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Abstract

In this paper, we introduce a novel approach for improvedlinear system identification in the
short-time Fourier transform (STFT) domain. We first deresplicit representations of discrete-time
\olterra filters in the STFT domain. Based on these reprasiens, approximate nonlinear STFT models,
which consist of parallel combinations of linear and noadéin components, are developed. The linear
components are represented by crossband filters betwedrargidy while the nonlinear components
are modeled by multiplicative cross-terms. We consider ittemntification of quadratically nonlinear
systems and show that a significant reduction in computaltiovst as well as substantial improvement in
estimation accuracy can be achieved over a time-domairNaltmodel, particularly when long-memory
systems are considered. Experimental results validatehiberetical derivations and demonstrate the

effectiveness of the proposed approach.
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. INTRODUCTION

Identification of linear systems has been studied extensiaatl is of major importance in diverse

fields of signal processing [1], [2]. However, in many realrldoapplications, the considered systems
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exhibit certain nonlinearities that cannot be sufficientistimated by conventional linear models.
Examples of such applications include acoustic echo catiell [3]-[5], channel equalization [6],
[7], biological system modeling [8], image processing [@hd loudspeaker linearization [10]. Volterra
filters [11]-[16] are widely used for modeling nonlinear pitgs systems, such as loudspeaker-enclosure-
microphone (LEM) systems in nonlinear acoustic echo cart@mlapplications [4], [17], [18], and digital
communication channels [6], [19], just to mention a few. Mpbrtant property of Volterra filters, which
makes them useful in nonlinear estimation problems, isitteal relation between the system output and
the filter coefficients. Many approaches, which attempt torest the Volterra kernels in the time domain,
employ conventional linear estimation methods in batch.(d15], [20]) or adaptive forms (e.g., [4],
[21]). A common difficulty associated with time-domain medlkas their high computational cost, which
is attributable to the large number of parameters of theevkdtmodel. This problem becomes even more
crucial when estimating systems with relatively large mgmlength, as in acoustic echo cancellation
applications. Another major drawback of the Volterra maddis severe ill-conditioning [22], which leads
to high estimation-error variance and to slow convergerfcén® adaptive \Volterra filter. To overcome
these problems, several approximations for the time-donvaiterra filter have been proposed, including
orthogonalized power filters [23], Hammerstein models [®élrallel-cascade structures [25], and multi-
memory decomposition [26].

Alternatively, frequency-domain methods have been intced for Volterra system identification,
aiming at estimating the so-called Volterra transfer fiord [27]-[29]. Statistical approaches based on
higher order statistics (HOS) of the input signal use cuntsland polyspectra information [27]. These
approaches have relatively low computational cost, benoftssume a Gaussian input signal, which limits
their applicability. In [28] and [29], a discrete frequendgmain model is defined, which approximates
the \Volterra filter in the frequency domain using multipligatterms. Although this approach assumes
no particular statistics for the input signal, it requirekag duration of the input signal to validate the
multiplicative approximation and to achieve satisfactperformance. When the data is of limited size
(or when the nonlinear system is not time-invariant), tiisg duration assumption is very restrictive.

In this paper, we introduce a novel approach for improvedlinear system identification in the
short-time Fourier transform (STFT) domain, which is based ommna-frequency representation of the
\olterra filter. A typical nonlinear system identification gche in the STFT domain is illustrated in Fig. 1.
Similarly to STFT-based linear identification techniques [38R}] representing and identifying nonlinear
systems in the STFT domain is motivated by a reduction in conipntd cost compared to time-domain

methods, due to processing in distinct subbands. Togetitleraweduction in the spectral dynamic range
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of the input signal, the reduced complexity may also lead faster convergence of nonlinear adaptive
algorithms. Consequently, a proper model in the STFT domain fiaciijitate a practical alternative for
conventional nonlinear models, especially in estimatinglimear systems with relatively long memory,
which cannot be practically estimated by existing methatls.show that a homogeneous time-domain
Volterra filter [11] with a certain kernel can be perfectly megented in the STFT domain, at each
frequency bin, by a sum of \olterra-like expansions with Bemssized kernels. This representation,
however, is impractical for identifying nonlinear systemise to the extremely large complexity of
the model. We develop an approximate nonlinear model, whinoiplifies the STFT representation of
\olterra filters and significantly reduces the model compjexihe resulting model consists of a parallel
combination of linear and nonlinear components. The lineangonent is represented by crossband
filters between the subbands [30], [33], while the nonlineampgonent is modeled by multiplicative
cross-terms, extending the so-called cross-multiplreatiansfer function (CMTF) approximation [34]. It
is shown that the proposed STFT model generalizes the conmahtiiscrete frequency-domain model
[28], and forms a much richer representation for nonlingatesns. Concerning system identification, we
employ the proposed model and introduce an off-line schamedtimating the model parameters using
a least-squares (LS) criterion. The proposed approach is niwmantageous in terms of computational
complexity than the time-domain Volterra approach. Wheimeging long-memory systems, a substantial
improvement in estimation accuracy over the Volterra madel be achieved, especially for high signal-
to-noise ratio (SNR) conditions. Experimental results withiter Gaussian signals and real speech signals
demonstrate the advantages of the proposed approach.

The paper is organized as follows. In Section Il, we derive grli@k representation of discrete-time
Volterra filters in the STFT domain. In Section lll, we introducera@ified model for nonlinear systems
in the STFT domain. In Section IV, we consider off-line estimataf the proposed-model parameters
and compare its complexity to that of the conventional tohoesain approach. Finally, in Section V, we

present some experimental results.

Il. REPRESENTATION OFVOLTERRA FILTERS IN THE STFT DOMAIN

In this section, we represent discrete-time Volterra filiershe STFT domain. We first consider the
guadratic case, and subsequently generalize the resuligher orders of nonlinearity. We show that a
time-domain Volterra kernel can be perfectly representethé STFT domain by a sum of smaller-sized
kernels in each frequency bin. Throughout this work, unlegdi@tly noted, the summation indices range

from —oo to oo.
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Fig. 1: Nonlinear system identification in the STFT domaiheTunknown time-domain nonlinear systeftt) is

estimated using a given model in the STFT domain.

