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Abstract

In this paper, we introduce a novel approach for improved nonlinear system identification in the

short-time Fourier transform (STFT) domain. We first deriveexplicit representations of discrete-time

Volterra filters in the STFT domain. Based on these representations, approximate nonlinear STFT models,

which consist of parallel combinations of linear and nonlinear components, are developed. The linear

components are represented by crossband filters between subbands, while the nonlinear components

are modeled by multiplicative cross-terms. We consider theidentification of quadratically nonlinear

systems and show that a significant reduction in computational cost as well as substantial improvement in

estimation accuracy can be achieved over a time-domain Volterra model, particularly when long-memory

systems are considered. Experimental results validate thetheoretical derivations and demonstrate the

effectiveness of the proposed approach.
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I. I NTRODUCTION

Identification of linear systems has been studied extensively and is of major importance in diverse

fields of signal processing [1], [2]. However, in many real-world applications, the considered systems
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exhibit certain nonlinearities that cannot be sufficiently estimated by conventional linear models.

Examples of such applications include acoustic echo cancellation [3]–[5], channel equalization [6],

[7], biological system modeling [8], image processing [9],and loudspeaker linearization [10]. Volterra

filters [11]–[16] are widely used for modeling nonlinear physical systems, such as loudspeaker-enclosure-

microphone (LEM) systems in nonlinear acoustic echo cancellation applications [4], [17], [18], and digital

communication channels [6], [19], just to mention a few. An important property of Volterra filters, which

makes them useful in nonlinear estimation problems, is the linear relation between the system output and

the filter coefficients. Many approaches, which attempt to estimate the Volterra kernels in the time domain,

employ conventional linear estimation methods in batch (e.g., [15], [20]) or adaptive forms (e.g., [4],

[21]). A common difficulty associated with time-domain methods is their high computational cost, which

is attributable to the large number of parameters of the Volterra model. This problem becomes even more

crucial when estimating systems with relatively large memory length, as in acoustic echo cancellation

applications. Another major drawback of the Volterra modelis its severe ill-conditioning [22], which leads

to high estimation-error variance and to slow convergence of the adaptive Volterra filter. To overcome

these problems, several approximations for the time-domain Volterra filter have been proposed, including

orthogonalized power filters [23], Hammerstein models [24],parallel-cascade structures [25], and multi-

memory decomposition [26].

Alternatively, frequency-domain methods have been introduced for Volterra system identification,

aiming at estimating the so-called Volterra transfer functions [27]–[29]. Statistical approaches based on

higher order statistics (HOS) of the input signal use cumulants and polyspectra information [27]. These

approaches have relatively low computational cost, but often assume a Gaussian input signal, which limits

their applicability. In [28] and [29], a discrete frequency-domain model is defined, which approximates

the Volterra filter in the frequency domain using multiplicative terms. Although this approach assumes

no particular statistics for the input signal, it requires along duration of the input signal to validate the

multiplicative approximation and to achieve satisfactoryperformance. When the data is of limited size

(or when the nonlinear system is not time-invariant), this long duration assumption is very restrictive.

In this paper, we introduce a novel approach for improved nonlinear system identification in the

short-time Fourier transform (STFT) domain, which is based on a time-frequency representation of the

Volterra filter. A typical nonlinear system identification scheme in the STFT domain is illustrated in Fig. 1.

Similarly to STFT-based linear identification techniques [30]–[32], representing and identifying nonlinear

systems in the STFT domain is motivated by a reduction in computational cost compared to time-domain

methods, due to processing in distinct subbands. Together with a reduction in the spectral dynamic range
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of the input signal, the reduced complexity may also lead to afaster convergence of nonlinear adaptive

algorithms. Consequently, a proper model in the STFT domain mayfacilitate a practical alternative for

conventional nonlinear models, especially in estimating nonlinear systems with relatively long memory,

which cannot be practically estimated by existing methods.We show that a homogeneous time-domain

Volterra filter [11] with a certain kernel can be perfectly represented in the STFT domain, at each

frequency bin, by a sum of Volterra-like expansions with smaller-sized kernels. This representation,

however, is impractical for identifying nonlinear systemsdue to the extremely large complexity of

the model. We develop an approximate nonlinear model, whichsimplifies the STFT representation of

Volterra filters and significantly reduces the model complexity. The resulting model consists of a parallel

combination of linear and nonlinear components. The linear component is represented by crossband

filters between the subbands [30], [33], while the nonlinear component is modeled by multiplicative

cross-terms, extending the so-called cross-multiplicative transfer function (CMTF) approximation [34]. It

is shown that the proposed STFT model generalizes the conventional discrete frequency-domain model

[28], and forms a much richer representation for nonlinear systems. Concerning system identification, we

employ the proposed model and introduce an off-line scheme for estimating the model parameters using

a least-squares (LS) criterion. The proposed approach is more advantageous in terms of computational

complexity than the time-domain Volterra approach. When estimating long-memory systems, a substantial

improvement in estimation accuracy over the Volterra modelcan be achieved, especially for high signal-

to-noise ratio (SNR) conditions. Experimental results with white Gaussian signals and real speech signals

demonstrate the advantages of the proposed approach.

The paper is organized as follows. In Section II, we derive an explicit representation of discrete-time

Volterra filters in the STFT domain. In Section III, we introduce a simplified model for nonlinear systems

in the STFT domain. In Section IV, we consider off-line estimation of the proposed-model parameters

and compare its complexity to that of the conventional time-domain approach. Finally, in Section V, we

present some experimental results.

II. REPRESENTATION OFVOLTERRA FILTERS IN THE STFT DOMAIN

In this section, we represent discrete-time Volterra filtersin the STFT domain. We first consider the

quadratic case, and subsequently generalize the results tohigher orders of nonlinearity. We show that a

time-domain Volterra kernel can be perfectly represented in the STFT domain by a sum of smaller-sized

kernels in each frequency bin. Throughout this work, unless explicitly noted, the summation indices range

from −∞ to ∞.
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Fig. 1: Nonlinear system identification in the STFT domain. The unknown time-domain nonlinear systemφ(·) is

estimated using a given model in the STFT domain.

A. Quadratically Nonlinear Systems

Consider a quadratically nonlinear system with an inputx(n) and an outputd(n). One of the most

popular representations of such system is a second-order Volterra filter that relatesx(n) and d(n) as

follows:

d(n) =

N1−1
∑

m=0

h1(m)x(n−m)

+

N2−1
∑

m=0

N2−1
∑

ℓ=0

h2(m, ℓ)x(n−m)x(n− ℓ)

, d1(n) + d2(n) , (1)

whereh1(m) and h2(m, ℓ) are the linear and quadratic Volterra kernels, respectively, and d1(n) and

d2(n) denote the corresponding output signals of the linear and quadratic homogeneous components. To

find a representation ofd(n) in the STFT domain, let us first briefly review some definitions of the STFT

representation of digital signals (for further details, see e.g., [35]).

