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etection and extraction of fault surfaces in 3D seismic data
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ABSTRACT

We propose an efficient method for detecting and extract-
ing fault surfaces in 3D-seismic volumes. The seismic data
are transformed into a volume of local-fault-extraction �LFE�
estimates that represents the likelihood that a given point lies
on a fault surface. We partition the fault surfaces into relative-
ly small linear portions, which are identified by analyzing tilt-
ed and rotated subvolumes throughout the region of interest.
Directional filtering and thresholding further enhance the
seismic discontinuities that are attributable to fault surfaces.
Subsequently, the volume of LFE estimates is skeletonized,
and individual fault surfaces are extracted and labeled in the
order of decreasing size. The ultimate result obtained by the
proposed procedure provides a visual and semantic represen-
tation of a set of well-defined, cleanly separated, one-pixel-
thick, labeled fault surfaces that is readily usable for seismic
interpretation.

INTRODUCTION

Fault surfaces are common subterranean structures that are asso-
iated with displacements or offsets of subsurface layers. Their con-
istent and reliable detection in 3D-seismic data provides an inter-
reter with very powerful means to quickly visualize and map com-
lex geological structures.

A common tool for facilitating structural and stratigraphic inter-
retation is the coherency cube, originated by Bahorich and Farmer
1995, 1996�. It is calculated from seismic data using a coherency
easure that quantifies the seismic discontinuity at each point. Dis-

ontinuities that are attributable to fault surfaces include dip, azi-
uth, and offset changes of seismic reflectors, and waveform and

mplitude variations caused by defocusing. Such discontinuities ap-
ear on coherence slices as incoherent linear or curved features �e.g.,
arfurt et al., 1999; Gersztenkorn et al., 1999; Neff et al., 2000;

ees, 1999�.
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The most acceptable coherence measures are based on crosscorre-
ation �Bahorich and Farmer, 1995�, semblance �Marfurt et al.,
998�, or eigenstructure �Gersztenkorn and Marfurt, 1996a, 1996b;
irlin, 1992� techniques. These methods typically suffer from a lack
f robustness, especially when dealing with noisy data �Marfurt et
l., 1999; Gersztenkorn and Marfurt, 1999�. Recently, we introduced
multiscale analysis method for the estimation of seismic coherency

hat is both robust for noise and computationally efficient �Cohen
nd Coifman, 2002�. It involves another measurement, namely, the
ocal structural entropy �LSE�, which evaluates the dissimilarity of
ubvolumes that enclose a given analysis point. Dealing with sub-
olumes, rather than individual traces, leads to robustness, yet
voids the expensive computations of eigenstructure-based large co-
ariance matrices and eigenvalues.

A major drawback of coherency-based fault analysis is that seis-
ic discontinuities also may be the result of geological features that

re unrelated to faults. Furthermore, creating a consistent geological
nterpretation from large 3D-seismic-data volumes often requires

anual intervention, which is time-consuming, tedious, and impre-
ise.

In this paper, we propose a robust and computationally efficient
ethod for the extraction of fault surfaces in 3D-seismic volumes.
he seismic data are transformed into a volume of local-fault-extrac-

ion �LFE� estimates, which provides the interpreter with a much
learer visual indication of the fault surfaces. The LFE estimate at a
iven analysis point is obtained by the following procedure. First, a
D-analysis cube that is tilted and rotated about the analysis point is
elected by the interpreter. The analysis cube moves throughout the
eismic volume and outputs a measure of normalized differential en-
ropy �NDE� for each point. The NDE value represents the likeli-
ood of a fault surface whose dip and azimuth are similar to those of
he analysis cube to intersect with the analysis point. Subsequently,
he local average of the NDE is removed, and portions of fault sur-
aces, approximately aligned with the analysis cube, are extracted by
irectional filtering. The filtered NDE coefficients are thresholded
nd filtered back to produce directional LFE volumes. Next, the LFE
ttribute is given by the maximal directional LFE, over the presum-
bly tested set of dips and azimuths. This approximately gathers the