A. Quadratically Nonlinear Systems

Consider a quadratically nonlinear system with an inp(at) and an outputi(n). One of the most
popular representations of such system is a second-ord@rifilter that relates:(n) and d(n) as

follows:
N;—1

dn) = Y ha(m)z(n—m)
m=0

Ngfl Nz*l

+ Z Z ha(m, £)x(n —m)x(n —£)

m=0 /=0
2 dy(n) + da(n), (1)

where hy(m) and he(m, ¢) are the linear and quadratic Volterra kernels, respegtivaaid d;(n) and
dy(n) denote the corresponding output signals of the linear ardim@tic homogeneous components. To
find a representation af(n) in the STFT domain, let us first briefly review some definitions of the STFT
representation of digital signals (for further detailsg ®eg., [35]).
The STFT representation of a signaln) is given by
Ty = Z z(m)y . (m) )

m

where
1[’p,k (n) £ &(n — pL)ej%"k(n—pL) -
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denotes a translated and modulated window functigfm,) is an analysis window of lengthV, p is the
frame index,k represents the frequency-bin indeéx< k£ < N — 1), L is the translation factor (or the
decimation factor, in filter-bank interpretation) ahdlenotes complex conjugation. The inverse STFT,
i.e., reconstruction of(n) from its STFT representation, j, iS given by

N-1
=33 aptpr(n), (4)

p k=0
where

bp () 2 h(n — pL)ed TEO=PL) (5)

and ¢(n) denotes a synthesis window of length. Substituting (2) into (4), we obtain the so-called

completeness condition:
1
Zw n — pL)*(n — pL) = N for all n. (6)

Given analysis and synthe3|s windows that satisfy (6), aadig(n) € ¢2(Z) is guaranteed to be perfectly
reconstructed from its STFT coefficients ;. However, forL < N and for a given synthesis window
¥(n), there might be an infinite number of solutions to (6); themefdhe choice of the analysis window
is generally not unique [36], [37].

Using the linearity of the STFTJ(n) in (1) can be written in the time-frequency domain as

dp,k = dl;p,k + d2;p7k | (7)

whered;., ,, andd,, ;, are the STFT representationsdyf n) andds(n), respectively. It is well known that
in order to perfectly represent a linear system in the STFT don@aossband filters between subbands
are generally required [30], [33]. Therefore, the outputhe tinear component can be expressed in the

STFT domain as
1N1 1

dip e = Z Z Tp—p' o s ke e 8)

=0 p'=0
whereh,, ;. - denotes a crossband filter of length = [(N; + N — 1) /L]+[N/L] —1 from frequency

bin £’ to frequency bink. These filters are used for canceling the aliasing effectsechlry the

subsampling factoL. The crossband filtek, ;. ;- is related to the linear kernél (n) by [30]

hp,k;,k;’ = {hl (’I’L) * Qbk,k’ (n)Hn:pL (9)
where the discrete-time Fourier transform (DTFT)daf; (n) with respect to the time index is given

by

) ~ 2 2
, , —Jnw _ \* _an el
P (w E ki (n)e U (w Nk>\lf<w Nk‘) , (20)
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where¥ (w) and¥ (w) are the DTFT of)(n) andy(n), respectively. Note that the energy of the crossband
filter from frequency birk’ to frequency birk generally decreases gs— k’| increases, since the overlap
between¥ (w — (2r/N) k) and ¥ (w — (27/N) k') becomes smaller. Recently, we have investigated the
influence of crossbhand filters on a linear system identifier impl#ed in the STFT domain [30]. We
showed that increasing the number of crossband filters nassadly implies a lower steady-state mse
in subbands. In fact, the inclusion of more crossband filterthe identification process is preferable
only when high SNR or long data are considered. As will be shiater, the same applies also when
an additional nonlinear component is incorporated intorttzalel.

The representation of the quadratic component’s oufp(it) in the STFT domain can be derived in a
similar manner to that of the linear component. Specificafiylging the STFT taiy(n) we may obtain

after some manipulations (see Appendix A)
N-1

dop = E E :xp’,k/xp”,k”Cp—p’,p—p”,k,k/,k”
k/7k//:0p/7p//

N-1
= Z Zxpfp’,k’xpfp”,k”Cp’,p’ﬁk,k’,k”- (11)
k' k"=0p'p’

wherec,_, ,—p 11 1 May be interpreted as a response of the quadratic system ao afgmpulses
{0p—p k—k'» Op—p k—k } N the time-frequency domain. Equation (11) indicates thatfgiven frequency-
bin index k, the temporal signatly,,, consists of all possible interactions between pairs of tinpu
frequencies. The contribution of each frequency gaif, k”| k', k" € {0,...,N —1}} to the output
signal at frequency birk is given as a Volterra-like expansion with, ;. .- 1+ being its quadratic
kernel. The kernet, . 1 1 1+ In the time-frequency domain is related to the quadratiaékliz(n, m)

in the time domain by (see Appendix A)

Cp',p”,k?,k’,k” = {hQ(n, m) * ¢k,k’,k/'(n7 m)}|n=p/L, m=p"'L (12)

wherex denotes a 2D convolution and

j2m

Grr g (n,m) 2> G (0)e ™ FHp(n 4 )&l FE Dy (4 £)e FE (13)
l

Equation (13) implies that for fixed, ' and k", the quadratic kernet, ,, 1 1+ iS noncausal with
[N/L] — 1 noncausal coefficients in each variabj¢ and p”). Note that crossband filters are also
noncausal with the same number of noncausal coefficients B&hce, for system identification, an

artificial delay of([N/L] — 1) L can be applied to the system output sigd@t) in order to consider a
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noncausal response. It can also be seen from (13) that the@mdemgth of each kernel is given by

N, — {NﬁLN—ﬂ N [ﬂ .y (14)

which is approximatelyl. times lower than the memory length of the time-domain kefnéin, /). The
support ofc,: 1. i 1 1S therefore given bp xD whereD =[1 — [N/L],...,[(No+ N —1) /L] —1].

To give further insight into the basic properties of the qasid STFT kernels:, . i 1, We apply

the 2D DTFT to¢y, i 1 (n, m) with respect to the time indices andm, and obtain

Oy pr o (w, ) = T* <w +n— 33/{:) v <w - ?\7;]{7,> v <w - ?3/6‘”) : (15)
By taking ¥ (w) and ¥ (w) to be ideal low-pass filters with bandwidths/'N (i.e., ¥ (w) = 0 and
¥ (w) = 0 for w ¢ [—7/2N,7/2N] ), a perfect STFT representation of the quadratic time-domain
kernel hz(n,m) can be achieved by utilizing only kernels of the form . 1. i (k—k) mod N> SINCE IN
this case the product of (w — (27 /N) k'), U(w — (2rr/N) k') and¥* (w + n — (2r/N) k) is identically
zero fork” # (k — k') mod N. Practically, the analysis and synthesis windows are nailidad their
bandwidths are greater thatyN, SO ¢y 1/ (k—k') mod N (7, ), @nd consequently,, . i i (k—k) mod N»
are not zero. Nonetheless, one can observe from (15) thaenbegy of ¢y i 1 (n, m) decreases as
|k” — (k — k") mod N| increases, since the overlap between the translated wiridoetions becomes
smaller. As a result, not all kernels in the STFT domain shoulddiesidered in order to capture most
of the energy of the STFT representation/ef(n, m). This is illustrated in Fig. 2, which shows the
energy of ¢y y kv (n,m), defined asky i (k") £ > nm [k ke (1, m)|?, for k =1, ¥ = 0 and k" €
{(k = K +i)mod N}}g_m, as obtained by using rectangular, triangular and Hannhegig windows
of length N = 256. A corresponding minimum-energy analysis window thats$&s the completeness
condition [36] for L = 128 (50% overlap) is also employed. The results confirm that the enefgy o
ok kv (n,m), for fixed k and &/, is concentrated around the indé% = (k — £’) mod N.