The STFT representation of a signalx(n) is given by

xp,k =
∑

m

x(m)ψ̃∗
p,k(m) , (2)

where

ψ̃p,k(n) , ψ̃(n− pL)ej
2π

N
k(n−pL) (3)
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denotes a translated and modulated window function,ψ̃(n) is an analysis window of lengthN , p is the

frame index,k represents the frequency-bin index (0 ≤ k ≤ N − 1), L is the translation factor (or the

decimation factor, in filter-bank interpretation) and∗ denotes complex conjugation. The inverse STFT,

i.e., reconstruction ofx(n) from its STFT representationxp,k, is given by

x(n) =
∑

p

N−1
∑

k=0

xp,kψp,k(n) , (4)

where

ψp,k(n) , ψ(n− pL)ej
2π

N
k(n−pL) , (5)

and ψ(n) denotes a synthesis window of lengthN . Substituting (2) into (4), we obtain the so-called

completeness condition:
∑

p

ψ(n− pL)ψ̃∗(n− pL) =
1

N
for all n . (6)

Given analysis and synthesis windows that satisfy (6), a signalx(n) ∈ ℓ2(Z) is guaranteed to be perfectly

reconstructed from its STFT coefficientsxp,k. However, forL ≤ N and for a given synthesis window

ψ(n), there might be an infinite number of solutions to (6); therefore, the choice of the analysis window

is generally not unique [36], [37].

Using the linearity of the STFT,d(n) in (1) can be written in the time-frequency domain as

dp,k = d1;p,k + d2;p,k , (7)

whered1;p,k andd2;p,k are the STFT representations ofd1(n) andd2(n), respectively. It is well known that

in order to perfectly represent a linear system in the STFT domain, crossband filters between subbands

are generally required [30], [33]. Therefore, the output of the linear component can be expressed in the

STFT domain as

d1;p,k =
N−1
∑

k′=0

N̄1−1
∑

p′=0

xp−p′,k′hp′,k,k′ , (8)

wherehp,k,k′ denotes a crossband filter of length̄N1 = ⌈(N1 +N − 1) /L⌉+⌈N/L⌉−1 from frequency

bin k′ to frequency bink. These filters are used for canceling the aliasing effects caused by the

subsampling factorL. The crossband filterhp,k,k′ is related to the linear kernelh1(n) by [30]

hp,k,k′ = {h1(n) ∗ φk,k′(n)}|
n=pL

(9)

where the discrete-time Fourier transform (DTFT) ofφk,k′(n) with respect to the time indexn is given

by

Φk,k′(ω) =
∑

n

φk,k′(n)e−jnω = Ψ̃∗

(

ω −
2π

N
k

)

Ψ

(

ω −
2π

N
k′
)

, (10)
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whereΨ̃(ω) andΨ(ω) are the DTFT ofψ̃(n) andψ(n), respectively. Note that the energy of the crossband

filter from frequency bink′ to frequency bink generally decreases as|k − k′| increases, since the overlap

betweenΨ̃ (ω − (2π/N) k) andΨ (ω − (2π/N) k′) becomes smaller. Recently, we have investigated the

influence of crossband filters on a linear system identifier implemented in the STFT domain [30]. We

showed that increasing the number of crossband filters not necessarily implies a lower steady-state mse

in subbands. In fact, the inclusion of more crossband filters in the identification process is preferable

only when high SNR or long data are considered. As will be shownlater, the same applies also when

an additional nonlinear component is incorporated into themodel.

The representation of the quadratic component’s outputd2(n) in the STFT domain can be derived in a

similar manner to that of the linear component. Specifically, applying the STFT tod2(n) we may obtain

after some manipulations (see Appendix A)

d2;p,k =
N−1
∑

k′,k′′=0

∑

p′,p′′

xp′,k′xp′′,k′′cp−p′,p−p′′,k,k′,k′′

=
N−1
∑

k′,k′′=0

∑

p′,p′′

xp−p′,k′xp−p′′,k′′cp′,p′′,k,k′,k′′ . (11)

wherecp−p′,p−p′′,k,k′,k′′ may be interpreted as a response of the quadratic system to a pair of impulses

{δp−p′,k−k′ , δp−p′′,k−k′′} in the time-frequency domain. Equation (11) indicates that for a given frequency-

bin index k, the temporal signald2;p,k consists of all possible interactions between pairs of input

frequencies. The contribution of each frequency pair{k′, k′′| k′, k′′ ∈ {0, . . . , N − 1}} to the output

signal at frequency bink is given as a Volterra-like expansion withcp′,p′′,k,k′,k′′ being its quadratic

kernel. The kernelcp′,p′′,k,k′,k′′ in the time-frequency domain is related to the quadratic kernel h2(n,m)

in the time domain by (see Appendix A)

cp′,p′′,k,k′,k′′ = {h2(n,m) ∗ φk,k′,k′′(n,m)}|
n=p′L, m=p′′L

(12)

where∗ denotes a 2D convolution and

φk,k′,k′′(n,m) ,
∑

ℓ

ψ̃∗(ℓ)e−j 2π

N
kℓψ(n+ ℓ)ej

2π

N
k′(n+ℓ)ψ(m+ ℓ)ej

2π

N
k′′(m+ℓ) . (13)

Equation (13) implies that for fixedk, k′ and k′′, the quadratic kernelcp′,p′′,k,k′,k′′ is noncausal with

⌈N/L⌉ − 1 noncausal coefficients in each variable (p′ and p′′). Note that crossband filters are also

noncausal with the same number of noncausal coefficients [30]. Hence, for system identification, an

artificial delay of(⌈N/L⌉ − 1)L can be applied to the system output signald(n) in order to consider a
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noncausal response. It can also be seen from (13) that the memory length of each kernel is given by

N̄2 =

⌈

N2 +N − 1

L

⌉

+

⌈

N

L

⌉

− 1 , (14)

which is approximatelyL times lower than the memory length of the time-domain kernelh2(m, ℓ). The

support ofcp′,p′′,k,k′,k′′ is therefore given byD×D whereD = [1 − ⌈N/L⌉ , . . . , ⌈(N2 +N − 1) /L⌉ − 1].

To give further insight into the basic properties of the quadratic STFT kernelscp′,p′′,k,k′,k′′ , we apply

the 2D DTFT toφk,k′,k′′(n,m) with respect to the time indicesn andm, and obtain

Φk,k′,k′′ (ω, η) = Ψ̃∗

(

ω + η −
2π

N
k

)

Ψ

(

ω −
2π

N
k′
)

Ψ

(

ω −
2π

N
k′′
)

. (15)

By taking Ψ (ω) and Ψ̃ (ω) to be ideal low-pass filters with bandwidthsπ/N (i.e., Ψ (ω) = 0 and

Ψ̃ (ω) = 0 for ω /∈ [−π/2N, π/2N ] ), a perfect STFT representation of the quadratic time-domain

kernel h2(n,m) can be achieved by utilizing only kernels of the formcp′,p′′,k,k′,(k−k′)mod N , since in

this case the product ofΨ(ω− (2π/N) k′), Ψ(ω− (2π/N) k′) andΨ̃∗ (ω + η − (2π/N) k) is identically

zero for k′′ 6= (k − k′)modN . Practically, the analysis and synthesis windows are not ideal and their

bandwidths are greater thanπ/N , so φk,k′,(k−k′) mod N (n,m), and consequentlycp′,p′′,k,k′,(k−k′) mod N ,

are not zero. Nonetheless, one can observe from (15) that theenergy ofφk,k′,k′′(n,m) decreases as

|k′′ − (k − k′)modN | increases, since the overlap between the translated windowfunctions becomes

smaller. As a result, not all kernels in the STFT domain should beconsidered in order to capture most

of the energy of the STFT representation ofh2(n,m). This is illustrated in Fig. 2, which shows the

energy ofφk,k′,k′′(n,m), defined asEk,k′ (k′′) ,
∑

n,m |φk,k′,k′′(n,m)|2, for k = 1, k′ = 0 and k′′ ∈

{(k − k′ + i)modN}10
i=−10, as obtained by using rectangular, triangular and Hann synthesis windows

of lengthN = 256. A corresponding minimum-energy analysis window that satisfies the completeness

condition [36] for L = 128 (50% overlap) is also employed. The results confirm that the energy of

φk,k′,k′′(n,m), for fixed k andk′, is concentrated around the indexk′′ = (k − k′)modN .