d July 1, 2005; published online July 12, 2006.
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P22 Cohen et al.
ignificant portions of the fault surfaces into smooth larger surfaces.
inally, the results are skeletonized, and individual faults surfaces
re extracted and labeled in the order of decreasing size. A compari-
on of the LFE volume with the local-structural-entropy attribute
Cohen and Coifman, 2002� shows that the LFE method provides a
ore reliable and convenient tool for detecting and extracting fault

urfaces.
In the following section, we present the fault-extraction algo-

ithm. We begin with a local estimate of faults. Next, we enhance the
ontrast of these faults to facilitate the analysis of regions that con-
ain dipping layers or are highly discontinuous. Then, we extract the
ortions of fault surfaces by directional filtering and construct fault
urfaces out of these portions. Finally, we demonstrate the applica-
ility of the proposed algorithm to real data.

THE LOCAL FAULT EXTRACTION

In this section we describe the basic components forming the pro-
osed fault-extraction algorithm.

ormalized differential entropy

We begin by subdividing the original 3D-seismic volume into in-
ividual 3D data-analysis volumes of N � M � P dimension. A

igure 1. �a� A vertical cross section and �b� horizontal slice that il-
ustrate the geometrical distribution of traces and samples used in the
nalysis cube. The analysis cube, consisting of two subvolumes, is
entered about an analysis point p = �t,x,y� and is defined by the
ength of major axis L1, the length of minor axis 2L2 + 1, the time du-
ation N samples, the azimuth � around the inline axis, and the tilt �
rom the vertical axis.
ypical analysis volume is 41 � 11 � 6 values. The analysis vol-
me is defined by the length L1 along the major axis, the length 2L2

1 along the minor axis; the time duration of N samples, the azi-
uth � �rotation angle around the inline axis�, and the tilt � from the

ertical axis �see Figure 1�.
The analysis volume is broken into two subvolumes �for instance,
41 � 11 � 6 analysis cube becomes two 41 � 11 � 3 subvol-

mes, for a total of 1353 values�, which are rotated and tilted around
central analysis point p = �t,x,y�. Subsequently, the samples with-

n the respective subvolumes are rearranged consistently into two
olumn vectors v1,p��,�� and v2,p��,��. Note that the subvolumes in
igure 1 have horizontal top and bottom surfaces, which is particu-

arly preferable when the subsurface layers are horizontal or close to
orizontal; however, in case there are dipping layers, the top and bot-
om surfaces can be elevated so that they are parallel to the dominant
ocal seismic orientation within the analysis cube �Cohen et al.
004�.

Rearranging the seismic data within the analysis cube in such a
ay allows the resultant column vectors to be used directly for edge
etection. That is, the fault-surface edges that are defined by a com-
ination of difference of position of the central analysis point p, the
nalysis-cube size, the rotation �, and the tilt � are computed from
he pairs of the corresponding two-column vectors. The computa-
ions, which are carried out through a normalized version of the Pre-
itt edge-detection filter �Jain, 1989; Lipkin and Rosenfeld, 1970;
uo et al., 1996�, are designed to capture the edges and breaks,
hether visible or not, that are generated by subterranean faults in

he seismic data.
Ameasure Np��,��, referred to as normalized differential entropy

NDE�, is computed at each analysis point p as a normalized version
f the Prewitt filter,

Np��,�� =
�v1,p��,�� − v2,p��,���p

�v1,p��,���p + �v2,p��,���p
, �1�

here � · �p is the �p norm. Typically we use the �1 norm, and the
etric defined in equation 1 can be referred to as a normalized Man-

attan distance. We may observe the following: First, the range of
p��,�� is �0, 1�, where the minimal value �zero� is obtained when

he two subvolumes are perfectly correlated without an offset of
eismic layers �i.e., v1,p��,�� = v2,p��,���, and the maximal value of

p��,�� is obtained for maximally offset correlated subvolumes
i.e., v1,p��,�� = −v2,p��,���. Second, if the subsurface layers have
ostly horizontal orientation without significant lateral elastic-im-