As expected from (15), the number of useful quadratic kerriel each frequency bin is mainly
determined by the spectral characteristics of the anafymissynthesis windows. That is, windows with
a narrow mainlobe (e.g., a rectangular window) yield thergbst decay, but suffer from wider energy
distribution overk” due to relatively high sidelobes energy. Smoother windowg.,(¢1ann window),
on the other hand, enable better energy concentration.istarice, utilizing a Hann window reduces
the energy ofpy i 1 (n, m) for ¥ = (k — k' + 8) mod N by approximately30 dB, when compared to
using a rectangular window. These results will be used in i section for deriving a useful model

for nonlinear systems in the STFT domain.
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Fig. 2: Energy ofpy, 1 1 (n, m) [defined in (13)] fork = 1 andk’ = 0, as obtained for different synthesis windows
of length N = 256.

B. High-Order Nonlinear Systems

Let us now consider a generalizgth-order nonlinear system with an inputn) and an output(n).

A time-domaingth-order Volterra filter representation of this system isegiby

[M]=

d(n) = > _d(n) (16)
=1

whered,(n) represents the output of thgh-order homogeneous \olterra filter, which is related to the

input z(n) by

Ny—1 Ne—1 4
de(n) =" Y hy(ma, . ..me)[Jo(n —mi) (17)
m1=0 me=0 =1

wherehy(mi,...my) is the fth-order Volterra kernel, and/, (1 < ¢ < q) represents its memory length.

This representation is called symmetric if the Volterra ledsrsatisfy [11]

he(ma, ... me) = he(Mr(1y, - - Mae)) (18)

for any permutationr(1,...,¢). In order to reduce the redundancy of the symmetric reptagen, the
triangular or regular representations may be employedfiidher details, see e.g., [11]).

Applying the STFT tod,(n) and following a similar derivation to that made for the quadr case
[see (11)-(13), and Appendix A], we obtain after some malaifjans

N—-1 ¢
dep e = Z Z Cp1,...m,k,kl,...keHl“p—p“ki- (19)
=1

k1,...ke=0D1,...De
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Equation (19) implies that the output of &étt-order homogeneous Volterra filter in the STFT domain, at a
given frequency-bin indek, consists of all possible combinationséihput frequencies. The contribution
of each/-fold frequency indiceg k1, . .. k¢} to thekth frequency bin is expressed in terms ofégm-order
homogeneous Volterra expansion with the kemgl ,, .k, ,..x. Similarly to the quadratic case, it can
be shown that the STFT kerne}, ., xk ..k in the time-frequency domain is related to the kernel

he(mq,...my) in the time domain by

Cpryeepesbioryke = {he(ma, . omg) « Gy e (mas o ome) Y iy (20)
wherex denotes arf-D convolution and
;
ko e (M1, - .. Zzp n)e I % 1_[1/1(771Z + m)ed N ki(mitn) (21)

i=1
Equations (20)-(21) imply that for fixed indices:; }z 1, the kernelcy,,  p, ik ,..k, 1S NONcausal with

[N/L] — 1 noncausal coefficients in each varial§le }‘_,, and its overall memory length is given by

N, = {NHLN_T + Fﬁ 1. 22)

Note that for/ = 1 and/ = 2, (19)-(21) reduce to the STFT representation of the linearete®)
and the quadratic kernel (11), respectively. Furthermagplyeng the/-D DTFT t0 ¢y, g, ..k, (M1, ... my)

with respect to the time indices, . ..my, we obtain

Dy (W1, - (sz ) H o <wm - m) : (23)

If both ¥(w) and ¥(w) were ideal low-pass filters with bandwidtbr/ ([(¢+ 1) /2] N), the
overlap between the translated window functions in (23) ldiohave been identically zero for
ke # (k—zf;i kl> mod N, and thus only kernels of the forma, ., ik, .k Where k, =
(k:—Zf;} k:1> mod N would have contributed to the output at frequency-bin indexPractically,
the energy is distributed over all kernels and particulaciyncentrated around the indely =

<k — ij k1> mod N, as was demonstrated in Fig. 2 for the quadratic cése %).

Il. AN APPROXIMATE MODEL FORNONLINEAR SYSTEMS IN THESTFT DoMAIN

Representation of Volterra filters in the STFT domain involveargd number of parameters and high
error variance, particularly when estimating the systeamfrshort and noisy data. In this section, we
introduce an approximate model for improved nonlinearesysidentification in the STFT domain, which

simplifies the STFT representation of Volterra filters and redtlsesmodel complexity.
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We start with an STFT representation of a second-order \Volfdrea Recall that modeling the linear
kernel requiresN crossband filters in each frequency bin [see (8)], where thgtle of each filter
is approximatelyN; /L. For system identification, however, only a few crossbandrdiligeed to be
considered [30], which leads to a computationally efficiergresentation of the linear component. The
quadratic Volterra kernel representation, on the othedhaansists ofV? kernels in each frequency bin
[see (11)], where the size of each kernel in the STFT domain isoappately No/Lx Ny/L. A perfect
representation of the quadratic kernel is then achieved rogl@ying (NNQ/L)2 parameters in each
frequency bin. Even though it may be reduced by consideriegsyimmetric properties of the kernels,
the complexity of such a model remains extremely large.