As expected from (15), the number of useful quadratic kernels in each frequency bin is mainly

determined by the spectral characteristics of the analysisand synthesis windows. That is, windows with

a narrow mainlobe (e.g., a rectangular window) yield the sharpest decay, but suffer from wider energy

distribution overk′′ due to relatively high sidelobes energy. Smoother windows (e.g., Hann window),

on the other hand, enable better energy concentration. For instance, utilizing a Hann window reduces

the energy ofφk,k′,k′′(n,m) for k′′ = (k − k′ ± 8)modN by approximately30 dB, when compared to

using a rectangular window. These results will be used in the next section for deriving a useful model

for nonlinear systems in the STFT domain.
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of lengthN = 256.

B. High-Order Nonlinear Systems

Let us now consider a generalizedqth-order nonlinear system with an inputx(n) and an outputd(n).

A time-domainqth-order Volterra filter representation of this system is given by

d(n) =

q
∑

ℓ=1

dℓ(n) (16)

wheredℓ(n) represents the output of theℓth-order homogeneous Volterra filter, which is related to the

input x(n) by

dℓ(n) =

Nℓ−1
∑

m1=0

· · ·

Nℓ−1
∑

mℓ=0

hℓ(m1, . . .mℓ)
ℓ
∏

i=1

x(n−mi) (17)

wherehℓ(m1, . . .mℓ) is theℓth-order Volterra kernel, andNℓ (1 ≤ ℓ ≤ q) represents its memory length.

This representation is called symmetric if the Volterra kernels satisfy [11]

hℓ(m1, . . .mℓ) = hℓ(mπ(1), . . .mπ(ℓ)) (18)

for any permutationπ(1, . . . , ℓ). In order to reduce the redundancy of the symmetric representation, the

triangular or regular representations may be employed (forfurther details, see e.g., [11]).

Applying the STFT todℓ(n) and following a similar derivation to that made for the quadratic case

[see (11)-(13), and Appendix A], we obtain after some manipulations

dℓ;p,k =
N−1
∑

k1,...kℓ=0

∑

p1,...pℓ

cp1,...pℓ,k,k1,...kℓ

ℓ
∏

i=1

xp−pi,ki
. (19)
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Equation (19) implies that the output of anℓth-order homogeneous Volterra filter in the STFT domain, at a

given frequency-bin indexk, consists of all possible combinations ofℓ input frequencies. The contribution

of eachℓ-fold frequency indices{k1, . . . kℓ} to thekth frequency bin is expressed in terms of anℓth-order

homogeneous Volterra expansion with the kernelcp1,...pℓ,k,k1,...kℓ
. Similarly to the quadratic case, it can

be shown that the STFT kernelcp1,...pℓ,k,k1,...kℓ
in the time-frequency domain is related to the kernel

hℓ(m1, . . .mℓ) in the time domain by

cp1,...pℓ,k,k1,...kℓ
= {hℓ(m1, . . .mℓ) ∗ φk,k1,...kℓ

(m1, . . .mℓ)}|mi=piL; i=1,...ℓ.
(20)

where∗ denotes anℓ-D convolution and

φk,k1,...kℓ
(m1, . . .mℓ) ,

∑

n

ψ̃∗(n)e−j 2π

N
kn

ℓ
∏

i=1

ψ(mi + n)ej
2π

N
ki(mi+n) . (21)

Equations (20)-(21) imply that for fixed indices{ki}
ℓ
i=1, the kernelcp1,...pℓ,k,k1,...kℓ

is noncausal with

⌈N/L⌉ − 1 noncausal coefficients in each variable{pi}
ℓ
i=1, and its overall memory length is given by

N̄ℓ =

⌈

Nℓ +N − 1

L

⌉

+

⌈

N

L

⌉

− 1 . (22)

Note that forℓ = 1 and ℓ = 2, (19)-(21) reduce to the STFT representation of the linear kernel (8)

and the quadratic kernel (11), respectively. Furthermore, applying theℓ-D DTFT to φk,k1,...kℓ
(m1, . . .mℓ)

with respect to the time indicesm1, . . .mℓ, we obtain

Φk,k1,...kℓ
(ω1, . . . ωℓ) = Ψ̃∗

(

ℓ
∑

i=1

ωi −
2π

N
k

)

ℓ
∏

m=1

Ψ

(

ωm −
2π

N
km

)

. (23)

If both Ψ̃(ω) and Ψ(ω) were ideal low-pass filters with bandwidth2π/ (⌈(ℓ+ 1) /2⌉N), the

overlap between the translated window functions in (23) would have been identically zero for

kℓ 6=
(

k −
∑ℓ−1

i=1 ki

)

modN , and thus only kernels of the formcp1,...pℓ,k,k1,...kℓ
where kℓ =

(

k −
∑ℓ−1

i=1 ki

)

modN would have contributed to the output at frequency-bin indexk. Practically,

the energy is distributed over all kernels and particularlyconcentrated around the indexkℓ =
(

k −
∑ℓ−1

i=1 ki

)

modN , as was demonstrated in Fig. 2 for the quadratic case (ℓ = 2).

III. A N APPROXIMATE MODEL FORNONLINEAR SYSTEMS IN THE STFT DOMAIN

Representation of Volterra filters in the STFT domain involves a large number of parameters and high

error variance, particularly when estimating the system from short and noisy data. In this section, we

introduce an approximate model for improved nonlinear system identification in the STFT domain, which

simplifies the STFT representation of Volterra filters and reducesthe model complexity.
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We start with an STFT representation of a second-order Volterrafilter. Recall that modeling the linear

kernel requiresN crossband filters in each frequency bin [see (8)], where the length of each filter

is approximatelyN1/L. For system identification, however, only a few crossband filters need to be

considered [30], which leads to a computationally efficient representation of the linear component. The

quadratic Volterra kernel representation, on the other hand, consists ofN2 kernels in each frequency bin

[see (11)], where the size of each kernel in the STFT domain is approximatelyN2/L× N2/L. A perfect

representation of the quadratic kernel is then achieved by employing (NN2/L)2 parameters in each

frequency bin. Even though it may be reduced by considering the symmetric properties of the kernels,

the complexity of such a model remains extremely large.

To reduce the complexity of the quadratic model in the STFT domain, let us assume that the analysis and

synthesis filters are selective enough, such that according to Fig. 2, most of the energy of a quadratic kernel

cp′,p′′,k,k′,k′′ (for fixed k andk′) is concentrated in a small region around the indexk′′ = (k − k′)modN .