edance contrasts, then the NDE measure produces an excellent
dge detector and fault-surfaces indicator, but a very poor indicator
f subsurface-layer interfaces. Third, even when the dominant layer
rientation is not horizontal, by using top and bottom analysis-cube
urfaces that are parallel to the dominant local 3D-seismic orienta-
ion �Cohen et al., 2004�, we obtain a useful 3D-edge detector, which
s a good indicator of fault surfaces and poor indicator of subsurface
ayer interfaces. Fourth, the data structure used for the NDE and its
D-edge-detection computational architecture is completely differ-
nt from the data structures and the computational setup in the 3D-
eismic coherence and variance methods �e.g., Marfurt et al., 1999;
ahorich and Farmer, 1996; Gersztenkorn et al., 1999�. Fifth, when

he top and bottom analysis-cube surfaces are horizontal, there is a
ery significant overlapping of the analysis cubes for any dip and az-
muth combination; accordingly, the computation of Np��,�� and

�� , � � for nearby analysis points p and p involves many re-
p� � � �
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Detection and extraction of fault surfaces P23
eatable difference computations. Consequently, all possible differ-
nces for the NDE computations are computed up front for all com-
inations of the dip and azimuth that are used, which yields signifi-
ant acceleration in the NDE computations. We have found from
ractical experience that a set of 12 dips from –35° to 35° with a 5°
ncrement excluding the dips of –5°, 0°, and 5°, and a set of 12 to 15
niformly spaced azimuth values are sufficient for a 41 � 6 � 7
DE analysis cube. By using the up-front NDE local-difference

omputations for all combinations of dip and azimuth, we obtain a
omputational speedup of approximately a factor of 20, which is ex-
remely important for efficient computation and extraction of the
ault surfaces.

ontrast enhancement

The second step of the fault-extraction algorithm is contrast en-
ancement, which is applied to single NDE volumes, i.e., per postu-
ated orientation. Patches of fault surfaces, which are approximately
haracterized by the dip and azimuth of the analysis cube, are identi-
ed by a local increase in the NDE values. Accordingly, we apply
ontrast-enhancement filtering to single NDE volumes, i.e., per pos-
ulated orientation, and set to zero negative values. Contrast en-
ancement facilitates the analysis of regions that contain dipping
ayers or are highly discontinuous.

Contrast enhancement can be efficiently implemented by using a
iscrete “Mexican hat” function, which corresponds to local-aver-
ge subtraction:

f�n� = C�1 − n2T2�exp�− n2T2/2� , �2�

here T is the sampling period of the Mexican-hat function, n is an
nteger, and C is a normalization constant, such that �n=−�

� � f�n�� = 2.
e use a finite-length filter �−4.5 � nT � 4.5� that contains an odd

umber of uniformly spaced coefficients. In general, filter length se-
ection depends on the size of the analysis cube and the thickness of
he fault surfaces. The filtered NDE by the Mexican-hat function is
omputed as

N̄p��,�� = gp��,�� � Np��,�� = �
p�

gp−p���,��Np���,�� ,

�3�

here gp��,�� is a 3D version of f that is rotated around a central
nalysis point p = �t,x,y�, such that its main axis is perpendicular to
he slabs of the analysis cube �i.e., rotated by azimuth � around the
nline axis and tilted by � from the vertical axis�. The contrast-en-
anced NDE is given by

N̂p��,�� = max�N̄p��,��,0� . �4�

irectional LFE

The third step of the fault-extraction algorithm uses 3D direction-
l filtering on single contrast-enhanced NDE volumes, i.e., per pos-
ulated orientation. Directional filtering enhances the portions of
ault surfaces that are approximately aligned with the analysis cube.

The directional filter, denoted by hp�� + �,��, is a 3D ellipsoid
hat is tilted by � + � with respect to the time axis, rotated by � with
espect to the inline axis, and normalized such that �php��,�� = 1.
ts dimensions, selected by the interpreter, control the minimal di-
ensions of the detected subsurfaces. The maximum value of � is
etermined by the tilt increment �� ���� � ��/2�. The implementa-
ion uses a 3D pancakelike Hann window that is aligned so that it is
arallel to the division in the analysis cube. A possible set of dimen-
ional values for this 3D pancakelike window is 61 samples at its
ajor axis and three samples at its minor axes. A possible value for

he tilt increment is �� = 5°, and the relative tilt of the directional fil-
er � can be restricted to values in the set �−2°,0,2°�.Alternatively, a
maller tilt increment could be used and the relative tilt could be dis-
arded �i.e., � � 0�; however, the above formulation has been found
o be computationally more efficient.

