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Dominant Speaker Identification for Multipoint

Videoconferencing

Ilana Volfin and Israel Cohen

Abstract

A multi-point conference is an efficient and cost effective substitute for a face to face meeting. It

involves three or more participants placed in separate locations, where each participant employs a single

microphone and camera. The routing and processing of the audiovisual information is very demanding

on the network. This raises a need for reducing the amount of information that flows through the system.

One solution is to identify the dominant speaker and partially discard information originating from non-

active participants. We propose a novel method for dominant speaker identification using speech activity

information from time intervals of different lengths. The proposed method processes the audio signal

of each participant independently and computes speech activity scores for the immediate, medium and

long time-intervals. These scores are compared and the dominant speaker is identified. In comparison

to other speaker selection methods, experimental results demonstrate reduction in the number of false

speaker switches and improved robustness to transient audio interferences.

I. INTRODUCTION

Multipoint videoconferencing technology has been existent since the early 1960s. Throughout

this period it had transformed from an expensive technology restricted for use in large orga-

nizations, to cheap and easy to use applications available in almost every home. In multipoint

videoconferencing, three or more dispersedly located participants connect for a meeting over

telephone or Internet-based networks. Typically the meeting is controlled by a central processing

unit, which is in charge of routing signals between participants. The incorporation of video into

audioconferencing had significantly raised the amount of information transmitted through the
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network. In addition to increased bandwidth consumption, it raises the amount of information

that is processed by the central processing unit. An effort has been made to offer solutions for

reducing the load on the network. Most of these solutions involve the identification of the most

active participants through a process referred to as speaker selection. Once the active speakers

are selected, the remaining audiovisual information may be discarded, thus relieving the network.

Many works in the field of improving the efficiency of data traffic in audio or videoconferenc-

ing rely on speaker selection as a vital component [1], [2], [3]. However, little research attention

has been devoted to the speaker selection task itself. The simple methods are based on indicators

of the signal level in the channel as measured by its amplitude or mean power [4], [5], [6], [7].

In these methods, the most active speakers are selected as the speakers with the highest signal

level. Since the selection is based on an instantaneous measure, these methods are known to

cause frequent false speaker switches. A method with a more advanced switching mechanism

was proposed in [8]. In this method, the active parties are identified by either the signal power

or the arrival of silence insertion descriptor (SID) frames. They are then ranked by the order

of becoming active speakers. A speaker can be promoted in ranking only if its smoothed signal

power exceeds a certain barge-in threshold. The ranking list keeps a continuous record of the

M most active participants.

An improvement to [8] is proposed in [9] by suggesting a more sophisticated method for

speech detection. In this method, the speech detection is based on a set of speech specific

features and a machine learning technique that classifies each signal frame into either voice or

noise. The above-mentioned methods, although constituting an advancement over the level based

methods, still concentrate on instantaneous measures for speech activity. No special attention is

devoted to long-term properties of dominant speech in the speaker switching mechanism. The

barge-in mechanism, that is proposed as the switching mechanism, increases the vulnerability

of these algorithms to false switching due to transient interferences.

In this paper, we introduce a novel approach for dominant speaker identification based on

speech activity evaluation on time intervals of different lengths. The lengths of the time intervals

we use correspond to a single time frame, a few phonemes, and a few words up to a sentence.

This mode of operation allows capturing basic speech events, such as words and sentences.

Sequences and combinations of these events may indicate the presence of dominant speech

activity (or lack of it). Another unique ability offered by the proposed method is a distinction
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between transient audio occurrences that are isolated and those that are located within a speech

burst.

Integration of long-term speech information had already been proven effective in voice ac-

tivity detection (VAD) applications [10], [11], [12]. Long term information was used in the

aforementioned methods in order to determine whether speech is present in a currently observed

time-frame. We find this approach well suited to our problem since dominant speech activity

in a given time-frame would be better inferred from a preceding time interval than from any

instantaneous signal property. Hence we incorporate the approaches from these VAD works into

the proposed method. Objective evaluation of the proposed method is performed on a synthetic

conference with and without the presence of transient audio occurrences. In addition we test the

proposed method on a segment of a real five channel audioconference. Results are compared

with existing speaker selection algorithms. We show reduction in the number of false speaker

switches and improved robustness to transient audio interferences.

The paper is organized as follows. In Section II, we formulate the problem of dominant speaker

identification. In Section III, we present the proposed method. We present two approaches for

speech activity score evaluation in Section IV, where one is based on a single observation

and the other introduces temporal dependence between consecutive time-frames using the score

on a sequence of observations. Experimental results are presented in Section V. This work is

concluded in Section VI.

