
words estimates the early speech component. Reverberation is sup-
pressed using spectral enhancement that is performed in the short-
time Fourier transform (STFT) domain. In order to perform spectral
enhancement an estimate of the short-term power spectral density (or
in the context of statistical spectral enhancement methods, spectral
variance) of the interference, i.e., the late reverberant speech com-
ponent, is required. The main challenge is to estimate the spectral
variance of the late reverberant signal from the reverberant micro-
phone signal. In the last decade several late reverberant spectral
variance estimators have been developed [2, 3, 4]. While some are
very heuristic, others are based on statistical room acoustic models
that are usually formulated in the time domain.

In this contribution we propose a generalized statistical reverber-
ation model in the STFT domain. Using this model we can derive
novel and existing estimators. Currently, all estimators are so-called
forward estimators, i.e., they use the reverberant microphone signal
to estimate the spectral variance of the late reverberant signal. Using
the proposed model, we derive a so-called backward estimator that
uses the estimated early speech component.

The paper is organized as follows: In Section 2 the problem is
formulated. In Section 3 we propose a generalized statistical rever-
beration model in the STFT domain. This model is used in Section 4
to derive forward and backward estimators for the late reverberant
spectral variance. In Section 5 we show how the early speech com-
ponent can be estimated given the late reverberant spectral variance.
Experimental results that demonstrate the performance of the for-
ward and backward estimators are presented in Section 6. Finally,
conclusions are provided in Section 7.

2. PROBLEM FORMULATION

The reverberant signal results from the convolution of the anechoic
speech signal s(n) and a causal AIR h(n). Here we assume that the
AIR is time-invariant and that its length is infinite. The reverberant
speech signal at discrete-time n can be written as

z(n) =
∞

∑

n′=0

h(n) s(n− n′). (1)

The observed microphone signal is given by

x(n) = z(n) + v(n), (2)

where v(n) denote the ambient noise. In this contribution we assume
that v(n) = 0 for all n.
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In the STFT domain the signal s(n) is given by

S(`, k) =
∞

∑

n=−∞

s(n) ψ̃(n− `R) e−j
2π
N

k(n−`R), (3)

where ` is the frame index, k is the frequency band index, R is the
discrete time shift, and ψ̃(m) denotes the analysis window of length
N . Subsequently we can express z(n) in the STFT domain as [5]

Z(`, k) =

N−1
∑

k′=0

∞
∑

`′=−∞

H(`′, k, k′)S(`− `′, k′), (4)

where k and k′ denote the band and cross-band frequency bin in-
dices, respectively. The STFT response H(`′, k, k′) is related to
impulse response h(n) by

H(`′, k, k′) =
(

h(n) ∗ ϑ(n, k, k′)
)
∣

∣

n=`′R
, (5)

where ∗ denotes convolution with respect to n. The function
ϑ(n, k, k′) is related to the analysis window ψ̃(m) and the synthesis
window ψ(m) of length N :

ϑ(n, k, k′) , ej
2π
N

k
′
n

∞
∑

n′=−∞

ψ̃(n′)ψ(n′+n)e−j
2π
N

n
′(k−k

′). (6)

The STFT response H(`′, k, k′) may be interpreted as a response to
an impulse δ(`′, k − k′) in the time-frequency domain.

To simplify the following discussion, and without loss of gener-
ality, it is assumed that the direct sound arrives at time instance n.
Since our objective is to suppress late reverberation we split the AIR
into two components such that

H(`, k, k′) =











0 for ` < 0;

He(`, k, k
′) for 0 ≤ ` < Ne;

H`(`, k, k
′) for Ne ≤ ` ≤ ∞,

(7)

whereHe(`, k, k
′) models the direct path and a few early reflections

and H`(`, k, k
′) models all later reflections, and Ne (Ne ≥ 1) spec-

ifies the time instance (measured with respect to the arrival time of
the direct sound) from where the late reverberation starts. This pa-
rameter can be specified by the design specifications or controlled
by the listener depending on the subjective preference.