Directional filtering of the contrast-enhanced NDE yields

Cp�� + �,�� = �
p�

hp−p��� + �,��N̂p���,�� , �5�

here the summation in equation 5 is over the set of points p�
�t�,x�,y��, which are in the proximity of p = �t,x,y� �i.e., p − p� is

n the support of hp−p��� + �,���. The resultant coefficients are
hresholded by 	 �0 � 	 � 1�,

C̃p��� + �,�� = 	Cp��� + �,�� , if Cp��� + �,�� 
 	

0, otherwise,


�6�

nd then filtered back to produce the directional LFE values, deter-
ined by

Lp��,�� = �
p�,�

C̃p��� + �,��hp−p��� + �,�� . �7�

he directional LFE volumes contain significant portions of fault
urfaces that are characterized by roughly the same dip and azimuth
rientations as those of the analysis cube. Subsequently, at each
oint of the 3D volume, we keep the maximum directional LFE val-
e over the tested set of tilts and azimuths. Specifically, the LFE at-
ribute at the analysis point p is obtained by

L̂p = max
�,�

�Lp��,��� . �8�

quipped with the tilt and azimuth arguments, ��p� and ��p�, which
ield the maximum in equation 8 for each particular analysis point p,
he LFE volume is further enhanced by 3D skeletonization and 3D
urface separation. The directional LFE performs best on 3D-seis-
ic volumes that do not have fault shadows. Extensive presence of

ault shadows can generate small fault surfaces that cross true faults
n an X-pattern.

keletonization

The fourth step of the fault-extraction algorithm, skeletonization,
s very important, both for filtering out very small faults or faultlike
eatures and for separating the different fault surfaces. Skeletoniza-
ion algorithms have been used in image processing for decades
e.g., Blum, 1967; Pavlidis, 1980; Stentiford and Mortimer, 1983;
hang and Fu, 1984; Zhang and Suen, 1984�. Here, we present a
keletonization algorithm for 3D data that is designed particularly
or the results of the filtering step that is outlined above.

The skeletonization algorithm performs the following computa-
ions on the results of the filtering step:
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� For each horizontal slice t, it carries out a 2D binarization and
skeletonization using the adaptive image-binarization-and-
skeletonization algorithm given inAppendix A.

� For each vertical slice x, it performs 2D skeletonization and

igure 2. Vertical cross sections and horizontal slices through the se
al cross section at y = 1.3 km; �b� vertical cross section at y = 8 km
t t = 2.4 s; and �d� horizontal slice at t = 3.2 s.

igure 3. Vertical cross sections and horizontal slices through the sk
me: �a� vertical cross section at y = 1.3 km; �b� vertical cross sect
orizontal slice at t = 2.4 s; and �d� horizontal slice at t = 3.2 s.
stretches the skeletons, as described in the adaptive image-bi-
narization-and-skeletonization algorithm � A�.

� It repeats step 2 for vertical slice y, horizontal slice t, vertical
slice x, and so on, until there is no change in the result or a pre-
specified limit of iterations has been reached. Each iteration

further stretches the skeletons, so that gaps
in the fault surfaces are bridged and the re-
sultant surfaces become more complete.

Labeling of individual fault surfaces

The final step of the fault-extraction algorithm
is the separation of the individual fault surfaces
and labeling of the resultant objects in order of
decreasing size.