II. PROBLEM STATEMENT

A multipoint conference consists of N participants received through N distinct channels. The

objective of a dominant speaker identification algorithm is to determine at a given time which one

of the N participants is the dominant speaker. We discuss an arrangement where each participant

receives a video feed from only one other participant. In the proposed embodiment, the video

stream of the dominant speaker is sent to all participants while the dominant speaker himself

receives the video stream from the previous dominant speaker. Throughout this paper we use

the terms channel, participant, user and speaker interchangeably, as referring to a conference

end-point.

We define a speech burst as a speech event composed of three sequential phases: initiation,

steady state and termination. In the first phase, speech activity builds up. During the second
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phase speech activity is mostly high, but it may include breaks in activity due to pauses between

words. Finally, in the third phase speech activity declines and then stops. Typically, a dominant

speech activity is composed of one or more consequent speech bursts. We refer to the point

where a change in dominant speaker occurs as a speaker switch event.

The challenges in the dominant speaker identification problem arise from equipment, sur-

rounding and personal characteristics of the different users. The type of equipment used may

introduce noise, such as crosstalk (speakers) or reverberations (far-talking microphone). The

quality of the sensor affects the SNR of the incoming signal. The type and level of noise

in the surrounding of the speaker influence the ability of the system to identify each speaker

as dominant. The presence of transient noises, characterized by short duration and high energy

signals, may distract the decision regarding the dominant speaker. Finally, personal characteristic

of the speaker, such as loudness or quality of voice, may also affect the identification of the

dominant speaker.

The desired behavior of a dominant speaker identification algorithm is as follows.

• No false switching should occur during a dominant speech burst. Both transient noise

occurrences and single words that are said in response to or in agreement with the dominant

speaker are considered transient occurrences. These should not cause a speaker switch.

• A speaker switch event cannot occur during a break in speech between two dominant

speakers. It has to be triggered by a beginning of a speech burst.

• A tolerable delay in transition from one speaker to another, in a speaker switch event, is

up to one second.

• When simultaneous speech occurs on more than one channel, the dominant speaker is the

one who began speaking first.

• The relative loudness of the voice of a speaker should not influence his chance to be

identified as the dominant speaker.

III. DOMINANT SPEAKER IDENTIFICATION BASED ON TIME INTERVALS OF VARIABLE

LENGTHS

The proposed method for dominant speaker identification consists of two stages, a local

processing and a global decision, as depicted in Figure 1. In the first stage (Figure 1 block 1

and 2), speech activity scores are evaluated for the immediate, medium, and long time-intervals.
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Fig. 1. A flow-chart describing the proposed method; Block 2 is described in more detail in Figure 3.

The lengths of the chosen time-intervals correspond with the lengths of one time-frame, a few

phonemes, and several words. In the second stage (Figure 1 block 3), the dominant speaker is

identified based on the speech activity scores obtained in the first stage. This stage is designed

to detect speaker switch events. We assume that a speaker switch event can be inferred from a

rise in the three speech activity scores on a certain channel, relatively to scores of the dominant

channel. The rationale of speaker switch event detection is discussed in Section III-B. The

implementation of the proposed algorithm is summarized in Figure 2.

A. Local Processing

In this stage, the signal in each channel is processed separately. The objective of our approach

is to place each signal frame into a broader context than its instantaneous audio activity. This

is accomplished by processing the currently observed frame by itself in addition to a medium-

length preceding time interval and in addition to a long time interval that precedes it. Thus each

time we move up to a longer time interval, the speech activity obtained in the previous step is

analyzed again in a broader context.

The motivation for this mode of processing is the nature of the signals we expect to receive

through the channels. The expected types of signals during a multipoint conference are:

1) Silence or stationary noise at different power levels;

2) Transient audio occurrences such as knocks, coughing, sneezing, etc.;
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For all channels i

For all time frames l

For frequency bins k1 < k < k2

Compute ξ
i,l

= {ξi(k, l)|k ∈ [k1, k2]}, using the OMLSA algorithm [13].

Count the number of active sub-bands in ξ
i,l

, using:

ai,1(l) =

k2∑
k=k1

sign[max(ξi(k, l)− ξth, 0)]

where sign(x) is the Signum function.

Compute the score Φimmediate
i,l using one of the methods described in Section IV.

Construct the vector αi,l = {ai,1(l −m)|m ∈ [0, N2 − 1]}

Compute ai,2(l) =

N2−1∑
m=0

sign[max(αi,l(m)− αth, 0)]

Compute score Φmedium
i,l using one of the methods described in Section IV.

Construct the vector β
i,l

= {ai,2(l −mN2)|m ∈ [0, N3 − 1]}

Compute ai,3(l) =

N3−1∑
m=0

sign[max(βi,l(m)− βth, 0)]

Compute score Φlong
i,l using one of the methods described in Section IV.

Perform comparison of scores
{

Φimmediate
i,l ,Φmedium

i,l ,Φlong
i,l

}
across channels, as described in

Section III-B and determine which of the channels contains dominant speech.