Using (7) we can write the microphone signal X(`, k) as

X(`, k) =

N−1
∑

k′=0

Ne−1
∑

`′=−∞

H(`′, k, k′)S(`− `′, k′)

+

N−1
∑

k′=0

∞
∑

`′=Ne

H(`′, k, k′)S(`− `′, k′) + V (`, k), (8)

where V (`, k) denotes the additive ambient noise component. We
can write (8) as

X(`, k) = Ze(`, k) + Z`(`, k) + V (`, k), (9)

where Ze(`, k) denotes the early spectral speech component and
Z`(`, k) denotes the late reverberant spectral speech component.

Now our objective is to derive an algorithm that estimates the
early speech component Ze(`, k). We can estimate Ze(`, k) using
a spectral enhancement technique if we know the late reverberant
spectral variance λz`

(`, k) = E
{

|Z`(`, k)|2
}

. Ideally, we would

require H(`, k, k′) to estimate λz`
(`, k). In practice H(`, k, k′) is

not a priori known and blindly estimating H(`, k, k′) remains a dif-
ficult task. In order to avoid the need of estimating H(`, k, k′) we
propose a statistical model for H(`, k, k′) that depends on a small
set of parameters Θ(`, k). This statistical model is then used to de-
rive an estimator for λz`

(`, k). A block diagram that describes the
complete reverberation suppression system is depicted in Figure 1.
It should be noted that the so-called spectral coloration that is caused
by the early reflections cannot be reduced by the proposed suppres-
sion method.

3. GENERALIZED STATISTICAL REVERBERATION
MODEL IN THE STFT DOMAIN

We propose a novel generalized statistical model in the STFT do-
main1:

H(`, k, k′) =

{

Bd(`, k, k′) for ` = 0;

Br(`, k, k
′) e−α(k,k

′)`R for ` ≥ 1,
(10)

where α(k, k′) denotes the decay rate that is related to the rever-
beration time, and Bd(`, k, k′) and Br(`, k, k

′) are zero-mean mu-
tually independent and identically distributed (i.i.d.) Gaussian ran-
dom variables. Let us define βd = E{|Bd(`, k, k′)|2} and βr =
E{|Br(`, k, k

′)|2}. Accordingly we have:

1. E{H(`1, k1, k
′

1)H
∗(`2, k2, k

′

2)} = 0 for `1 6= `2 and
∀k1, k

′

1, k2, k
′

2,

2. E{H(`, k1, k
′

1)H
∗(`, k2, k

′

2)} = 0 for k1 6= k2 and ∀k′1, k′2,

3. E
{

|H(`, k, k′)|2
}

= 0 for k 6= k′,

where (·)∗ denotes complex conjugation. It is extremely interesting
to note that different realization of H(`, k, k′) can be interpreted as
different spatial observation (i.e., at different source and/or micro-
phone positions) in the enclosure.

Now we can calculate the spectral variance (also known as spec-
tral envelope) in the STFT domain

λh(`, k) , E{|H(`, k, k′)|2}

=

{

βd for ` = 0;
βr e−2α(k)`R for ` ≥ 1,

(11)

where and α(k) is linked to the frequency dependent reverberation
time T60(k) through

α(k) , 3 loge(10)

T60(k) fs
, (12)

where fs denotes the sampling frequency in Hz.

4. LATE REVERBERANT SPECTRAL VARIANCE
ESTIMATORS

In the following we assume that the spectral coefficients of the
speech signal can be modelled as a zero-mean i.i.d. complex random
variable with a certain distribution and variance λs(`, k). Using (8)

1This model is closely related to the time-domain model proposed in [4].
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Fig. 1. Block diagram of the complete reverberation suppression system, which consists of a STFT analysis block, model parameter estimator,
late reverberant spectral variance (LRSV) estimator, early speech component estimator, and STFT synthesis block.

and the statistical model proposed in (10), we can express the late
reverberant spectral variance λz(`, k) = E