For each azimuth, we extract the data that are
associated with that azimuth and concatenate
them along the fourth dimension, ordering them
according to the azimuth value, thus producing
4D data that contain the azimuth information, as
well. Subsequently, we label the newly produced
4D data and re-create the 3D labeled data by tak-
ing the maximum along the fourth dimension.
This creates a labeled version of the 3D data, such
that the objects are distinguished by their azi-
muths, as well, and therefore are labeled differ-
ently if their azimuths are not close to one anoth-
er. Next, we identify objects whose size is above a
certain threshold, and relabel these objects in or-
der of decreasing size. �The remaining objects are
removed.�

RESULTS

In this section, we use a real-data example to
demonstrate the applicability of the LFE algo-
rithm and to illustrate its execution. The data are
decimated in time and space. The time interval is
4 ms; inline and crossline trace spacing is 25 m.
A small subvolume of 401 � 401 traces and
1001 samples is used for demonstration �10-km
inline and crossline distances and 4-s duration�.

Figure 2 shows vertical cross sections and hori-
zontal slices through the seismic data. Figure 3
displays the corresponding vertical cross sections
and horizontal slices through the skeletonized
LFE volume. For the current example, we used a
3D pancakelike Hann filter whose dimensions are
61 samples at its major axis and three samples at
its minor axes. The tilt increment is �� = 5°, the
azimuth increment is �� = 45°, and the relative
tilt of the directional filter � is restricted to three
values �−2°,0,2°�. The filtered NDE coefficients
are thresholded by 	 = 0.12 and filtered back to
produce the directional LFE volumes. The skele-
tonized LFE volume �Figure 3� contains fault sur-
faces that are consistent with the presumed model
�i.e., the dimensions of the analysis cube, set of
dips and azimuths, directional filter, threshold,

ata: �a� verti-
rizontal slice

zed LFE vol-
= 6 km; �c�
ismic d
; �c� ho
eletoni
ion at y
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tc.�. The existence of fault shadows in the prestack-time-migrated
olume causes small-scale X-pattern faults to be generated. Hence,
t is generally preferable to apply LFE on prestack-migrated data that
ave minimal fault shadows. Figure 4 shows the final result of the
ault-extraction logarithm which includes labeling of distinct skele-
ons in order of decreasing size.

igure 4. Three-dimensional visualization of the original seismic
ata and corresponding color-coded fault surfaces. Different colors
orrespond to different fault-surface numbers. The fault-surfaces are
obustly extracted, separated, and labeled.

igure 5. Vertical cross sections and horizontal slices through the LS
al cross section at y = 1.3 km; �b� vertical cross section at y = 6 km
t t = 2.4 s; and �d� horizontal slice at t = 3.2 s.
For comparison with the LSE attribute �Cohen and Coifman,
002�, in Figure 5 we plot vertical cross sections and horizontal slic-
s through the LSE volume that was obtained by using analysis
ubes of 6 � 6 traces and 21 samples. Values are mapped to shades
f gray, where darker shades indicate greater discontinuity. A com-
arison of Figures 5 and 3 shows that the proposed method provides
more reliable and convenient tool for the extraction and separation
f fault surfaces. Furthermore, faults along strike that are difficult to
ee in the LSE volume are very clear in the skeletonized LFE vol-
me.

CONCLUSION

A major component of structural interpretation is the identifica-
ion, location, and extraction of individual fault surfaces. Fault sur-
aces are very important in hydrocarbon exploration because they
re directly related to hydrocarbon accumulation and hydrocarbon
ow paths. Extraction of individual fault surfaces from seismic data

s a largely qualitative procedure and thus has been characterized by
he need for careful human data interpretation.

In recent years, there has been progress in visualizing stratigraph-
c and structural discontinuities with the coherence or variance

ethods, which look at the similarity or dissimilarity of a small num-
er of neighboring traces to determine these discontinuities. Howev-
r, the existing methods have a limited precision and generally are
nefficient in isolating fine details, such as fault surfaces or sedimen-
ary-layer interfaces that may be only one pixel wide. The proposed
ault-extraction algorithm facilitates the extraction, separation, and
abeling of the fault surfaces by identifying portions of the surfaces
nd combining them into large, distinct fault surfaces. Specifically,
he portions of the fault surfaces are identified by analyzing tilted
nd rotated subvolumes throughout the region of interest. Applying

3D contrast enhancement and directional filtering
enables the analysis of regions that contain dip-
ping layers or are highly discontinuous. Skeleton-
izing the results of the filtering operation, separat-
ing the individual fault surfaces, and finally, la-
beling the skeletons in the order of decreasing
size yields a useful representation for a 3D visual-
ization of subterranean features.