To reduce the complexity of the quadratic model in the STFT dopai us assume that the analysis and
synthesis filters are selective enough, such that accordiRiyt 2, most of the energy of a quadratic kernel
o ik e (for fixed k andk’) is concentrated in a small region around the infiéx= (k — k') mod N.
Accordingly, (11) can be efficiently approximated by

N-1
do;p s & Z Z Tp—p' k' Tp—p' k" Cp' p" k' k" - (24)
sy matm

A further simplification can be made by extending the so-datteoss-multiplicative transfer function
(CMTF) approximation, which was first introduced in [34], [38]r fthe representation of linear systems
in the STFT domain. According to this model, a linear system pagented in the STFT domain by
cross-multiplicative terms, rather than crossband filtbetyween distinct subbands. Following a similar
reasoning, a kernel, , . v 1+ in (24) may be approximated as purely multiplicative in the STBmain,

so that (24) degenerates to
N-1

dop ke = > Tp k' Tp o Cht o - (25)
k' k=0

(K/+K/) mod N=k
We refer tocy ,» as aquadratic cross-termThe constraintk’ + k") mod N = k on the summation
indices in (25) indicates that only frequency indicp€, "}, whose sum isk or k + N1, contribute
to the output at frequency bikh. This concept is well illustrated in Fig. 3, which shows tti€, k")
two-dimensional plane. For calculating., ; at frequency bink, only points on the lined’ + k" = k

and k' + k" = k+ N need to be considered. Moreover, the quadratic cross-tegms have unique

Sincek andk’ range from0 to N — 1, the contribution of the difference interaction of two frequencies tokthefrequency

bin corresponds to the sum interaction of the same two frequencies t& théV()th frequency bin.
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(0,0) A B (o,N-1)C k'

K+ & =k

(N -1,00 E
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Fig. 3: Two-dimensionalk’, k") plane. Only points on the line’ + k" = k (corresponding to sum interactions) and
the linek’ + k" = k+ N (corresponding to difference interactions) contributehe output at theith frequency
bin.

values only at the upper triangle ACH. Therefore, the inelise between this triangle and the lines
k' + k" =k andk’ + k" = k+ N bounds the range of the summation indices in (25), suchdhgy,
can be compactly rewritten as
dop ke & Z Tp k' Tp, (k—k') mod NCK ,(k—k’) mod N » (26)
[

where 7 = {0,1,...|k/2],k+1,....,k+1+|(N—-k—2)/2]} C [0,N—1]. Consequently, the
number of cross-terms at theth frequency bin has been reduced by a factor of two|k@2| +
|(N —k—2) /2] + 2. Note that a further reduction in the model complexity canalstieved if the
signals are assumed real-valued, since in this case must satisfycy v = ¢y, x g, @nd thus,
only points in the grey area contribute to the model outputtliis case, it is sufficient to consider only
the first | V/2] 4+ 1 output frequency bins).

It is worthwhile noting the aliasing effects in the model puitt signal. Aliasing exists in the output as
a consequence of sum and difference interactions that peoffequencies higher than one-half of the
Nyquist frequency. The input frequencies causing thesaiagiaeffects correspond to the points in the
triangles BDO and FGO. To avoid aliasing, one must requiré tie value ofx,, ;. xp 1 cp o IS Z€ro

for all indicesk’ andk” inside these triangles.
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Fig. 4: Block diagram of the proposed model for quadraticatbnlinear systems in the STFT domain. The upper
branch represents the linear component of the system, whichodeled by the crossband filtets, , .. The

quadratic component is modeled at the lower branch by usiagyuadratic cross-terms .

Finally, using (8) and (26) for representing the linear ancédyatic components of the system,

respectively, we obtain

N—1N;—1

dpvk = : : : : xp_plvklhp/7k7k,

k'=0 p'=0

+ Z Tp k' Tp, (k—k') mod NCk/,(k—k') mod N - (27)
k'eF

Equation (27) represents an explicit model for quadragicatinlinear systems in the STFT domain. A
block diagram of the proposed model is illustrated in Fig. 4aldgously to the time-domain \olterra
model, an important property of the proposed model is the tfat its output depends linearly on the
coefficients, which means that conventional linear estimmagéilgorithms can be applied for estimating its
parameters (see Section V).

The proposed STFT-domain model generalizes the conventiosatete frequency-domain Volterra
model [28], where the linear and quadratic components ofsifgtem are modeled in parallel using

multiplicative terms:
N-1
D(k)= Hi(k)X(k)+ > Ha(K K )XK)X ("), (28)
k' k"'=0

(K'+K") mod N=k
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where X (k) and D(k) are the Nth-length discrete Fourier transforms (DFT’s) of the input) and
the outputd(n), respectively, and?; (k) and Hy(k', k") are the linear and quadratic Volterra transfer
functions, respectively. A major limitation of this modslits underlying assumption that the observation
frame (V) is sufficiently large compared with the memory length of thedr kernel, which enables
to approximate the linear convolution as multiplicativetite frequency domain. Similarly, under this
large-frame assumption, the linear component in the pexgbarodel (27) can be approximated as a
multiplicative transfer function (MTF) [39], [40]. Accordity, the STFT model in (27) reduces to

dpr = hrxpp + Z Tp k' Tp, (k—k') mod N CK,(k—k') mod N » (29)

k'eF

which is in one-to-one correspondence with the frequermyan model (28). Therefore, the frequency-
domain model can be regarded as a special case of the propuxtal for relatively large observation
frames. In practice, a large observation frame may be vestricdve, especially when long and time-
varying impulse responses are considered (as in acousdiit eancellation applications [41]). A long
frame restricts the capability to identify and track timeiafions in the system, since the system is
assumed constant during the observation frame. Addilires indicated in [39], increasing the frame
length (while retaining the relative overlap between coosee frames), reduces the number of available
observations in each frequency bin, which increases than@e of the system estimate. Attempting to
identify the system using the models (28) or (29) yields a ehadismatch that degrades the accuracy
of the linear-component estimate. The crossband filters septation, on the other hand, outperforms
the MTF approach and achieves a substantially lower mse valen when relatively long frames are
considered [30]. Clearly, the proposed model forms a mugterirepresentation than that offered by the
frequency-domain model, and may correspondingly be udefuh larger variety of applications.

In this context, it should be emphasized that the quadcatmponent representation provided by the
proposed time-frequency model (27) (and certainly by tlegudency-domain model) may not exactly
represent a second-order Volterra filter in the time domaue, t the approximations made in (24) and
(25). Nevertheless, the proposed STFT model forms a new classntihear models that may represent
certain nonlinear systems more efficiently than the congeatitime-domain Volterra model. In fact, as
will be shown in Section V, the proposed model may be more adgaous than the latter in representing
nonlinear systems with relatively long memory due to its patational efficiency.