{

|Z(`, k)|2
}

as

λz(`, k) = E







∣

∣

∣

∣

∣

K
∑

k′=0

∞
∑

`′=0

H(`′, k, k′)S
(

`− `′, k
)

∣

∣

∣

∣

∣

2






=

∞
∑

`′=0

λh(`′, k)λs(`− `′, k)

=
∞

∑

`′=1

βr e−2α(k)R`
′

λs(`− `′, k) + βd λs(`, k). (13)

The spectral variance λz(`, k) can also be divided into two compo-
nents, viz. the spectral variances of the early and late reverberant
speech components:

λz(`, k) =

Ne−1
∑

`′=0

λh(`′, k)λs(`− `′, k)

+
∞

∑

`′=Ne

λh(`′, k)λs(`− `′, k) (14)

= λze(`, k) + λz`
(`, k).

The critical distance is defined as the distance at which the
energy of the direct path is equal to the energy of all reflections.
When the source-microphone distance is larger than approximately
twice the critical distance the contribution of the direct-path energy
can be neglected. In this case we can further simplify (11) using
β , βd = βr. We can then rewrite (13) as

λz(`, k) = e−2α(k)R λz(`− 1, k) + β λs(`, k). (15)

4.1. Forward Estimator

Using (14) and (15) we can derive the estimator for λz`
(`, k):

λ̂FE
z`

(`, k) = e−2α(k)RNe λ̂z(`−Ne, k). (16)

The spectral variance λz(`, k) is estimated by

λ̂z(`, k) = η λ̂z(`− 1, k) + (1 − η) |Z(`, k)|2, (17)

where η (0 ≤ η < 1) denotes the smoothing factor. In case
V (`, k) 6= 0 we first need to estimate the spectral variance λz(`, k)
before we can estimate the late reverberant spectral variance.

We will refer to the estimator in (16) as the forward estima-
tor since it depends only on the spectral variance λz(`, k) of the
received reverberant microphone signal. The same estimator was
derived in [3, 6] using a statistical reverberation model in the time-
domain. Since we have derived the estimator directly in the STFT
domain the assumptions are clear and the derivation has become sig-
nificantly simpler.

From (16) we can see that the late reverberant spectral variance
will be overestimated when the decay rate α(k) is underestimated
(i.e., the reverberation T60(k) is overestimated). When the over-
estimated spectral variance λ̂FE

z`
(`, k) is used to estimate the early

speech component, audible distortions might be introduced. Under-
estimation of λz`

(`, k) results in less reverberation suppression but
will not cause any audible distortions.

4.2. Backward Estimator

Using the previous expressions we note that λz`
(`, k) is also given

by

λz`
(`, k) =

∞
∑

`′=Ne

λh(`′, k)λs(`− `′, k)

=
∞

∑

`′=0

β e−2α(k)R(`′+Ne)λs(`− `′ −Ne, k)

= e−2α(k)Rλz`
(`− 1, k) + β e−2α(k)RNeλs(`−Ne, k).

(18)

Obviously, βλs(` − Ne, k) is unobservable. However, the spectral
variance λ̂ze(`−Ne, k) can be used as an estimate of βλs(`−Ne, k)
instead. Therefore, we have

λ̂BE
z`

(`, k) = e−2α(k)Rλz`
(`− 1, k) + e−2α(k)RNe λ̂ze(`−Ne, k).

(19)
We will refer to the estimator in (19) as the backward estimator

that depends only on the estimated spectral variance λ̂ze(`, k) of the
early speech spectral component Ze(`, k). In the presence of am-
bient noise the early speech component can be estimated given an
estimate of the spectral variance of the ambient noise. In the latter
case the backward estimator might be advantageous since it circum-
vents the need to estimate the spectral variance λz(`, k), which is
required when the forward estimator is used.