Fig. 2. Dominant speaker identification algorithm based on speech activity information from time intervals of different lengths.

3) Fluent and continuous speech consisting of words and sentences.

Each of these signal types would yield a typical combination of score values. This would allow

us to discriminate between the different types of signals. Specifically, in the global decision

stage it would enable the discrimination of dominant speech activities on a certain channel from

non-dominant activity on other channels.

In the proposed approach, we relate to each time interval as composed of smaller sub-units.

The speech activity in each time interval is determined according to the number of active sub-

units by attributing a speech activity score to this number. The score is obtained from the

likelihood ratio between hypothesis of speech presence and hypothesis of speech absence. The

score evaluation method is fully described in Section IV. The speech activity evaluation process

consists of three sequential steps, referred to as immediate, medium and long. The input into

each step is a sequence of the number of active sub-units acquired in the previous step.
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For the step of immediate speech activity evaluation we use a frequency representation of the

frame to test for speech activity in sub-bands. We operate on the frequency range that corresponds

to the range of voiced speech. Let this range be denoted by k ∈ [k1, k2] and the total number

of sub-bands in this range by N1. As the frequency representation we use the SNR value in

each sub-band. The SNR is obtained from the OMLSA algorithm [14], Matlab implementation

is available at [13]. Let it be denoted by ξ
¯
l =

{
ξ(k, l)

∣∣k ∈ [k1, k2]
}

, where l is a discrete time

index. Next we find the number of active sub-bands in the frame. A sub-band is considered

active if its SNR is higher than a threshold ξth. The threshold value was obtained from a speech

training set. The number of active sub-bands in a time-frame l is denoted by a1(l). Specifically,

a1(l) =

k2∑

k=k1

sign [max (ξ(k, l)− ξth, 0)] (1)

where sign(x) is the Signum function.

The thresholding approach serves several purposes in the discussed problem. It allows mea-

suring the amount of speech activity while suppressing isolated high-energy noise spikes. One

advantage is avoiding the masking effect that is caused when using the absolute value of isolated

high-energy spikes. Another advantage is an equalization effect between loud and quiet activity

of comparable quality speech segments. For example, in the immediate time processing, high

amplitude noise in a few isolated frequency bins would not be identified as speech. Whereas a

measure that relies on the absolute value of the SNR would cause such activity to be identified

as speech activity. We proceed with the thresholding approach in the next steps of speech activity

detection motivated by these advantages.

The number of active sub-bands is provided as an input into the Score calculation block,

see Figure 1 block 2. In this block, two additional thresholding steps are carried out for time

intervals of medium and long lengths. The input into the speech activity evaluation step for the

medium length time interval is a sequence of the number of active sub-bands in the last N2

frames. We denote it by α
¯ l

=
{
a1(l−m)

∣∣m ∈ [0, N2 − 1]
}

. Next, α
¯ l

is thresholded by αth and

the number of active frames in the medium length time interval that precedes the time-frame l is

obtained. The number of active frames is denoted by a2(l), where 0 ≤ a2(l) ≤ N2. Specifically,

a2(l) =

N2−1∑

m=0

sign [max (a1(l −m)− αth, 0)] (2)
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The number a2(l) indicates the amount of independent instantaneous activities in a group of N2

sequential frames. Let us assume that a certain frame p exhibited a high number of active sub-

bands, a1(p). The amount of activity in its neighbors would determine if the frame p contains

an isolated noise spike or that it is part of a longer audio activity. The amount of activity in the

medium time-interval is indicated by a2(p).

Finally, a sequence of speech activity indicators for medium time-intervals is provided as

an input into the step of evaluating speech activity in a long time interval. This sequence is

denoted by β
¯
l =

{
a2(l −mN2)

∣∣m ∈ [0, N3 − 1]
}

, where N3 is the number of medium-length

blocks constituting the long time-interval. The number of active medium-length blocks, denoted

by a3(l), is obtained by thresholding β
¯
l by βth and counting the number of non-zero elements.

Specifically,

a3(l) =

N3−1∑

m=0

sign [max (a2(l −mN2)− βth, 0)] . (3)

An active block of medium length indicates a short transient occurrence. According to the

rationale in the previous steps, a low a3(l) value indicates that the transient is isolated, while a

high a3(l) value indicates a part of a speech burst.

After obtaining a1(l), a2(l) and a3(l), we have a good representation of the speech activity

history in time-frame l. We also achieved here a backward inference by each of these values

on the shorter time-intervals. A speech activity score is now attributed to the speech activity

indicators, a1(l), a2(l) and a3(l). The score evaluation process is illustrated in Figure 3, and

detailed in Section IV. We denote the set of scores in frame l by Φimmediate
l , Φmedium

l and Φlong
l .