For completeness of discussion, let us extend the STFT moddietmeéneral case of agth-order

nonlinear system. Following a similar derivation to thatdedor the quadratic case [see (24)-(25)], the
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output of agth-order nonlinear system is modeled in the STFT domain as

q
dp e = dip + Z despk » (30)
(=2

where the linear component ., ;. is given by (8), and théth-order homogeneous componeht, ;. is

given by
N-1 ¢
d&p,k = Z ckhmkz{pr,ki : (31)
k1,.. ke=0 i=1

(Z4_q ki) mod N=k
Clearly, only ¢-fold frequencies{k;}¢_,, whose sum isk or k + N, contribute to the outputly., x
at frequency bink. Consequently, the number of cross-terms_x, ,x (¢ = 2,...,q) involved in
representing ath-order nonlinear system is given By?_, N~1 = (N9 — N) /(N — 1). Note that this
number can be further reduced by exploiting the symmetrpgnty of the cross-terms, as was done for

the quadratic case.

IV. QUADRATICALLY NONLINEAR SYSTEM IDENTIFICATION

In this section, we consider the problem of identifying quadidally nonlinear systems using the
proposed STFT model, and formulate an LS optimization critefimrestimating the model parameters
in each frequency bin. The conventional time-domain Vodtdilter identification is also described, and
a comparison between the STFT- and time-domain models is daorié in terms of computational
complexity. Without loss of generality, we consider herdyahe quadratic model due to its relatively
simpler structure. The quadratic model is appropriate fpregenting the nonlinear behavior of many
real world systems [42]. An extension to higher nonlingaoitders is straightforward.

Let an inputz(n) and outputy(n) of an unknown (quadratically) nonlinear system be related b

y(n) = {oz} (n) +&(n) = d(n) +&(n), (32)

where ¢(-) denotes a discrete-time nonlinear time-invariant systgm) is a corrupting additive noise
signal, andd(n) is the clean output signal. Note that the "noise” sigh@t) may sometimes include

a useful signal, e.g., the local speaker signal in acoustim ecancellation. The problem of system
identification can be formulated as follows: Given an inp@gnsai z(n) and noisy observation(n),
construct a model for describing the input-output relahip, and select its parameters so that the model
outputg(n) best estimates (or predicts) the measured output signadédflete byN, the time-domain
observable data length, and By ~ N,/L the number of samples in a time-trajectory of the STFT

representation (i.e., length af, ;, for a givenk).
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A. ldentification in the STFT domain

A system identifier operating in the STFT domain is illustrate&io 1. In the time-frequency domain,

equation (32) may be written as
Ypk = dp i +Epkc - (33)

To derive an estimatog, ;, for the system output in the STFT domain, we employ the quad&lieT
model proposed in the previous section [see (27)]. Utitjizonly 2K crossband filters around each

frequency bin for the estimation of the linear componerg, isulting estimatg,, ,, can be written as
E+K Ni—1

g%k = E E Lp—p’ k' mod th/,k,k’ mod N
k'=k—K p'=0

+ Z Tp k' Tp, (k—k') mod NCk,(k—k') mod N - (34)
k' eF
The influence of the number of estimated crossband fil&ks+ 1) on the system identifier performance

is demonstrated in Section V.

Let hy be the2K + 1 filters at frequency birk

hy, = [ hg,(k—x)modzv hg,(k—K-&-l)modN h;f,(mK)modN ] ’ (35)
T
where hy, ;= [ hokp higs -+ hy,_1pw | IS the crossband filter from frequency bir to

frequency bink. Let X, denote anP x M Toeplitz matrix whose, £)th term is given by(Xk)mJ =

(k+K)mod N

ZTm—rk, and letAy be a concatenation dfX;. k= (kK ) mod N

along the column dimension

A= X rymosn Xprcrnmody 0 Xrsmodn | - (36)
For notational simplicity, let us assume thatand N are both even, such that according to (26), the

number of quadratic cross-terms in each frequency biN /8 + 1. Then, let

T
Ck:[CO,k "t Chk o CRplLN-1 ot CNdk N+k} (37)

2 7 2

denote the quadratic cross-terms at title frequency bin, and let

Ay = [ X0k r Xk k Xpyl N-1 0 XNtk Ntk } (38)
272 ’

T
be anP x (N/2+ 1) matrix, wherexy, , = { TorTok TLRTLE TPl kTP—1k ] is a term-
by-term multiplication of the time-trajectories af, ;, at frequency bing and’, respectively. Then, the
output signal estimate (34) can be written in a vector form as

Vi = Aghy + Agcy,

£ Ry, (39)
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T
where §r. = | gox G1x - gp_m} , Ry = [Ay Ay, and 6, = [hl cI']" is the model
parameter vector. The dimension &f is given by
dg, = dim @y, = (2K +1) Ny + N/2 + 1. (40)
T
Denoting the observable data vector py = [y&k Yik o YP_1k } , and using the above

notations, the LS estimate of the model parameters aktindrequency bin is given by
6, = arg min [[yx — R0,
-1
= (Ri'Ry) Ri'ys, (41)

where we assume tth,ka is not singula?. Note that bothd,, and§;, depend on the parametéf,

but for notational simplicity ' has been omitted. Substituting (41) into (39), we obtain dimese

of the system output in the STFT domain at thi frequency bin. Repeating this estimation process
for each frequency bin and returning to the time-domain gighre inverse STFT (4), we obtain the
system output estimataj(n). The subscript s is to distinguish the subband-approacmatgifrom the
fullband-approach estimat(n) [derived in Section IV-B].

Next, we evaluate the computational complexity of the psmgbapproach. Computing the parameter
vector estimatef; requires a solution of the LS normal equatio®/Ry;) 8, = Rl'y, for each
frequency bin. This results iﬁ’dzk +d§3k/3 arithmetic operations when using the Cholesky decompositi
[44], wheredy, is defined in (40). Computation of the desired signal estinfd® requires additional
2Pdg, arithmetic operations. Assuming is sufficiently large, the complexity associated with the
proposed model is

OSNO{NP [(2K+1)N1+N/2+1]2}. (42)

Expectedly, we observe that the computational complexidyeiases a&k increases. However, analogously
to linear system identification [30], incorporating crogsthdilters into the model may yield lower mse

for stronger and longer input signals, as demonstrated itidde¥.

2In the ill-conditioned case, wheR R, is singular, matrix regularization is required [43].
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B. Identification in the time domain

For time-domain system identification, we utilize the secorder Volterra model, described in (1).

Accordingly, an estimator for the system output can be esqme as
N1—1

gi(n) = Y ha(m)ax(n—m)
m=0
No—1 Ny—1
+ Z Z ho(m, 0)x(n —m)x(n — £), (43)

m=0 f=m

where for the quadratic kernel, the triangular Volterrarespntation is used [11].