Due to the recursive nature of the backward estimator and the
fact that λ̂ze(`, k) depends on λ̂BE

z`
(`, k), the effect of underestimat-

ing α(k) is more complex compared to the forward estimator. Here
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we make the following observations: Firstly, when α(k) is under-
estimated the spectral variance λz`

(`, k) will be overestimated after
a speech offset. Secondly, it should be noted that it is likely that
λ̂ze(`, k) becomes smaller than its true value in case λz`

(`, k) is
overestimated, therefore the error in the last term of (19) is reduced.
Thirdly, during periods of silence the error reduces to zero. Due
to the sparseness of the signal in the STFT domain these periods
of silence occur more frequently in the subband signals than in the
fullband signal. In practice, the overestimation can be detected and
counter measures can be taken to adjust α(k).

5. EARLY SPEECH COMPONENT ESTIMATOR

Using statistical signal processing, the spectral enhancement prob-
lem can be formulated as deriving an estimator Ẑe(`, k) for the
speech spectral coefficients such that the expected value of a certain
distortion measure is minimized [7].

We can calculate an estimator for Ze(`, k) which minimizes the
expected value of the distortion measure given the estimated early
speech spectral variance λ̂ze(`, k) = E{|Ẑe(`, k)|2}, the estimated
late reverberant spectral variance λ̂z`

(`, k) = E{|Ẑ`(`, k)|2} and
the spectral coefficient X(`, k):

Ẑe(`, k) = argmin
Ẑe(`,k)

E
{

d
(

Ze(`, k), Ẑe(`, k)
)}

. (20)

One frequently used distortion measure is the squared error distor-
tion measure, i.e.,

d
(

Ze(`, k), Ẑe(`, k)
)

=
∣

∣

∣
g(Ẑe(`, k)) − g (Ze(`, k))

∣

∣

∣

2
, (21)

where g(·) is a specific function that determine the fidelity criterion
of the estimator. For the squared error distortion measure, the esti-
mator Ẑe(`, k) is calculated from

g(Ẑe(`, k)) = E
{

g(Ze(`, k))
∣

∣

∣
X(`, k), λ̂ze(`, k), λ̂z`

(`, k)
}

.

(22)

While there are many fidelity criteria it was recently found that
the MMSE of the root spectral amplitude provides a good tradeoff
between speech distortion, musical noise and noise reduction [8].
The corresponding fidelity criteria is given by

g(Q(`, k)) = |Q(`, k)|0.5, (23)

withQ(`, k) ∈ {Ze(`, k), Ẑe(`, k)}.
The MMSE estimator is obtained by substituting (23) into (22).

Using a super-Gaussian model for the spectral coefficients, the so-
called SuGAR gain function yields [8]

G(`, k) =

√

ζ(`, k)

γ(`, k)

[

Γ(0.75)

Γ(.5)
1F1(0.25, 1;−ζ(`, k))
1F1(0.5, 1;−ζ(`, k))

]2

, (24)

where Γ(·) denotes the complete Gamma function, 1F1(a, b;x) de-
notes the confluent hypergeometric function, ξ(`, k) denote the a
priori signal to interference ratio (SIR),

ξ(`, k) =
λze(`, k)

λz`
(`, k)

, (25)

γ(`, k) denote the a posteriori SIR,

γ(`, k) =
|X(`, k)|2
λz`

(`, k)
, (26)

and

ζ(`, k) =
ξ(`, k)

1 + ξ(`, k)
γ(`, k). (27)

While the a posteriori SIR can be calculated directly using the for-
ward or backward estimator, the a priori SIR cannot be estimated
directly because the early speech spectral variance λze(`, k) in (25)
is unobservable. The estimation of the a priori SIR is obtained using
the so-called decision-directed approach proposed in [9].