The scores from the distinct channels are provided into the Dominant speaker selection block

(Figure 1), where this information is translated into a dominant speaker identification.

B. Global Decision

The objective of this stage is to identify the channel associated with the dominant speaker.

This stage is activated in time steps of a certain interval, which is referred to as the decision-

interval. It is designed to utilize the scores that are obtained in the local processing stage for

dominant speaker identification. The approach we take in this stage is detecting speaker switch

events, rather than selecting a dominant speaker in every decision-interval. Once a dominant

speaker is identified, he remains dominant until the speech activity on one of the other channels
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Fig. 3. Speech-activity-score evaluation process.

justifies a speaker switch. In the following, we refer to the non-dominant channels as competing

(for dominance).

The expected score behavior of the dominant speaker and a channel that justifies a speaker

switch are described as follows. The type of channels (dominant or competing) referred to by the

score are indicated in brackets. During the dominance period of the dominant speaker, the score

Φlong(dominant) is expected to be high. The scores for the immediate and medium time-intervals,

Φmedium(dominant) and Φimmediate(dominant), are allowed to be low for periods that correspond to

breaks between words. As for the speech activity on the competing channels that justifies a

speaker switch, all three scores are expected to be high. The speech activity in the long time-

interval, Φlong(competing) has to be high to demonstrate prolonged speech activity. In addition,

both Φmedium(competing) and Φimmediate(competing) are expected to be high to indicate an onset of

speech.

The speaker selection algorithm is illustrated in Figure 4. We propose the following realization

for detecting speaker switch events in accordance with aforementioned expected behavior of

scores. For each decision-interval three vectors, c
¯1

, c
¯2

and c
¯3

, are calculated. These vectors

contain the information about the ratio between speech activity in the competing channels and

speech activity in the dominant channel for the long, medium and immediate time-intervals,

respectively. The number of elements in each vector is the number of conference participants.

In the next step, a set of channels demonstrating speech activity that might justify a speaker

switch is found by comparing the relative speech activities c
¯1

, c
¯2

and c
¯3

, with a set of respective

thresholds, C1, C2 and C3. The set of indices representing these channels is stored in j. In case

j contains a reference to more than one channel, a dominant channel, denoted by j∗, is selected
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IF (l mod decision interval == 0) DO:

COMPUTE

c1 = log

(
Φ

long
l (everyone)

Φ
long
l (dominant)

)

c2 = log

(
Φmedium

l (everyone)
Φmedium

l (dominant)

)

c3 = log

(
Φimmediate

l (everyone)
Φimmediate

l (dominant)

)

IF exists {j : c1(j) > C1 & c2(j) > C2 & c3(j) > C3},

j∗ = arg maxj{c2(j) : c2(j) > C2}

Dominant(l) = j∗

ELSE

Dominant(l) =Dominant(l − 1)

ELSE

Dominant(l) =Dominant(l − 1)

Fig. 4. The dominant speaker identification algorithm.

based on the highest speech activity score for the medium time-interval.

IV. SPEECH-ACTIVITY-SCORE EVALUATION

In this section, we formulate the speech-activity-score evaluation method. As discussed in

Section III, the speech activity score for a certain time-interval is determined by the number of

active sub-units in a representative vector. We consider the log-likelihood ratio of the number

of active sub-units as the respective speech activity score. In order to determine the likelihood

ratio of the number of active sub-units, we assume a certain model under hypotheses of speech

presence and absence, denoted by H1 and H0, respectively. We propose two approaches for the

score calculation method: the first approach uses the information from a single observation, and

the second approach makes use of a sequence of observations in the likelihood-ratio formulation

process. We also discuss the difference between the two approaches and the difference in

performance.
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A. Modeling the number of active sub-units

Let the representative vector for the immediate, medium or long time intervals be denoted by

ν
¯ l

= [ν(l), ν(l−1), ..., ν(l−NR+1)]. The length of this vector is denoted by the parameter NR.

The elements of the representative vector for the immediate time interval are ξ(k, l), where k1 ≤

k ≤ k2. For the medium and long time intervals the elements are a1(l) and a2(l), respectively.

Accordingly, the lengths of the representative vectors are N1, N2 and N3.

The vector ν
¯ l

is thresholded by the threshold value νth, resulting in a binary vector ν
¯ l,binary.