Let hy = | by (0) hy(1) --- hi(Ny—1) ]T denote the linear kernel, and let;(n) =
[ z(n) z(n—1) - x(n— N +1) }T. The quadratic kernel can be written in a vector notation
as
By = [ ho(0,0) ho(0,1) - ha(0,Np— 1)
ho(1,1) ho(1,2) -+ ha(1,Ny —1) (44)

T
ho(No 1, Ny —1) |

where similarly we define

xe(n)=| 22(n) z(m)xz(n—1) --- z(n)xz(n— Ny +1)
z(n—1xz(n-1) -+ xz(n—-1)z(n—Nay+1) (45)
22 (n— No+ 1) '

Then, the system output estimate (43) can be written in a véotm as
g1(n) = x"(n)8, (46)

wherex (n) = [x{ (n) x4 (n)] and £ [h{ hg]T is the model parameter vector. Note that the dimension
of 8, which determines the model complexity, is
Ny (NQ + 1)

dgédimO:NlJrf. (47)
T
Let y = [ y(0) y(1) - y(N,—1) } , and letX be an N, x dg matrix defined asX” =
[ x(0) x(1) -+ x(N;—1) } Then, the LS estimate @& is given by

6= arg min [[y — X0|?

1

= (XX) X"y (48)
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Substituting (48) into (46), we obtain an estimate of the esysoutput in the time domaigk(n) using
a second-order Volterra model.

As in the subband approach, forming the normal equationkjingo them using the Cholesky
decomposition and calculating the desired signal estinatguire N, d3 + dj/3 + 2N,dg arithmetic
operations. For sufficiently largév,, the computational complexity of the fullband approach &&n

expressed as

Ny (Ny+1)1?
Oi~ 0 (Nx [Nl + 2(2““)] ) . (49)
It is worth noting that the complexity of the fullband appcbacan be generally reduced by using efficient
algorithms that exploit the special structure of the cqroegling matrix in the LS normal equations [45],

[46].

C. Comparison and Discussion

Letr = L/N denote the relative overlap between consecutive analystbows (this overlap determines
the redundancy of the STFT representation). Then, rewritingsthdand approach complexity (42) in
terms of the fulloand parameters (by using the relatiBres N, /L and N; ~ N;/L), the ratio between

the fullband and subband complexities can be written as

0 1 (2M N 50)
Of r (2N, + N2)?

Expectedly, we observe that the computational gain achibydlle proposed subband approach is mainly

determined by the STFT analysis window len@fhhwhich represents the trade-off between the linear- and
nonlinear-component complexities. Specifically, using ay@ranalysis window yields shorter crossband
filters (~ N1/N), which reduces the computational cost of the linear corapgrbut at the same time
increases the nonlinear-component complexity by incngaie number of quadratic cross-terms V).
Nonetheless, according to (50), the complexity of the psepasubband approach would typically be lower
than that of the conventional fullband approach. For insarior N = 256, » = 0.5 (i.e., L = 128),

Ny = 1024, N» = 80 and K = 2 the proposed approach complexity is reduced by approxiynate
300, when compared to the fullband-approach complexity. The prgational efficiency obtained by
the proposed approach becomes even more significant whesnsystith relatively large second-order
memory length are considered. This is because these systrassitate an extremely large memory
length IV, for the quadratic kernel, when using the time-domain Vedtenodel, such thalv < N2 and

consequenthOs < Ox.
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An example of a long-memory system is an LEM system in nonlireaustic echo cancellation
applications [3]-[5]. The nonlinear behavior of this systisnmainly introduced by the loudspeakers and
their amplifiers, especially when small loudspeakers areedriat high volume. When parallel models
are considered for modeling the LEM system, the memory lendtth® nonlinear component will
also be determined by the acoustic enclosure, which typicainsists of several thousands taps [41].
Consequently, attempting to estimate the LEM system withithe-domain Volterra model involves high
computational cost, which makes it impractical in real amgtions. To reduce the model complexity,
the Volterra filters can be truncated in time [18], but then $gstem estimate is less accurate. Other
time-domain approximations for \olterra filters employed #&xoustic echo cancellation, such as the
Hammerstein model (i.e., a static nonlinearity followedabgtynamic linear block, as in [3], [5]), suggest
a less general structure than the Volterra filter. On the oltzerd, the proposed STFT model offers
both structural generality and computational efficiencyjclvhfacilitate a practical alternative for the

time-domain Volterra approach, especially in represgniystems with long memory.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results that detnate the effectiveness of the proposed
subband approach in estimating and modeling quadraticalylinear systems. A comparison to the
conventional time-domain Volterra approach is carriediniwérms of mse performance for both synthetic
white Gaussian signals and real speech signals. The ewalueitiudes objective quality measures,
a subjective study of temporal waveforms, and informaletigtg tests. For the STFT, we use half
overlapping Hamming analysis windows &f = 256 samples length (i.el, = 0.5N). The inverse STFT

is implemented with a minimum-energy synthesis window #adisfies the completeness condition [36].

A. Performance Evaluation for White Gaussian Input Signals

In the first experiment, we examine the performances of théekal and proposed models under the
assumption of white Gaussian signals. The system to be figehts formed as a parallel combination

of linear and quadratic components as follows:

Ny—1

y(n) = Y gilm)z(n —m) + {Lx} (n) +&(n), (51)

m=0

whereg; (n) is the true linear kernel anfiCz} (n) denotes the output of the quadratic component. The
input signalz(n) and the additive noise signg{n) are uncorrelated zero-mean white Gaussian processes

with variancess2 and ag, respectively. We model the linear kernel as a nonstatjosenrchastic process
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with an exponential decay envelope, i.g.(n) = u(n)3(n)e”*", whereu(n) is the unit step function,
(B(n) is a unit-variance zero-mean white Gaussian noise,caiglthe decay exponent. In the following,
we useN; = 768, a = 0.009, and an observable data length 8f = 24000 samples. For evaluating

the quality of the system estimate, the normalized mse is etbfas

— 1. (n 2
esz{w( ) =3 ()] }, 2

E{ld ()P}

whered(n) is the clean output signal [i.ed(n) = y(n) — &(n)], v € {s,f}, andys(n) and gt(n) are the

system output estimates obtained by the proposed subbgandaap and the fullband Volterra approach,
respectively (see Section V).