To avoid speech distortions a lower bound, denoted by Gmin, is
applied to G(`, k). An estimate of the early spectral speech compo-
nent Ze(`, k) can now be obtained by applying the constraint gain
function to the reverberant spectral coefficient X(`, k), i.e.,

Ẑe(`, k) = max(G(`, k), Gmin) X(`, k). (28)

Finally, given the estimated spectral component Ẑe(`, k) the
early speech component ẑe(n) can be obtained using the inverse
STFT,

ẑe(n) =
∑

`

N−1
∑

k=0

Ẑe(`, k)ψ(n− `R)ej
2π
N

k(n−`R), (29)

where ψ(n) is a synthesis window that satisfy the so-called com-
pleteness condition:

∑

`

ψ̃(n− `R)ψ(n− `R) =
1

N
for all n. (30)

Given analysis and synthesis windows that satisfy (30) we can re-
construct ẑe(n) from its STFT coefficients Ẑe(`, k). In practice, a
Hamming window is often used for the synthesis window. A reason-
able choice for the analysis window, having minimum energy [10],
is given by

ψ̃(n) =
ψ(n)

N
∑

`
ψ2(n− `R)

. (31)

The inverse STFT in (29) is efficiently implemented using the
weighted overlap-add method [11].

6. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the reverberation sup-
pression algorithm when using the forward and backward estimators.
The algorithm was tested using reverberant speech (sampling rate
was fs = 8 kHz) that was generated by convolving anechoic speech
fragments from the APLAWD database [12] with various AIRs. The
AIRs were generated using an efficient implementation of the cele-
brated image method [13]. The distance between the source and the
microphone was 2.5 m. The reverberation time T60 ranges from 200
to 800 ms.

The length of the STFT analysis and synthesis window wasN =
256, and an overlap between two successive STFT frames was 75%
(i.e., R = 64). The parameter Gmin, which controls the maximum
suppression, was set to −12 dB. The smoothing factor η was set to
0.9, and the weighting factor used in the decision-directed approach
was set to 0.98. The time instance (measured with respect to the
arrival time of the direct sound) at which the late reverberation starts
was set to 48 ms, i.e., Ne = 6. The reverberation time T60(k) was
determined for each octave band by applying Schroeder’s method
[14] to a bandpass filtered version of the AIR. The decay rate α(k)
was calculated using (12). In practice one can use a blind estimation
procedure as proposed in [15, 16].
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Fig. 2. Results of (a) segmental signal to reverberation ratio and (b) log spectral distance for the reverberant speech signals, processed signals
using the forward estimator (FE) and processed signals using the backward estimator (BE) using different reverberation times.

The performance of the algorithm was evaluated using the seg-
mental signal to reverberation ratio (SRR) and log spectral distance
(LSD) [4]. For each reverberation time the results were averaged
over 10 different source-microphone positions (with equal source-
microphone distance), 10 (male and female) speech fragments and
5 sentences. The averaged results are shown in Figure 2 for (i) re-
verberant speech, (ii) processed speech using the forward estimator
(FE) and (ii) processed speech using the backward estimator (BE).
From these results we conclude that the backward estimator yields
slightly better results in terms of the segmental SRR and LSD com-
pared to the results obtained using the forward estimator. This might
be caused by the approximation used to derive the backward estima-
tor, since the early speech spectral variance λze(`−Ne, k) is slightly
larger than the direct speech spectral variance βλs(` −Ne, k). The
approximation becomes more accurate when Ne → 1. It should be
noted that similar results in terms of segmental SRR and LSD can be
obtained by both estimators by using different values of Ne for each
estimator.

7. CONCLUSIONS

One of the main challenges of developing reverberation suppression
algorithms is the development of an estimator for the so-called late
reverberant spectral variance. In this contribution a generalized sta-
tistical reverberation model is proposed that can be used to estimate
this spectral variance. We have shown that both novel and existing
estimators can be derived using this model. An alternative estimator
that uses an estimate of the early speech component was derived, dis-
cussed and tested using simulated reverberant speech. It was shown
that the backward and forward estimators provide comparable re-
sults. Further research is required to validate the model and the per-
formance of the estimator using recorded reverberant speech and in
the presence of ambient noise. In addition, the proposed statistical
model might be used to derive other, more advantageous, estimators.
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[16] H. W. Löllmann and P. Vary, “Estimation of the reverberation time in
noisy environments,” in International Workshop on Acoustic Echo and
Noise Control (IWAENC’08), Sep 2008, pp. 1–4.

1-4244-2482-5/08/$20.00 ©2008 IEEE 388 IEEEI 2008