Accordingly, (11) can be efficiently approximated by

d2;p,k ≈
N−1
∑

k′,k′′=0
(k′+k′′)mod N=k

∑

p′,p′′

xp−p′,k′xp−p′′,k′′cp′,p′′,k,k′,k′′ . (24)

A further simplification can be made by extending the so-called cross-multiplicative transfer function

(CMTF) approximation, which was first introduced in [34], [38] for the representation of linear systems

in the STFT domain. According to this model, a linear system is represented in the STFT domain by

cross-multiplicative terms, rather than crossband filters,between distinct subbands. Following a similar

reasoning, a kernelcp′,p′′,k,k′,k′′ in (24) may be approximated as purely multiplicative in the STFTdomain,

so that (24) degenerates to

d2;p,k ≈
N−1
∑

k′,k′′=0
(k′+k′′)mod N=k

xp,k′xp,k′′ck′,k′′ . (25)

We refer tock′,k′′ as aquadratic cross-term. The constraint(k′ + k′′) modN = k on the summation

indices in (25) indicates that only frequency indices{k′, k′′}, whose sum isk or k + N1, contribute

to the output at frequency bink. This concept is well illustrated in Fig. 3, which shows the(k′, k′′)

two-dimensional plane. For calculatingd2;p,k at frequency bink, only points on the linesk′ + k′′ = k

and k′ + k′′ = k + N need to be considered. Moreover, the quadratic cross-termsck′,k′′ have unique

1Sincek andk′ range from0 to N − 1, the contribution of the difference interaction of two frequencies to thekth frequency

bin corresponds to the sum interaction of the same two frequencies to the (k + N )th frequency bin.
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Fig. 3: Two-dimensional(k′, k′′) plane. Only points on the linek′+k′′ = k (corresponding to sum interactions) and

the linek′ + k′′ = k +N (corresponding to difference interactions) contribute tothe output at thekth frequency

bin.

values only at the upper triangle ACH. Therefore, the intersection between this triangle and the lines

k′ + k′′ = k andk′ + k′′ = k +N bounds the range of the summation indices in (25), such thatd2;p,k

can be compactly rewritten as

d2;p,k ≈
∑

k′∈F

xp,k′xp,(k−k′) mod Nck′,(k−k′) mod N , (26)

where F = {0, 1, . . . ⌊k/2⌋ , k + 1, . . . , k + 1 + ⌊(N − k − 2) /2⌋} ⊂ [0, N − 1]. Consequently, the

number of cross-terms at thekth frequency bin has been reduced by a factor of two to⌊k/2⌋ +

⌊(N − k − 2) /2⌋ + 2. Note that a further reduction in the model complexity can beachieved if the

signals are assumed real-valued, since in this caseck′,k′′ must satisfyck′,k′′ = c∗N−k′,N−k′′ , and thus,

only points in the grey area contribute to the model output (in this case, it is sufficient to consider only

the first⌊N/2⌋ + 1 output frequency bins).

It is worthwhile noting the aliasing effects in the model output signal. Aliasing exists in the output as

a consequence of sum and difference interactions that produce frequencies higher than one-half of the

Nyquist frequency. The input frequencies causing these aliasing effects correspond to the points in the

triangles BDO and FGO. To avoid aliasing, one must require that the value ofxp,k′xp,k′′ck′,k′′ is zero

for all indicesk′ andk′′ inside these triangles.
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hp,k,k′
−1

hp,k,k′

hp,k,k′+1

xp,k′
−1

xp,k′

xp,k′+1

ck′
−1,k−k′+1

ck′,k−k′

ck′+1,k−k′
−1

·

×

·

×

xp,k−k′+1

xp,k−k′

·

×

xp,k−k′
−1

+

.

.

.

.

.

.

+

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+

d1;p,k

d2;p,k

dp,k

Fig. 4: Block diagram of the proposed model for quadratically nonlinear systems in the STFT domain. The upper

branch represents the linear component of the system, whichis modeled by the crossband filtershp,k,k′ . The

quadratic component is modeled at the lower branch by using the quadratic cross-termsck,k′ .

Finally, using (8) and (26) for representing the linear and quadratic components of the system,

respectively, we obtain

dp,k =
N−1
∑

k′=0

N̄1−1
∑

p′=0

xp−p′,k′hp′,k,k′

+
∑

k′∈F

xp,k′xp,(k−k′) mod Nck′,(k−k′)mod N . (27)

Equation (27) represents an explicit model for quadratically nonlinear systems in the STFT domain. A

block diagram of the proposed model is illustrated in Fig. 4. Analogously to the time-domain Volterra

model, an important property of the proposed model is the fact that its output depends linearly on the

coefficients, which means that conventional linear estimation algorithms can be applied for estimating its

parameters (see Section IV).

The proposed STFT-domain model generalizes the conventional discrete frequency-domain Volterra

model [28], where the linear and quadratic components of thesystem are modeled in parallel using

multiplicative terms:

D(k) = H1(k)X(k) +
N−1
∑

k′,k′′=0
(k′+k′′)mod N=k

H2(k
′, k′′)X(k′)X(k′′) , (28)
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whereX(k) andD(k) are theN th-length discrete Fourier transforms (DFT’s) of the inputx(n) and

the outputd(n), respectively, andH1(k) andH2(k
′, k′′) are the linear and quadratic Volterra transfer

functions, respectively. A major limitation of this model is its underlying assumption that the observation

frame (N ) is sufficiently large compared with the memory length of the linear kernel, which enables

to approximate the linear convolution as multiplicative inthe frequency domain. Similarly, under this

large-frame assumption, the linear component in the proposed model (27) can be approximated as a

multiplicative transfer function (MTF) [39], [40]. Accordingly, the STFT model in (27) reduces to

dp,k = hkxp,k +
∑

k′∈F

xp,k′xp,(k−k′) mod Nck′,(k−k′)mod N , (29)

which is in one-to-one correspondence with the frequency-domain model (28). Therefore, the frequency-

domain model can be regarded as a special case of the proposedmodel for relatively large observation

frames. In practice, a large observation frame may be very restrictive, especially when long and time-

varying impulse responses are considered (as in acoustic echo cancellation applications [41]). A long

frame restricts the capability to identify and track time variations in the system, since the system is

assumed constant during the observation frame. Additionally, as indicated in [39], increasing the frame

length (while retaining the relative overlap between consecutive frames), reduces the number of available

observations in each frequency bin, which increases the variance of the system estimate. Attempting to

identify the system using the models (28) or (29) yields a model mismatch that degrades the accuracy

of the linear-component estimate. The crossband filters representation, on the other hand, outperforms

the MTF approach and achieves a substantially lower mse value, even when relatively long frames are

considered [30]. Clearly, the proposed model forms a much richer representation than that offered by the

frequency-domain model, and may correspondingly be usefulfor a larger variety of applications.

In this context, it should be emphasized that the quadratic-component representation provided by the

proposed time-frequency model (27) (and certainly by the frequency-domain model) may not exactly

represent a second-order Volterra filter in the time domain, due to the approximations made in (24) and

(25). Nevertheless, the proposed STFT model forms a new class ofnonlinear models that may represent

certain nonlinear systems more efficiently than the conventional time-domain Volterra model. In fact, as

will be shown in Section V, the proposed model may be more advantageous than the latter in representing

nonlinear systems with relatively long memory due to its computational efficiency.