In the first experiment, we assume that the output signal oftrile-system’s quadratic component
{Lz} (n) is generated according to the quadratic model proposedéin That is, denoting bys—! the
inverse STFT operatof,Lz} (n) can be expressed as

{La} (n) = 5" Z Tp k' Tp, (k—k') mod NIk’ ,(k—k') mod N » (53)

k'eF

where{gk,,(k_k,)modN] k' e F} are the true quadratic cross-terms. These terms are modetedak
a unit-variance zero-mean white Gaussian process. For rnotiels, a memory length aV; = 768
is employed for the linear kernel, where the memory lenjthof the quadratic kernel in the Volterra
model is set t030. Figure 5 shows the resulting mse curves as a function of the BINRSNR is
defined as the power ratio between the clean output sigial and the additive noise signal(n)], as
obtained for a nonlinear-to-linear ratio (NLR) 6fdB [Fig. 5(a)] and—20 dB [Fig. 5(b)]. The NLR
represents the power ratio between the output signals afjubdratic and linear components of the true
system. For the proposed model, several valuek @fre employed in order to determine the influence of
the number of estimated crossband filters on the mse perfaemamd the optimal value that achieves
the minimal mse (mmse) is indicated above the mse curve. M@iea transition in the value ok’
is indicated by a variation in the width of the curve. Figur@)5implies that for relatively low SNR
values, a lower mse is achieved by the conventional Voltewdel. For instance, for an SNR ef20 dB,
employing the Volterra model reduces the mse by approxigmatedB, when compared to that achieved
by the proposed model. However, for higher SNR conditions,foposed model is considerably more
advantageous. For an SNR 2 dB, for instance, the proposed model enables a decrease @B in
the mse usind< = 4 (i.e., by incorporatind crossband filters into the model). Table | specifies the mse
values obtained by each value &f for various SNR conditions. We observe that for high SNR values

a significant improvement over the Volterra model can alsottsngd by using only the band-to-band
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filters (i.e., K = 0), which further reduces the computational cost of the psegomodel. Clearly, as
the SNR increases, a larger number of crossband filters sheuldilized to attain the mmse, which
is similar to what has been shown in the identification of putiglear systems [30]. Note that similar
results are obtained for a smaller NLR value [Fig. 5(b)], whie bnly difference is that the two curves
intersect at a higher SNR value.

Figure 5 also provides an insight into the influence of undeetiog errors on the mse performance.
Undermodeling errors occur whenever a given model does awiitaan exact description of the true
system. In our case, the undermodeling error of the Volterodel is due to the nonlinear component of
the system, which cannot be accurately described by a semoled homogeneous Volterra filter. In the
proposed model, on the other hand, the undermodeling exrarconsequence of restricting the number
of crossband filters in the linear component of the model [gvHile system’s nonlinear component (53)
can be perfectly represented by the model]. These underingdedrors cause the mse curves of both
models to saturate. The saturation values of the Volterraetrenad the proposed model, for any value of
K (except forK = 4), are given at the right column of Table35 dB SNR). For theK = 4 mse curve,
the saturation is attained at a relatively high SNR value f@xgmately 80 dB, for a0 dB NLR; not
displayed in Figure 5(a)]. This may be attributable to the that the linear component of the system can
be represented almost perfectly with only four crossbaretsilaround each frequency bin [30], such that
the undermodeling error in this case becomes insignificamth&umore, a comparison of Figs. 5(a) and
(b) indicates that the saturated mse value of the Volterrdehdecreases as the NLR decreases, which
stems from the fact that the error induced by the undermagléfi the nonlinear component becomes
less substantial as the nonlinearity strength decreases.

The complexity of the fullband and subband approaches (fdr ealue ofK) is evaluated by computing
the central processing unit (CPU) running tihw the LS estimation process. The running time in terms
of CPU seconds is averaged over several SNR conditions and atmech in Table Il. We observe, as
expected from (50), that the running time of the proposedaggh, for any value ok, is substantially
lower than that of the Volterra approach. Specifically, thénesion process of the Volterra model is
approximately12 and 4.5 times slower than that of the proposed model with= 0 and K = 4,
respectively. Moreover, Table Il indicates that the rugnime of the proposed approach increases as

more crossband filters are estimated, as expected from (42).

3The simulations were all performed under MATLAB; v.7.0, on a CoM)2 Duo P8400 2.27 GHz PC with 4 GB of RAM,

running Windows Vista, Service Pack 1.
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Fig. 5: MSE curves as a function of the SNR for white Gaussignads, as obtained by the proposed STFT

model (34) and the conventional time-domain Volterra mdd8&). The optimal value of is indicated above the

corresponding mse curve. The true system is formed as a oatign of linear and quadratic components, where

the latter is modeled according to (53). (a) Nonlinearitedr ratio (NLR) of0 dB (b) NLR of —20 dB.

TABLE I: MSE Obtained by the Proposed Model for SevekaNalues and by the Volterra Model, Under Various
SNR Conditions. The Nonlinear-to-Linear Ratio (NLR)0«IB.

MSE [dB]

K SNR= —-10dB SNR=20dB SNR=35dB

0 8.08 -15.12 -16.05

1 8.75 -16.91 -18.8

2 9.31 -18.17 -21.55

3 9.82 -19.67 -28.67

4 10.04 -19.97 -34.97
\olterra 0.42 -3.25 -3.58

Next, we compare the \olterra and proposed models for a qtiadlly nonlinear system with a

relatively large memory length. We assume that the quadcatinponent of the true systefx} (n) is

given by

{La}(n) =

Ny—1

> gim)r(n —m),

m=0

(54)

where g, (n) is similar to that used in the previous experiment. A systeprasented by (51) and (54)
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TABLE II: Average Running Time in Terms of CPU of the Proposkpproach (for Several K Values) and the
Volterra Approach. The Length of the Observable Dat24800 Samples.

Running Time [sec]
5.15
6.79
8.64
10.78
13.23
\olterra 61.31

AW e o

can be viewed as a memoryless polynomial of the faiim) +22(n) followed by the linear kerne; (n).
Such a representation has been employed in acoustic echellatina applications, where memoryless
nonlinearities occur in the power amplifier of the loudsped&g [23]. Note that the memory length of
the quadratic component is now equal to that of the linearpmrant, and therefore, large values/of
should be used in the Volterra model in order to achievefaatisry results. Figure 6 shows the resulting
mse curves as a function of the SNR, where for the \Volterra madeelatively small memory length
(Vo = 40) and a large oneN, = 80) are used. Clearly, as the SNR increases, the proposed model
outperforms the Volterra model (even for long kernels) aiedidg the mmse. For instance, for an SNR of
25 dB, an improvement of6 dB can be achieved by using the proposed model rather thaviotterra
model with Ny = 80.