APPENDIXA

ADAPTIVE IMAGE BINARIZATION
AND SKELETONIZATION

The steps of the adaptive image-binarization-
and-skeletonization algorithm are:

1� Define two thresholds: low and high. Define
the high threshold so that the high-threshold
binarization will remove low-intensity ob-
jects yet will not completely erase objects
that should remain in the image. Define the
low threshold so that connectivity between
two close objects will be gained, yet no un-
necessary pixels will be marked as “1.”

2� Binarize the original image using the high
threshold.

me: �a� verti-
rizontal slice
E volu
; �c� ho
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� Skeletonize the binary image as follows:

a� Using an eight-neighborhood notation as shown in Figure
A-1a, let N�p1� denote the number of nonzero neighbors
of the center point p1, and let T�p1� denote the number of
0-1 transitions in the ordered sequence p2,p3, . . . ,p8,
p9,p2. Compute N�p� and T�p� for all points p in the im-
age.

b� Flag type-I border points in the image, where a point p1 is
flagged if the following conditions are satisfied:

i� 2 � N�p1� � 6.
ii� T�p1� = 1.
iii� p5 = 0 or p7 = 0 or �p3 = 0 and p9 = 0�.

c� Delete all type-I border points.

d� Flag type-II border points in the image, where a point p1 is
flagged if the following conditions are satisfied:

i� 2 � N�p1� � 6.
ii� T�p1� = 1.
iii� p3 = 0 or p9 = 0 or �p5 = 0 and p7 = 0�.

e� Delete all type-II border points.

f� Iterate deletion of type-I and type-II points using steps
3b–e until the image contains no more such border points.

� For each pixel in the skeletonized image that is marked as “1”
and has no neighbors marked as “1” or has only one neighbor
marked as “1” �edge points�, do the following:

a� For a pixel that has no neighbors marked as “1,” find the
pixel with the maximum value among the eight-connect-
ed neighborhood of the corresponding pixel in the origi-

igure A-1. �a� Eight-neighborhood notation that is used for binary
mage skeletonization. �b� and �c� Eight-neighborhood for a pixel
hat has only one neighbor marked as “1.” The neighbor marked as
1” either belongs to the four-neighborhood �b� or is located on the
orner of the eight-neighborhood �c�. The locations of pixels that are
onsidered not too close to the neighbor pixel marked as “1” are de-
icted by “�.”
nal image. For a pixel that has only one neighbor marked
as “1,” find the pixel with the maximum value among the
pixels in the original image that belong to the eight-con-
nected neighborhood of the pixel and are not too close to
the neighbor pixel that is marked as “1.” Figures A-1b and
A-1c show the locations of the not-too-close pixels. Fig-
ure A-1b refers to the possibility that the neighbor marked
as “1” belongs to the four-connected neighborhood, and
Figure A-1c refers to the possibility that the neighbor
marked as “1” is on the corner of the eight-neighborhood.

b� If this maximum value is above the low threshold, mark
the corresponding pixel in the skeletonized image as “1.”
Otherwise, look for a pixel that is above the low threshold
in the 5 � 5 neighborhood in a similar manner. If such a
pixel exists, mark the corresponding pixel in the skeleton-
ized image as “1,” and mark the appropriate pixel in the
3 � 3 neighborhood so that connectivity will be retained.

c� If the newly marked pixel �the outer pixel in the case of 5
� 5 neighborhood� has only one neighbor marked as “1,”
go to step 4a in the algorithm for the newly marked pixel.

It is important to note that the skeletonized image is updated as
ecessary at the various steps of the algorithm, and that every step in
he algorithm uses the previously updated skeletonized image. Fur-
hermore, steps 4a–c in the algorithm can be implemented as a recur-
ive function, which is recursively called as necessary in step 4c of
he algorithm.
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