For completeness of discussion, let us extend the STFT model to the general case of aqth-order

nonlinear system. Following a similar derivation to that made for the quadratic case [see (24)-(25)], the



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. Y, MONTH 2009 14

output of aqth-order nonlinear system is modeled in the STFT domain as

dp,k = d1;p,k +

q
∑

ℓ=2

dℓ;p,k , (30)

where the linear componentd1;p,k is given by (8), and theℓth-order homogeneous componentdℓ;p,k is

given by

dℓ;p,k =
N−1
∑

k1,...kℓ=0
(
∑

ℓ
i=1

ki)mod N=k

ck1,...kℓ

ℓ
∏

i=1

xp,ki
. (31)

Clearly, only ℓ-fold frequencies{ki}
ℓ
i=1, whose sum isk or k + N , contribute to the outputdℓ;p,k

at frequency bink. Consequently, the number of cross-termsck1,...kℓ−1,kℓ
(ℓ = 2, . . . , q) involved in

representing aqth-order nonlinear system is given by
∑q

ℓ=2N
ℓ−1 = (N q −N) / (N − 1). Note that this

number can be further reduced by exploiting the symmetry property of the cross-terms, as was done for

the quadratic case.

IV. QUADRATICALLY NONLINEAR SYSTEM IDENTIFICATION

In this section, we consider the problem of identifying quadratically nonlinear systems using the

proposed STFT model, and formulate an LS optimization criterionfor estimating the model parameters

in each frequency bin. The conventional time-domain Volterra filter identification is also described, and

a comparison between the STFT- and time-domain models is carried out in terms of computational

complexity. Without loss of generality, we consider here only the quadratic model due to its relatively

simpler structure. The quadratic model is appropriate for representing the nonlinear behavior of many

real world systems [42]. An extension to higher nonlinearity orders is straightforward.

Let an inputx(n) and outputy(n) of an unknown (quadratically) nonlinear system be related by

y(n) = {φx} (n) + ξ(n) = d(n) + ξ(n) , (32)

whereφ(·) denotes a discrete-time nonlinear time-invariant system,ξ(n) is a corrupting additive noise

signal, andd(n) is the clean output signal. Note that the ”noise” signalξ(n) may sometimes include

a useful signal, e.g., the local speaker signal in acoustic echo cancellation. The problem of system

identification can be formulated as follows: Given an input signal x(n) and noisy observationy(n),

construct a model for describing the input-output relationship, and select its parameters so that the model

output ŷ(n) best estimates (or predicts) the measured output signal. Wedenote byNx the time-domain

observable data length, and byP ≈ Nx/L the number of samples in a time-trajectory of the STFT

representation (i.e., length ofxp,k for a givenk).
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A. Identification in the STFT domain

A system identifier operating in the STFT domain is illustrated inFig. 1. In the time-frequency domain,

equation (32) may be written as

yp,k = dp,k + ξp,k . (33)

To derive an estimator̂yp,k for the system output in the STFT domain, we employ the quadraticSTFT

model proposed in the previous section [see (27)]. Utilizing only 2K crossband filters around each

frequency bin for the estimation of the linear component, the resulting estimatêyp,k can be written as

ŷp,k =
k+K
∑

k′=k−K

N̄1−1
∑

p′=0

xp−p′,k′ mod Nhp′,k,k′ mod N

+
∑

k′∈F

xp,k′xp,(k−k′) mod Nck′,(k−k′) mod N . (34)

The influence of the number of estimated crossband filters (2K+1) on the system identifier performance

is demonstrated in Section V.

Let hk be the2K + 1 filters at frequency bink

hk =
[

hT
k,(k−K)modN

hT
k,(k−K+1)modN

· · · · · · hT
k,(k+K)modN

]T

, (35)

where hk,k′ =
[

h0,k,k′ h1,k,k′ · · · hN̄1−1,k,k′

]T

is the crossband filter from frequency bink′ to

frequency bink. Let Xk denote anP ×M Toeplitz matrix whose (m, ℓ)th term is given by(Xk)m,ℓ =

xm−ℓ,k, and let∆k be a concatenation of{Xk′}
(k+K)modN

k′=(k−K)modN
along the column dimension

∆k =
[

X(k−K)modN X(k−K+1)modN · · · · · · X(k+K)modN

]

. (36)

For notational simplicity, let us assume thatk andN are both even, such that according to (26), the

number of quadratic cross-terms in each frequency bin isN/2 + 1. Then, let

ck =
[

c0,k · · · c k

2
, k

2

ck+1,N−1 · · · cN+k

2
, N+k

2

]T

(37)

denote the quadratic cross-terms at thekth frequency bin, and let

Λk =
[

x0,k · · · x k

2
, k

2

xk+1,N−1 · · · xN+k

2
, N+k

2

]

(38)

be anP × (N/2 + 1) matrix, wherexk,k′ =
[

x0,kx0,k′ x1,kx1,k′ · · · xP−1,kxP−1,k′

]T

is a term-

by-term multiplication of the time-trajectories ofxp,k at frequency binsk andk′, respectively. Then, the

output signal estimate (34) can be written in a vector form as

ŷk = ∆khk + Λkck

, Rkθk , (39)
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where ŷk =
[

ŷ0,k ŷ1,k · · · ŷP−1,k

]T

, Rk = [∆k Λk], and θk =
[

hT
k cT

k

]T
is the model

parameter vector. The dimension ofθk is given by

dθk
, dimθk = (2K + 1) N̄1 +N/2 + 1 . (40)

Denoting the observable data vector byyk =
[

y0,k y1,k · · · yP−1,k

]T

, and using the above

notations, the LS estimate of the model parameters at thekth frequency bin is given by

θ̂k = arg min
θk

‖yk − Rkθk‖
2

=
(

RH
k Rk

)−1
RH

k yk , (41)

where we assume thatRH
k Rk is not singular2. Note that bothθ̂k and ŷk depend on the parameterK,

but for notational simplicityK has been omitted. Substituting (41) into (39), we obtain an estimate

of the system output in the STFT domain at thekth frequency bin. Repeating this estimation process

for each frequency bin and returning to the time-domain using the inverse STFT (4), we obtain the

system output estimator̂ys(n). The subscript s is to distinguish the subband-approach estimate from the

fullband-approach estimatêyf(n) [derived in Section IV-B].

Next, we evaluate the computational complexity of the proposed approach. Computing the parameter

vector estimateθ̂k requires a solution of the LS normal equations
(

RH
k Rk

)

θ̂k = RH
k yk for each

frequency bin. This results inPd2
θk

+d3
θk
/3 arithmetic operations when using the Cholesky decomposition

[44], wheredθk
is defined in (40). Computation of the desired signal estimate(39) requires additional

2Pdθk
arithmetic operations. AssumingP is sufficiently large, the complexity associated with the

proposed model is

Os ∼ O
{

NP
[

(2K + 1) N̄1 +N/2 + 1
]2
}

. (42)

Expectedly, we observe that the computational complexity increases asK increases. However, analogously

to linear system identification [30], incorporating crossband filters into the model may yield lower mse

for stronger and longer input signals, as demonstrated in Section V.

2In the ill-conditioned case, whenRH

k Rk is singular, matrix regularization is required [43].
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B. Identification in the time domain

For time-domain system identification, we utilize the second-order Volterra model, described in (1).