We observe that as the SNR increases, the mse performance bblterra model can be generally
improved by using a longer memory for the quadratic kernetja expense of a considerable increase
in computational complexity, as indicated by (49)]. This pbenon is related to the problem of model-
order selection, a fundamental problem in many systemiitation applications [1], [47]-[52], where in
our case the model order is determined by the memory lengtiheodjuadratic Volterra kernel. Generally,
the optimal model order is affected by the level of noise ia thata and the length of the observable
data. As the SNR increases or as more data is employable, tileabpodel complexity increases, and
correspondingly longer quadratic kernels can be utilizeédhieve lower mse. The same reasoning is
also relevant to explaining why the number of estimatedsiyasd filter in the proposed subband model
increases for larger SNRs. The experimental results showathéiterra model in the time domain is
not sufficient for identification of nonlinear systems withatélely long memory. The advantage of the

proposed model is demonstrated in estimation accuracy amgutational efficiency.
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Fig. 6: MSE curves as a function of the SNR for white Gaussignads, as obtained by the proposed STFT model
(34) and the conventional time-domain Volterra model (43je true system is formed as a memoryless polynomial

of the formz(n) + z%(n) followed by a linear block.

B. Acoustic Echo Cancellation Scenario

In the second experiment, we demonstrate the applicatidgheoproposed approach to acoustic echo
cancellation using real speech signals. We use an ordirficg avith a reverberation timé&j, of about
100 ms. A far-end speech signa(n) is fed into a loudspeaker at high volume, thus introducing-no
negligible nonlinear distortion. The signaln) propagates through the enclosure and received by a
microphone as an echo signal together with a local ngfgg. The resulting noisy signal is denoted by
y(n). In this experiment, the signals are sampled@kHz. Note that the acoustic echo canceller (AEC)
performance is evaluated in the absence of near-end sp@ech,a double-talk detector (DTD) is usually
employed for detecting the near-end signal and freezingtienation process [53], [54]. A commonly-
used quality measure for evaluating the performance of AE@wiecho-return loss enhancement (ERLE),

defined in dB by

2 n
ERLE, = 10log;, m : (55)
where
ey(n) =y(n) — gy (n) (56)

is the error signal (or residual echo signal) apdn) is defined in (52).
Figures 7(a) and (b) show the far-end signal and the micraplsignal, respectively. Figures 7(c)—(e)

show the error signals as obtained by using a purely lineatetio the time domain, a Volterra model
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Fig. 7: Speech waveforms and residual echo signals, olstéinéhe time-domain Volterra approach and the proposed
subband approach. (a) Far-end signal (b) Microphone si@eial(e) Error signals obtained by a purely linear model
in the time domain, the Volterra model witN, = 90, and the proposed model with' = 1, respectively. For all

models, a length ofV; = 768 is assumed in the linear kernel.

with Ny = 90, and the proposed model withi = 1, respectively. For all models, a length &f = 768

is employed for the linear kernel. The ERLE values of the cooeding error signals were computed
by (55), and are given by4.56 dB (linear), 19.14 dB (Volterra), and29.54 dB (proposed). Clearly,
the proposed approach achieves a significant improvememtaotieme domain approach. This may be
attributable to the long memory of the system’s nonlineangonents which necessitate long kernels for
sufficient modeling of the acoustic path. Furthermore, a guneéar model does not provide a sufficient
echo attenuation due to nonlinear undermodeling [55]-[STibjective listening tests confirm that the
proposed approach achieves a perceptual improvement @tisgpiality over the conventional Volterra

approach (audio files are available on-line [58]).
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VI. CONCLUSIONS

Motivated by the common drawbacks of conventional time- iaquency-domain methods, we have
introduced a novel approach for identifying nonlinear eyst in the STFT domain. We have derived
an explicit nonlinear model, based on an efficient approxmnabf Volterra-filters representation in the
time-frequency domain. The proposed model consists of dlglacambination of a linear component,
which is represented by crossband filters between subbandsa aonlinear component, modeled by
multiplicative cross-terms. We showed that the converatioliscrete frequency-domain model is a special
case of the proposed model for relatively long observatiamés. Furthermore, we considered the
identification of quadratically nonlinear systems and shibttat a significant reduction in computational
cost can be achieved over the time-domain Volterra modelhey groposed approach. Experimental
results have demonstrated the advantage of the proposed ST#&dl mcestimating nonlinear systems
with relatively large memory length. The time-domain Valeemodel fails to estimate such systems due
to its high complexity. The proposed model, on the other hanlbieves a significant improvement in mse
performance, particularly for high SNR conditions. It is #vhile noting, though, that the experimental
results presented in this paper are applicable only forlpareadratic systems. When higher nonlinearity
orders are considered, one should employ the extended STFT fsedg30)-(31)] and follow a similar
identification process to that made for the quadratic case.

Overall, the results have met the expectations originally ipto STFT-based estimation techniques.
The proposed approach in the STFT domain offers both structararglity and computational efficiency,
and consequently facilitates a practical alternative famventional methods.

Since practically many real-world systems are time-varyihg approach proposed in this paper should
be made adaptive in order to track these variations. Rggeamtl adaptive estimation of the model
parameters and a detailed convergence analysis of theatidapprocess was introduced [59]. Future
research will concentrate on constructing a fully adaptioetrol scheme, which exploits the attractive
properties of the proposed model and provides a balanceebatwomplexity, convergence rate and

steady-state performance.

APPENDIXA

DERIVATION OF (11)

Using (2) and (1), the STFT afy(n) can be written as

dape =Y ha(m, O)x(n —m)z(n — €) Py 1 (n) (57)

n,m.t
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Substituting (4) into (57), we obtain

dg;pyk = Z hQ m é Z Zl‘p k/l/Jp k’ n—m )

n,m,l k'=0 p’
N-1
X Z Z :L'p//Vk//’l)Z)p//’k// (’]’L — €)¢;7k(n)
]{?”:0 p//
N-1
= Z Z Lp' k' Tp k' Cp,p p" kK’ k'’ (58)
k' k"=0p’,p"”
where
Cot e = D ha (1 Oy g (=) o (1= £y 4 () (59)
n,m,l

Substituting (3) and (5) into (59), we obtain

27
Cp,p’,p”,k‘,k’,k” = Z h2(m’ g) n—m— p L)ej k' (n m—p L)

n,m,l

% w(n i p//L)ej%’k”(n—f—p”L)QL*(n _ pL)e—j%k(n—pL)

= > ha(m, 09 ((p— /) L+n —m) el §F(mp)lin=m)

n,m,l

><w((p—p//)[,—i—n—g)egzwk//(( "YL+n— EQ; ( ) —j%kn
= {ha(n,m) = Sre e (M), 1 e (pepyz = Co—pp—p ekt (60)
wherex denotes a 2D convolution with respect to the time indiceend m, and

i (nm) & 374 (O ¥ (a4 TR y(m 4 0, (61)

¢From (60),c, 0 p ik kv depends on(p — p') and (p — p”) rather than orp, p’ and p” separately.
Substituting (60) into (58), we obtain (11).
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