Then the elements of the vector ν
¯ l,binary are summed

v(l) =

NR∑

m=1

νbinary(m) . (4)

The value v(l) represents the number of active sub-units out of the total number of entries NR

in the original vector ν
¯ l

. We propose to model this number as follows:

1) Given H1: speech is present

We regard every active sub-unit as a success in a Bernoulli trial, where P (x) = px(1 −

p)(1−x) with x ∈ {0, 1} and p is the probability of success, which remains the same for all

vector entries. The vector length is NR, thus we compute the probability of v(l) successes

out of NR experiments. Hence, we assume this number follows a Binomial distribution

P (v(l)|H1) ∼ Bin(NR, p)

=


 NR

v


 pv(l)(1− p)NR−v(l) . (5)

2) Given H0: speech is absent

When speech is absent, we expect a lower probability for a higher number of active sub-

units. Hence we assume an Exponential distribution

P (v(l)|H0) ∼ exp(λ) = λe−λv(l) . (6)

B. Score Evaluation

Given an observation vector Xl in time-frame l and two possible classes of its origin, H0 and

H1, the likelihood of the observation to belong to each class i ∈ {0, 1} is given by p(Xl|Hi).

Accordingly, the likelihood ratio is given by [15]

Λl =
p(Xl|H1)

p(Xl|H0)
(7)
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We define the speech activity score as the log-likelihood ratio of the observation vector. It is

obtained from (7) by

Φl = ln

(
p(Xl|H1)

p(Xl|H0)

)
. (8)

In the following sections, two approaches for score evaluation are proposed. In the first approach,

Xl is the number of active sub-units in the current representative vector. In the second approach,

Xl is a vector consisting of a sequence of the number of active sub-units on a sequence of the

respective representative vectors. The scores are hereafter referred to as Binomial and Binomial-

sequential respectively.

1) Single observation approach : In this approach the score is based on the number of active

sub-units v(l) in the representative vector ν
¯ l

. Substituting the model assumptions from (5) and

(6) into (7), we have the likelihood ratio for a single observation

Λsingle
l =

(
NR

v

)
pv(l)(1− p)NR−v(l)

λe−λv(l)
(9)

According to (8), the speech activity score based on a single observation is:

Φsingle
l = ln

(
p(Xl = v(l)|H1)

p(Xl = v(l)|H0)

)

= ln

((
NR

v

)
pv(l)(1− p)NR−v(l)

λe−λv(l)

)

= ln

(
NR

v(l)

)
+ v(l) ln p+ (NR − v(l)) ln(1− p)− lnλ+ λv(l) . (10)

2) Multiple observation approach : We follow the approach proposed in [10] for a VAD

application. In this method, an HMM is used to recursively update the likelihood ratio of frame

l using all previous frames.

We base the score in this approach on a sequence of N sequential values of active sub-units

v
¯
N
l = [v(l−N + 1), v(l−N + 2), ..., v(l)] taken from N preceding and including the observed

time-frame, l. The hidden Markov model here consists of two states:

ζl =





H1,(l) , speech is present in frame l,

H0,(l) , speech is absent in frame l,

with the state dynamics described by aij = p(ζl = j|ζl−1 = i). For speech signals, it is more

likely that a frame of speech would be followed by a frame of speech rather than by a frame of

silence. This notion is fulfilled by setting a00, a11 > a01, a10.
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The likelihood-ratio in this approach is

Λsequential
l =

p(Xl = v
¯
N
l |H1)

p(Xl = v
¯
N
l |H0)

=
p(v

¯
N
l , H1)

p(v
¯
N
l , H0)

· P (H0)

P (H1)
(11)

where P (H0) and P (H1) are steady state probabilities that are determined by P (H0) =
a10

a10 + a01
and P (H1) =

a01
a10 + a01

.

Introducing the notations αl(1) , p(v
¯
N
l , H1) and αl(0) , p(v

¯
N
l , H0), αl(j) for j ∈ {0, 1} is

recursively computed using the forward procedure [16]:

αk(j) =





P [Xk = v(k)|Hj,(k)]

· [αk−1(0)a0j + αk−1(1)a1j] , l −N + 1 < k ≤ l

P [Xk = v(k)|Hj,(k)]p(Hj,(k)) , k = l −N + 1 .

Denote the recursively computed term

Ll =
αl(1)

αl(0)

=
p(v(l)|H1)

p(v(l)|H0)
· αl−1(0)a01 + αl−1(1)a11
αl−1(0)a00 + αl−1(1)a10

= Λsingle
l

a01 + Ll−1a11
a00 + Ll−1a10

. (12)

It is important to note for future discussion that the term Ll is large when speech is present, and

small in the absence of speech.