Accordingly, an estimator for the system output can be expressed as

ŷf(n) =

N1−1
∑

m=0

h1(m)x(n−m)

+

N2−1
∑

m=0

N2−1
∑

ℓ=m

h2(m, ℓ)x(n−m)x(n− ℓ) , (43)

where for the quadratic kernel, the triangular Volterra representation is used [11].

Let h1 =
[

h1 (0) h1 (1) · · · h1 (N1 − 1)
]T

denote the linear kernel, and letx1(n) =
[

x (n) x (n− 1) · · · x (n−N1 + 1)
]T

. The quadratic kernel can be written in a vector notation

as

h2 =
[

h2(0, 0) h2(0, 1) · · · h2(0, N2 − 1)

h2(1, 1) h2(1, 2) · · · h2(1, N2 − 1)

· · · h2(N2 − 1, N2 − 1)
]T

.

(44)

where similarly we define

x2(n) =
[

x2 (n) x (n)x (n− 1) · · · x (n)x (n−N2 + 1)

x (n− 1)x (n− 1) · · · x (n− 1)x (n−N2 + 1)

· · · x2 (n−N2 + 1)
]T

.

(45)

Then, the system output estimate (43) can be written in a vector form as

ŷf(n) = xT (n)θ , (46)

wherex (n) =
[

xT
1 (n) xT

2 (n)
]

andθ ,
[

hT
1 hT

2

]T
is the model parameter vector. Note that the dimension

of θ, which determines the model complexity, is

dθ , dimθ = N1 +
N2 (N2 + 1)

2
. (47)

Let y =
[

y (0) y (1) · · · y (Nx − 1)
]T

, and let X be anNx × dθ matrix defined asXT =
[

x (0) x (1) · · · x (Nx − 1)
]

. Then, the LS estimate ofθ is given by

θ̂ = arg min
θ

‖y − Xθ‖2

=
(

XHX
)−1

XHy . (48)
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Substituting (48) into (46), we obtain an estimate of the system output in the time domain̂yf(n) using

a second-order Volterra model.

As in the subband approach, forming the normal equations, solving them using the Cholesky

decomposition and calculating the desired signal estimate, requireNxd
2
θ

+ d3
θ
/3 + 2Nxdθ arithmetic

operations. For sufficiently largeNx, the computational complexity of the fullband approach canbe

expressed as

Of ∼ O

(

Nx

[

N1 +
N2 (N2 + 1)

2

]2
)

. (49)

It is worth noting that the complexity of the fullband approach can be generally reduced by using efficient

algorithms that exploit the special structure of the corresponding matrix in the LS normal equations [45],

[46].

C. Comparison and Discussion

Let r = L/N denote the relative overlap between consecutive analysis windows (this overlap determines

the redundancy of the STFT representation). Then, rewriting thesubband approach complexity (42) in

terms of the fullband parameters (by using the relationsP ≈ Nx/L andN̄1 ≈ N1/L), the ratio between

the fullband and subband complexities can be written as

Os

Of
∼

1

r
·

(

2N1 ·
2K+1

rN
+N

)2

(

2N1 +N2
2

)2 . (50)

Expectedly, we observe that the computational gain achievedby the proposed subband approach is mainly

determined by the STFT analysis window lengthN , which represents the trade-off between the linear- and

nonlinear-component complexities. Specifically, using a longer analysis window yields shorter crossband

filters (∼ N1/N ), which reduces the computational cost of the linear component, but at the same time

increases the nonlinear-component complexity by increasing the number of quadratic cross-terms (∼ N ).

Nonetheless, according to (50), the complexity of the proposed subband approach would typically be lower

than that of the conventional fullband approach. For instance, forN = 256, r = 0.5 (i.e., L = 128),

N1 = 1024, N2 = 80 and K = 2 the proposed approach complexity is reduced by approximately

300, when compared to the fullband-approach complexity. The computational efficiency obtained by

the proposed approach becomes even more significant when systems with relatively large second-order

memory length are considered. This is because these systems necessitate an extremely large memory

lengthN2 for the quadratic kernel, when using the time-domain Volterra model, such thatN ≪ N2
2 and

consequentlyOs ≪ Of.
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An example of a long-memory system is an LEM system in nonlinearacoustic echo cancellation

applications [3]–[5]. The nonlinear behavior of this systemis mainly introduced by the loudspeakers and

their amplifiers, especially when small loudspeakers are driven at high volume. When parallel models

are considered for modeling the LEM system, the memory length of the nonlinear component will

also be determined by the acoustic enclosure, which typically consists of several thousands taps [41].

Consequently, attempting to estimate the LEM system with the time-domain Volterra model involves high

computational cost, which makes it impractical in real applications. To reduce the model complexity,

the Volterra filters can be truncated in time [18], but then thesystem estimate is less accurate. Other

time-domain approximations for Volterra filters employed for acoustic echo cancellation, such as the

Hammerstein model (i.e., a static nonlinearity followed bya dynamic linear block, as in [3], [5]), suggest

a less general structure than the Volterra filter. On the otherhand, the proposed STFT model offers

both structural generality and computational efficiency, which facilitate a practical alternative for the

time-domain Volterra approach, especially in representing systems with long memory.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results that demonstrate the effectiveness of the proposed

subband approach in estimating and modeling quadraticallynonlinear systems. A comparison to the

conventional time-domain Volterra approach is carried outin terms of mse performance for both synthetic

white Gaussian signals and real speech signals. The evaluation includes objective quality measures,

a subjective study of temporal waveforms, and informal listening tests. For the STFT, we use half

overlapping Hamming analysis windows ofN = 256 samples length (i.e.,L = 0.5N ). The inverse STFT

is implemented with a minimum-energy synthesis window thatsatisfies the completeness condition [36].

A. Performance Evaluation for White Gaussian Input Signals

In the first experiment, we examine the performances of the Volterra and proposed models under the

assumption of white Gaussian signals. The system to be identified is formed as a parallel combination

of linear and quadratic components as follows:

y(n) =

N∗

1 −1
∑

m=0

g1(m)x(n−m) + {Lx} (n) + ξ(n) , (51)

whereg1(n) is the true linear kernel and{Lx} (n) denotes the output of the quadratic component. The

input signalx(n) and the additive noise signalξ(n) are uncorrelated zero-mean white Gaussian processes

with variancesσ2
x andσ2

ξ , respectively. We model the linear kernel as a nonstationary stochastic process
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with an exponential decay envelope, i.e.,g1(n) = u(n)β(n)e−αn, whereu(n) is the unit step function,

β(n) is a unit-variance zero-mean white Gaussian noise, andα is the decay exponent. In the following,

we useN∗
1 = 768, α = 0.009, and an observable data length ofNx = 24000 samples. For evaluating

the quality of the system estimate, the normalized mse is defined as

ǫγ =
E
{

|d (n) − ŷγ (n)|2
}

E
{

|d (n)|2
} , (52)

whered(n) is the clean output signal [i.e.,d(n) = y(n)− ξ(n)], γ ∈ {s, f}, and ŷs(n) and ŷf(n) are the

system output estimates obtained by the proposed subband approach and the fullband Volterra approach,

respectively (see Section IV).

In the first experiment, we assume that the output signal of thetrue-system’s quadratic component

{Lx} (n) is generated according to the quadratic model proposed in (26). That is, denoting byS−1 the

inverse STFT operator,{Lx} (n) can be expressed as

{Lx} (n) = S−1
∑

k′∈F

xp,k′xp,(k−k′) mod Ngk′,(k−k′) mod N , (53)

where{gk′,(k−k′) mod N

∣

∣ k′ ∈ F} are the true quadratic cross-terms. These terms are modeled here as

a unit-variance zero-mean white Gaussian process. For bothmodels, a memory length ofN1 = 768

is employed for the linear kernel, where the memory lengthN2 of the quadratic kernel in the Volterra

model is set to30. Figure 5 shows the resulting mse curves as a function of the SNR[the SNR is

defined as the power ratio between the clean output signald(n) and the additive noise signalξ(n)], as

obtained for a nonlinear-to-linear ratio (NLR) of0 dB [Fig. 5(a)] and−20 dB [Fig. 5(b)]. The NLR

represents the power ratio between the output signals of thequadratic and linear components of the true

system. For the proposed model, several values ofK are employed in order to determine the influence of

the number of estimated crossband filters on the mse performance, and the optimal value that achieves

the minimal mse (mmse) is indicated above the mse curve. Notethat a transition in the value ofK

is indicated by a variation in the width of the curve. Figure 5(a) implies that for relatively low SNR

values, a lower mse is achieved by the conventional Volterramodel. For instance, for an SNR of−20 dB,

employing the Volterra model reduces the mse by approximately 10 dB, when compared to that achieved

by the proposed model. However, for higher SNR conditions, the proposed model is considerably more

advantageous. For an SNR of20 dB, for instance, the proposed model enables a decrease of17 dB in

the mse usingK = 4 (i.e., by incorporating9 crossband filters into the model). Table I specifies the mse

values obtained by each value ofK for various SNR conditions. We observe that for high SNR values

a significant improvement over the Volterra model can also be attained by using only the band-to-band
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filters (i.e.,K = 0), which further reduces the computational cost of the proposed model. Clearly, as

the SNR increases, a larger number of crossband filters should be utilized to attain the mmse, which

is similar to what has been shown in the identification of purely linear systems [30]. Note that similar

results are obtained for a smaller NLR value [Fig. 5(b)], with the only difference is that the two curves

intersect at a higher SNR value.

Figure 5 also provides an insight into the influence of undermodeling errors on the mse performance.

Undermodeling errors occur whenever a given model does not admit an exact description of the true

system. In our case, the undermodeling error of the Volterramodel is due to the nonlinear component of

the system, which cannot be accurately described by a second-order homogeneous Volterra filter. In the

proposed model, on the other hand, the undermodeling error is a consequence of restricting the number

of crossband filters in the linear component of the model [while the system’s nonlinear component (53)

can be perfectly represented by the model]. These undermodeling errors cause the mse curves of both

models to saturate. The saturation values of the Volterra model and the proposed model, for any value of

K (except forK = 4), are given at the right column of Table I (35 dB SNR). For theK = 4 mse curve,

the saturation is attained at a relatively high SNR value [approximately 80 dB, for a 0 dB NLR; not

displayed in Figure 5(a)]. This may be attributable to the factthat the linear component of the system can

be represented almost perfectly with only four crossband filters around each frequency bin [30], such that

the undermodeling error in this case becomes insignificant. Furthermore, a comparison of Figs. 5(a) and

(b) indicates that the saturated mse value of the Volterra model decreases as the NLR decreases, which

stems from the fact that the error induced by the undermodeling in the nonlinear component becomes

less substantial as the nonlinearity strength decreases.

The complexity of the fullband and subband approaches (for each value ofK) is evaluated by computing

the central processing unit (CPU) running time3 of the LS estimation process. The running time in terms

of CPU seconds is averaged over several SNR conditions and summarized in Table II. We observe, as

expected from (50), that the running time of the proposed approach, for any value ofK, is substantially

lower than that of the Volterra approach. Specifically, the estimation process of the Volterra model is

approximately12 and 4.5 times slower than that of the proposed model withK = 0 and K = 4,

respectively. Moreover, Table II indicates that the running time of the proposed approach increases as

more crossband filters are estimated, as expected from (42).

3The simulations were all performed under MATLAB; v.7.0, on a Core(TM)2 Duo P8400 2.27 GHz PC with 4 GB of RAM,

running Windows Vista, Service Pack 1.
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Fig. 5: MSE curves as a function of the SNR for white Gaussian signals, as obtained by the proposed STFT

model (34) and the conventional time-domain Volterra model(43). The optimal value ofK is indicated above the

corresponding mse curve. The true system is formed as a combination of linear and quadratic components, where

the latter is modeled according to (53). (a) Nonlinear-to-linear ratio (NLR) of0 dB (b) NLR of −20 dB.

TABLE I: MSE Obtained by the Proposed Model for SeveralK Values and by the Volterra Model, Under Various

SNR Conditions. The Nonlinear-to-Linear Ratio (NLR) is0 dB.

K
MSE [dB]

SNR= −10 dB SNR= 20 dB SNR= 35 dB

0 8.08 -15.12 -16.05

1 8.75 -16.91 -18.8

2 9.31 -18.17 -21.55

3 9.82 -19.67 -28.67

4 10.04 -19.97 -34.97

Volterra 0.42 -3.25 -3.58

Next, we compare the Volterra and proposed models for a quadratically nonlinear system with a

relatively large memory length. We assume that the quadratic component of the true system{Lx} (n) is

given by

{Lx} (n) =

N∗

1 −1
∑

m=0

g1(m)x2(n−m) , (54)

whereg1(n) is similar to that used in the previous experiment. A system represented by (51) and (54)
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TABLE II: Average Running Time in Terms of CPU of the ProposedApproach (for Several K Values) and the

Volterra Approach. The Length of the Observable Data is24000 Samples.

K Running Time [sec]

0 5.15

1 6.79

2 8.64

3 10.78

4 13.23

Volterra 61.31

can be viewed as a memoryless polynomial of the formx(n)+x2(n) followed by the linear kernelg1(n).

Such a representation has been employed in acoustic echo cancellation applications, where memoryless

nonlinearities occur in the power amplifier of the loudspeaker [5], [23]. Note that the memory length of

the quadratic component is now equal to that of the linear component, and therefore, large values ofN2

should be used in the Volterra model in order to achieve satisfactory results. Figure 6 shows the resulting

mse curves as a function of the SNR, where for the Volterra model, a relatively small memory length

(N2 = 40) and a large one (N2 = 80) are used. Clearly, as the SNR increases, the proposed model

outperforms the Volterra model (even for long kernels) and yields the mmse. For instance, for an SNR of

25 dB, an improvement of16 dB can be achieved by using the proposed model rather than theVolterra

model withN2 = 80.

We observe that as the SNR increases, the mse performance of the Volterra model can be generally

improved by using a longer memory for the quadratic kernel [at the expense of a considerable increase

in computational complexity, as indicated by (49)]. This phenomenon is related to the problem of model-

order selection, a fundamental problem in many system identification applications [1], [47]–[52], where in

our case the model order is determined by the memory length ofthe quadratic Volterra kernel. Generally,

the optimal model order is affected by the level of noise in the data and the length of the observable

data. As the SNR increases or as more data is employable, the optimal model complexity increases, and

correspondingly longer quadratic kernels can be utilized to achieve lower mse. The same reasoning is

also relevant to explaining why the number of estimated crossband filter in the proposed subband model

increases for larger SNRs. The experimental results show thata Volterra model in the time domain is

not sufficient for identification of nonlinear systems with relatively long memory. The advantage of the

proposed model is demonstrated in estimation accuracy and computational efficiency.
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Fig. 6: MSE curves as a function of the SNR for white Gaussian signals, as obtained by the proposed STFT model

(34) and the conventional time-domain Volterra model (43).The true system is formed as a memoryless polynomial

of the formx(n) + x2(n) followed by a linear block.