Substituting (12) into (11), we have

Λsequential
l = Ll ·

P (H0)

P (H1)

= Λsingle
l · a01 + Ll−1a11

a00 + Ll−1a10
· P (H0)

P (H1)
(13)

where a10 and a01 are determined a priori. Finally, we have the speech activity score formulation

for the approach based on a sequence of observations

Φsequential
l = Φsingle

l + ln

(
a01 + Ll−1a11
a00 + Ll−1a10

)
+ ln

(
P (H0)

P (H1)

)
. (14)

The intuitive advantage of the sequential approach may be observed in the structure of the

sequential score (14). The sequential score (14) differs from the single score Φsingle
l by the
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addition of the terms ln

(
a01 + Ll−1a11
a00 + Ll−1a10

)
and ln

(
P (H0)

P (H1)

)
. The term ln

(
P (H0)

P (H1)

)
is a constant

bias term added to the score in all cases. The term ln

(
a01 + Ll−1a11
a00 + Ll−1a10

)
, on the other hand,

influences the score differently in the presence or absence of speech. With the constant values

a00, a11 > a01, a10 set a-priori:

1) In the presence of speech, Ll−1 is large so the term ln

(
a01 + Ll−1a11
a00 + Ll−1a10

)
→ ln

(
a11
a10

)
> 0,

hence Φsequential
l > Φsingle

l .

2) When speech is absent, Ll−1 is small and the term ln

(
a01 + Ll−1a11
a00 + Ll−1a10

)
→ ln

(
a01
a00

)
< 0.

So that in this case, Φsequential
l < Φsingle

l .

Hence, the Binomial-sequential score achieves better separability between speech presence and

absence in comparison to the Binomial score. On the other hand, an integration of more ob-

servations from the past introduces a delay into the speaker switching process. This happens

because the new information regarding the speaker switch is masked by the old information of

dominance. Both these differences are exhibited in the experimental results in Section V.

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed method to other dominant speaker

identification methods. Since a standard evaluation framework for the task of dominant speaker

identification does not exist, we propose several experiments and objective error measures to

test the basic requirements for this type of system.

Throughout this section, we denote the proposed method when used with the single-observation

approach for the score evaluation as the Binomial method and when used with the sequential-

observation approach as the Bin-Seq method. In case the distinct name of the method is not

specified, the performances of the two methods were similar.

According to the speech activity score evaluation method described in Sec. III, speech activity

in each time interval is determined by the number of its active sub-units. Hence, the most

influential parameters are the length of each time interval and its corresponding threshold. The

number of sub-units was chosen in correspondence with the speech structure it represents. The

immediate time interval is represented by the sub-bands that correspond to voiced speech. The

medium time interval consists of the number of immediate time sub-units that is equivalent to

several tenths of a second. The long time interval consists of a number of medium time sub-
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Fs = 16 KHz window length = 64 samples overlap = 50%

k1 = 2 , k2 = 12 N2 = 33 N3 = 16

ξth = 3 αth = 5 βth = 32

pimmediate = 0.5 pmedium = 0.5 plong = 0.5

λimmediate = 0.78 λmedium = 24 λlong = 47

P (H0) = P (H1) = 0.5

a10 = 0.1 a11 = 0.9 a01 = 0.2 a00 = 0.8

C1 = 3 C2 = 2 C1 = 0

Fig. 5. Algorithm parameters that were used in all experiments.

units that sum up to approximately one second. The thresholds in this method were set so they

facilitate the separation between speech and noise. The value of the threshold represents the

trade-off between the false detection of noise as speech and the false rejection of speech sub-

units. In the immediate time interval, the SNR threshold separates between speech sub-bands

(high SNR) and noise (low SNR). In the medium and long time intervals, the threshold provides

the distinction between dense and sparse speech activities in the corresponding time intervals.

The likelihood model parameters for the immediate time are based on a training set taken from

the TIMIT database [17]. The remaining parameters were manually tuned on both simulated and

real conference data. The parameter set that was used in the experiments is provided in Figure 5.

In the first experiment, the dominant speaker identification algorithms are evaluated in a simple

task of switching to the dominant speaker in the presence of stationary noise. For this purpose, a

synthetic multipoint conference was simulated by concatenating speech segments taken from the

TIMIT database. Three speakers were randomly chosen from the database and several speech

bursts were concatenated on a distinct channel for each speaker. The speech bursts in each

channel were spread along the conference length, such that each speech burst requires a switch

in the dominant speaker. For the purpose of qualitative evaluation we assume there is no speech

overlap between participants, i.e., “barging-in” is not allowed. White noise in the range of -2 to

5 dB SNR was added to all signals. The algorithms were applied to the signals and the dominant

speaker was identified once in every time-period, denoted by a decision interval. Quantitative

analysis was performed on the synthetic test set to examine whether an identification method
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Speech Burst (LOSB samples) 

Undetected Mid Section of speech burst (UMSB samples) 

Correctly detected section of the speech burst  

Fig. 6. Illustration of the MSC error. This error represents the undetected portion from the middle of a speech burst.

fulfills the expectations as stated in Section II.

The analysis includes the following measures:

• False speaker switches - number of false switches to a non-dominant speaker.