B. Acoustic Echo Cancellation Scenario

In the second experiment, we demonstrate the application ofthe proposed approach to acoustic echo

cancellation using real speech signals. We use an ordinary office with a reverberation timeT60 of about

100 ms. A far-end speech signalx(n) is fed into a loudspeaker at high volume, thus introducing non-

negligible nonlinear distortion. The signalx(n) propagates through the enclosure and received by a

microphone as an echo signal together with a local noiseξ(n). The resulting noisy signal is denoted by

y(n). In this experiment, the signals are sampled at16 kHz. Note that the acoustic echo canceller (AEC)

performance is evaluated in the absence of near-end speech,since a double-talk detector (DTD) is usually

employed for detecting the near-end signal and freezing theestimation process [53], [54]. A commonly-

used quality measure for evaluating the performance of AECs is the echo-return loss enhancement (ERLE),

defined in dB by

ERLEγ = 10 log10

E
{

y2(n)
}

E
{

e2γ(n)
} , (55)

where

eγ(n) = y(n) − ŷγ (n) (56)

is the error signal (or residual echo signal) andŷγ (n) is defined in (52).

Figures 7(a) and (b) show the far-end signal and the microphone signal, respectively. Figures 7(c)–(e)

show the error signals as obtained by using a purely linear model in the time domain, a Volterra model
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Fig. 7: Speech waveforms and residual echo signals, obtained by the time-domain Volterra approach and the proposed

subband approach. (a) Far-end signal (b) Microphone signal. (c)–(e) Error signals obtained by a purely linear model

in the time domain, the Volterra model withN2 = 90, and the proposed model withK = 1, respectively. For all

models, a length ofN1 = 768 is assumed in the linear kernel.

with N2 = 90, and the proposed model withK = 1, respectively. For all models, a length ofN1 = 768

is employed for the linear kernel. The ERLE values of the corresponding error signals were computed

by (55), and are given by14.56 dB (linear), 19.14 dB (Volterra), and29.54 dB (proposed). Clearly,

the proposed approach achieves a significant improvement over a time domain approach. This may be

attributable to the long memory of the system’s nonlinear components which necessitate long kernels for

sufficient modeling of the acoustic path. Furthermore, a purely linear model does not provide a sufficient

echo attenuation due to nonlinear undermodeling [55]–[57]. Subjective listening tests confirm that the

proposed approach achieves a perceptual improvement in speech quality over the conventional Volterra

approach (audio files are available on-line [58]).
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VI. CONCLUSIONS

Motivated by the common drawbacks of conventional time- andfrequency-domain methods, we have

introduced a novel approach for identifying nonlinear systems in the STFT domain. We have derived

an explicit nonlinear model, based on an efficient approximation of Volterra-filters representation in the

time-frequency domain. The proposed model consists of a parallel combination of a linear component,

which is represented by crossband filters between subbands, and a nonlinear component, modeled by

multiplicative cross-terms. We showed that the conventional discrete frequency-domain model is a special

case of the proposed model for relatively long observation frames. Furthermore, we considered the

identification of quadratically nonlinear systems and showed that a significant reduction in computational

cost can be achieved over the time-domain Volterra model by the proposed approach. Experimental

results have demonstrated the advantage of the proposed STFT model in estimating nonlinear systems

with relatively large memory length. The time-domain Volterra model fails to estimate such systems due

to its high complexity. The proposed model, on the other hand,achieves a significant improvement in mse

performance, particularly for high SNR conditions. It is worthwhile noting, though, that the experimental

results presented in this paper are applicable only for purely quadratic systems. When higher nonlinearity

orders are considered, one should employ the extended STFT model [see (30)-(31)] and follow a similar

identification process to that made for the quadratic case.

Overall, the results have met the expectations originally put into STFT-based estimation techniques.

The proposed approach in the STFT domain offers both structural generality and computational efficiency,

and consequently facilitates a practical alternative for conventional methods.

Since practically many real-world systems are time-varying, the approach proposed in this paper should

be made adaptive in order to track these variations. Recently, an adaptive estimation of the model

parameters and a detailed convergence analysis of the adaptation process was introduced [59]. Future

research will concentrate on constructing a fully adaptive-control scheme, which exploits the attractive

properties of the proposed model and provides a balance between complexity, convergence rate and

steady-state performance.

APPENDIX A

DERIVATION OF (11)

Using (2) and (1), the STFT ofd2(n) can be written as

d2;p,k =
∑

n,m,ℓ

h2(m, ℓ)x(n−m)x(n− ℓ) ψ̃∗
p,k(n) (57)
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Substituting (4) into (57), we obtain

d2;p,k =
∑

n,m,ℓ

h2(m, ℓ)

N−1
∑

k′=0

∑

p′

xp′,k′ψp′,k′(n−m)

×
N−1
∑

k′′=0

∑

p′′

xp′′,k′′ψp′′,k′′(n− ℓ)ψ̃∗
p,k(n)

=
N−1
∑

k′,k′′=0

∑

p′,p′′

xp′,k′xp′′,k′′cp,p′,p′′,k,k′,k′′ (58)

where

cp,p′,p′′,k,k′,k′′ =
∑

n,m,ℓ

h2(m, ℓ)ψp′,k′(n−m)ψp′′,k′′(n− ℓ)ψ̃∗
p,k(n) . (59)

Substituting (3) and (5) into (59), we obtain

cp,p′,p′′,k,k′,k′′ =
∑

n,m,ℓ

h2(m, ℓ)ψ(n−m− p′L)ej
2π

N
k′(n−m−p′L)

× ψ(n− ℓ− p′′L)ej
2π

N
k′′(n−ℓ−p′′L)ψ̃∗(n− pL)e−j 2π

N
k(n−pL)

=
∑

n,m,ℓ

h2(m, ℓ)ψ
((

p− p′
)

L+ n−m
)

ej
2π

N
k′((p−p′)L+n−m)

× ψ
((

p− p′′
)

L+ n− ℓ
)

ej
2π

N
k′′((p−p′′)L+n−ℓ)ψ̃∗(n)e−j 2π

N
kn

= {h2(n,m) ∗ φk,k′,k′′(n,m)}|
n=(p−p′)L, m=(p−p′′)L , cp−p′,p−p′′,k,k′,k′′ (60)

where∗ denotes a 2D convolution with respect to the time indicesn andm, and

φk,k′,k′′(n,m) ,
∑

ℓ

ψ̃∗(ℓ)e−j 2π

N
kℓψ(n+ ℓ)ej

2π

N
k′(n+ℓ)ψ(m+ ℓ)ej

2π

N
k′′(m+ℓ) . (61)

¿From (60),cp,p′,p′′,k,k′,k′′ depends on(p − p′) and (p − p′′) rather than onp, p′ and p′′ separately.

Substituting (60) into (58), we obtain (11).
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