• Front End Clipping (FEC) - error in detecting the beginning of a speech burst. The signal

on each channel consists of several isolated speech bursts. The FEC error for each speech

burst is obtained. Then, the mean FEC error for the whole conference is computed as the

mean value of individual FEC errors of all speech bursts in all channels. The FEC error

in the discussed realization is a delay in the switching of the video to the new dominant

speaker, while the audio signal from all speakers is available at all times. Thus, we assume

that a tolerable delay in switching to the dominant speaker in terms of mean FEC is one

second. All tested methods fulfilled this requirement.

• Mid Sentence Clipping (MSC) - clipping occurring in the middle of a speech burst. This

is the most disturbing type of error since it causes a switch of speaker in the middle of a

dominant speech burst. It is computed as the ratio between the undetected mid section of

a speech burst [samples] (UMSB) to the length of the speech burst [samples] (LOSB) in

percent.

%MSC = 100 · UMSB
LOSB

The illustration of the MSC error is depicted in Figure 6 .

The performances of the two proposed methods were compared to the following methods:

• Three methods that identify the dominant speaker by applying a VAD to each channel, and

identifying the speaker with the highest VAD score as dominant. The VAD methods used

for the comparison are denoted by Ramirez, Sohn, and GARCH, and are described in [12],
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Fig. 7. Evaluation of the algorithms in the task of switching to the dominant speaker in the presence of stationary noise. The

test data of this experiment consists of speech bursts concatenated such that each burst causes a speaker switch. The proposed

methods are denoted by Binomial and Bin-Seq.(a) Number of false speaker switches; (b) Mid sentence clipping.

[10] and [18], respectively.

• A method that identifies the dominant speaker as the one with highest signal power. It is

referred to as the POWER method throughout the comparison.

• A method that identifies the dominant speaker as the one with the highest SNR. It is referred

to as the SNR method throughout the comparison.

Since the comparison is made once in every decision interval, the instantaneous values of the

VAD score, SNR and POWER, are not necessarily representative values of the decision interval.

Hence, the maximal values of the VAD score, SNR and POWER in the decision interval were

used for the comparison. The results of this experiment are displayed in Figure 7, where the

false switching and MSC errors are plotted as a function of the decision interval. In Figure 7(a),

POWER, SNR and VAD based methods show frequent false speaker switching. For the proposed

method, both the false switching and the MSC errors are zero.

In the second experiment, we test the robustness of the algorithms to transient noise. Transient

noise occurrences of door knocks and sneezing were added to the signals in the synthetic

conference of the first experiment. The quantitative influence of the transient occurrences is

presented in Figure 8 and can be compared to the results in Figure 7. There is a rise both

in the number of false switches and a respective rise of the MSC error for all methods. The
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Fig. 8. Synthetic experiment with a presence of transient noise: (a) False speaker switches; (b) Mid sentence clipping.

proposed method is affected by the transient occurrences when a very short decision-interval

(0.05− 0.2 sec) is used (Figure 8(a)). The false switching that occurs with the proposed method

is of shorter duration in comparison to the other methods. This can be observed in the relative

rise of the MSC errors in Figure 8(b) in comparison to Figure 7(b) for decision interval in the

range 0.05− 0.2 sec.

The difference between the two proposed methods, as discussed in Section IV-B2, is shown

in Figure 8, where false switching occurs for decision-intervals of 0.05− 0.2 sec. The Bin-Seq

method has a slight advantage over the Binomial method, in the number of false speaker switches,

as displayed in Figure 8(a). This is expected because the Bin-Seq score is based on a sequence of

observations. Thus, when more information from the past is integrated into the decision, it takes

more time for the dominance of a speaker to dissipate or to build up. In case of a transient,

its duration is too short for building up speech activity that would indicate dominance. The

same sequential processing, causes a delay in switching back to the actual dominant speaker, as

exhibited in Figure 8(b) by the higher value of the MSC error.

In Figure 9, we present a qualitative comparison, in the presence of transient noise. The

proposed method is compared to the POWER and two VAD based identification methods, Ramirez

and GARCH. The decision interval in this comparison is 0.3 seconds. In general, it is noticeable

that the algorithms we are comparing to, are more responsive to a dominant speaker switch. This

is due to the instantaneous nature of their scores. This responsiveness causes false switching to
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Fig. 9. Results of dominant speaker identification, for a decision-interval of 0.3 sec: (a) Dominant speaker identification by the

proposed method; (b) dominant speaker identified by POWER method; (c) dominant speaker selected by the method based on

Ramirez VAD; (d) dominant speaker selected by the method based on GARCH VAD ; the decision of the algorithm is marked

by the higher solid bold line and the hand marked decision is marked by the low dashed line.

occur when there is a significant rise in energy on another channel, disregarding the cause for this

rise. For the proposed method, the use of long-term information facilitates distinction between

speech and transient audio occurrences.

The third experiment is a qualitative experiment where we compare the algorithms on a

segment of a real 5 channel multipoint conference, depicted in Figure 10. On this segment, only

channels 2 and 4 contain speech. Channel 1 contains a high level of stationary noise and some

crosstalk from the other channels. Channels 3 and 5 contain only crosstalk from other channels.
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The y axis in Figure 10 was scaled to the amplitude of the signals in the channel. Taking

the maximal signal amplitude in channel 2 as a reference 1, the maximal signal amplitudes in

channels 1, 3, 4 and 5 are 0.4, 0.5, 0.5 and 0.1, respectively. In this experiment, the proposed

method was compared to the POWER, RAMIREZ and SOHN methods.

The proposed method switches correctly from channel 2 to channel 4. It ignores a high

energy transient that occurs during the dominant speech burst in channel 4. From channel 4,

the proposed algorithm switches back to channel 2 and stays on this channel. It remains on

the dominant speaker in spite of an utterance of the words ”yes yes” on channel 4 between

15th and 16th seconds. It also ignores a noise transient on channel 3 on the 17th second of the

conference. Thus, the proposed method behaves according to the requirements stated in Section

II. The POWER, RAMIREZ and SOHN methods, on the other hand, switch frequently to channel

1, which contains stationary noise, during the first dominant speech burst in channel 2. They

also switch to the noisy channels, during the dominant speech burst in channel 4 and throughout

the second dominance period in channel 2.

VI. CONCLUSION

We have presented a novel dominant speaker identification method for multipoint videocon-

ferencing. The proposed method is based on evaluation of speech activity on time intervals

of different lengths. The speech activity scores for the immediate, medium and long time-

intervals are evaluated separately for each channel. Then, the scores are compared and the

dominant speaker in a given time-frame is identified based on the comparison. We proposed two

approaches for the score evaluation method. A single observation based approach, for which the

scores enable a faster reaction of the identification algorithm to speaker switches. In the second

approach, the score is based on a sequence of observations. This makes the algorithm more

robust to transient audio occurrences, but is slower in responding to changes. The information

from time intervals of different lengths enables the proposed method to distinguish between

speech and non-speech transient audio occurrences. Experimental results have demonstrated the

improved robustness of the proposed method to transient audio interferences and frequent speaker

switching in comparison to other speaker selection methods.
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Fig. 10. Experimental results on a real 5 channel multi-point conference for a decision interval of 0.4sec; (a) Dominant speaker

is selected by the proposed method; (b) Dominant speaker is selected by the POWER method;(c) Dominant speaker is selected

by the RAMIREZ method; (d) Dominant speaker is selected by the SOHN method. The decision of the algorithm is marked by

the high solid line and the hand marked decision is marked by the low dashed line.

ACKNOWLEDGMENT

The authors thank Prof. Roger K. Moore and the anonymous reviewers for their constructive

comments and useful suggestions.

REFERENCES

[1] S. Shaffer and W. Beyda, “Reducing multipoint conferencing bandwidth,” US Patent No.: 6,775,247 B1, Aug. 2004.



22

[2] M. Howard, R. Burns, C. Lee, and M. Daily, “Teleconferencing system,” US Patent No.: 6,775,247 B1, Aug. 2004.

[3] K. Matsumoto and K. Ozawa, “Multi-point conference system and multi-point conference device,” US Patent No.: 7,667,729

B2, Feb. 2010.

[4] W. Kwak, S. Gardell, and B. Mayne Kelly, “Speaker identifier for multi-party conference,” US Patent No.: 6,457,043 B1,

Sep. 2002.

[5] Y.-F. Chang, “Multimedia conference call participant identification system and method,” US Patent No.: 6,304,648 B1,

Oct. 2001.

[6] Y. Kyeong Yeol, P. Jong Hoon, and L. Jong Hyeong, “Linear PCM signal processing for audio processing unit in multipoint

video conferencing system,” in Proc. IEEE Third Symposium on Computers and Communications (ISCC98), Athens ,

Greece, Jun. 1998, pp. 549 –553.

[7] S. Firestone, “Non-causal speaker selection for conference multicast,” US Patent No.: 6,963,353 B1, Nov. 2005.

[8] P. Smith, P. Kabal, and R. Rabipour, “Speaker selection for tandem-free operation VoIP conference bridges,” in Proc. IEEE

Workshop on Speech Coding, Tsukuba , Japan, Oct. 2002, pp. 120 – 122.

[9] X. Xu, L. wei He, D. Florencio, and Y. Rui, “Pass: Peer-aware silence suppression for internet voice conferences,” in IEEE

International Conference on Multimedia and Expo, Toronto, Ontario, Canada, Jul. 2006, pp. 2149 –2152.

[10] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based voice activity detection,” vol. 6, pp. 1 –3, Jan. 1999.
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