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Abstract

The dissertation addresses theory and applications of linear and nonlinear system iden-

tification in the short-time Fourier transform (STFT) domain. Identification of systems

based on input-output data has been extensively studied in the past, and is of major

importance in diverse fields of signal processing. System identification algorithms often

operate in the time-frequency domain (e.g., the STFT domain), achieving computational

efficiency as well as improved convergence rate due to processing in distinct subbands.

It is well known that in order to perfectly represent a linear system in the STFT do-

main, crossband filters between subbands are generally required. Practically, however,

the estimation of these filters is avoided, as it was shown to worsen the system estimate

accuracy.

In this thesis, we investigate the problems of model-structure selection and model-

order selection for system identification in the STFT domain. We start by investigating

the influence of undermodeling caused by restricting the number of estimated crossband

filters on the system identification performance. Specifically, we examine the dependency

of the model complexity, determined by the number of filters, on the level of noise in

the data and the length of the observable data. We analytically show that increasing

the number of crossband filters not necessarily implies a lower mean-square error (mse)

in subbands. We show that as the signal-to-noise ratio (SNR) increases or as more data

is employable, the optimal model complexity increases, and correspondingly additional

crossband filters can be estimated to achieve better estimation accuracy. This strategy

of controlling the number of crossband filters is successfully applied to acoustic echo

cancellation applications in batch or adaptive forms.

We proceed with the widely-used multiplicative transfer function (MTF) approxima-

tion, which avoids the crossband filters by approximating the linear system as multi-

1



2 ABSTRACT

plicative in the STFT domain. The performance of a system identifier that utilizes this

approximation is investigated, and a detailed mean-square analysis is provided. We show

that the system identification performance does not necessarily improve by increasing the

length of the analysis window. The optimal window length, that achieves the minimal

mse (mmse), depends on the SNR and the length of the input signal. These results are

used for deriving a new model for linear systems in the STFT domain. This model, which

is referred to as the cross-MTF (CMTF) approximation, significantly improves the sys-

tem estimate accuracy achieved by the conventional MTF approach, without significantly

increasing the computational cost.

The research is then extended to nonlinear system identification, and a novel nonlinear

STFT model is introduced for this purpose. The model consists of a parallel combination

of a linear component, represented by crossband filters between subbands, and a nonlin-

ear component, which is modeled by multiplicative cross-terms. Based on this model, we

construct off-line and adaptive schemes for estimating quadratically nonlinear systems in

the STFT domain. We mainly concentrate on the error caused by nonlinear undermodel-

ing; that is, when a purely linear model is employed for identifying the nonlinear system.

Specifically, we consider the problem whether the inclusion of a nonlinear component in

the model is always preferable, taking into account the noise level, data length and the

power ratio of nonlinear to linear components of the system. We show that for low SNRs,

a lower mse is achieved by allowing for nonlinear undermodeling and utilizing a purely

linear model; whereas as the SNR increases, the performance can be generally improved

by estimating the full nonlinear model. We further show that a significant reduction

in computational cost as well as a substantial improvement in estimation accuracy can

be achieved over the conventional time-domain Volterra model, particularly when long-

memory nonlinear systems are considered. We demonstrate the applicability of this model

to nonlinear acoustic echo cancellation problems.



Notation

x , X scalar variable

x(n) time-domain signal

xp,k time-frequency coefficient

x column vector

A matrix

A−1 matrix inverse

(A)m,` the (m, `) term of matrix A

(A)m,: , (A):,m the mth row and column of matrix A, respectively

(x)m the m term of vector x

IN×N , IN identity matrix of size N ×N

0N×M zero matrix of size N ×M

diag{x} diagonal matrix with the vector x on its diagonal

diag{X} vector whose components are the diagonal elements of matrix X

dim x dimension of vector x

(·)T transpose operation

(·)H Hermitian

(·)† Moore-Penrose pseudo inverse

(·)∗ complex conjugate

‖ · ‖ `2 norm

E{·} expectation

|x| absolute value

tr(·) trace

Re{·} real part

3



4 NOTATION

X(θ) ,X(ω) discrete-time Fourier transform of signal x

X(z) z-transform of signal x

X(k) discrete Fourier transforms of signal x

σ2
x variance of signal x

∗ convolution

¯ term-by-term vector multiplication



Abbreviations

AEC Acoustic echo canceller

AIC Akaike information criterion

BSS Blind source separation

CMTF Cross-multiplicative transfer function

DFT Discrete Fourier transform

DTD Double-talk detector

DTFT Discrete-time Fourier transform

DTWT Discrete-time wavelet transform

ERLE Echo-return loss enhancement

FFT Fast Fourier transform

HOS Higher order statistics

IDTWT Inverse discrete-time wavelet transform

ISTFT Inverse short-time Fourier transform

LEM Loudspeaker-enclosure-microphone

LMS Least-mean-square

LS Least squares

LTI Linear time-invariant

MDL Minimum description length

MMSE minimal mean-square error

MSE Mean-square error

MTF Multiplicative transfer function

NLMS Normalized least-mean-square

NLR Nonlinear-to-linear ratio
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6 ABBREVIATIONS

NST Nonlinear signal transformation

PBFDAVF Partitioned block frequency-domain adaptive Volterra filter

RTF Relative transfer function

SNR Signal-to-noise ratio

STFT Short-time Fourier transform



Chapter 1

Introduction

The dissertation addresses the problem of system identification in the short-time Fourier

transform (STFT) domain, focusing on the derivation of novel theoretical approaches as

well as practical algorithms for the identification of linear and nonlinear systems.

Identification of systems based on input-output data has been extensively studied

in the past, and is of major importance in diverse fields of signal processing, including

acoustic echo cancellation, relative transfer function (RTF) identification, and derever-

beration. This problem has attracted significant research efforts for several decades and

a number of efficient algorithms have been proposed for that purpose. System identifica-

tion algorithms often operate in the subband domain (e.g., the STFT domain) in order

to reduce computational complexity and to improve the convergence rate of conventional

time-domain methods. It is well known that in order to perfectly represent a linear system

in the STFT domain, crossband filters between subbands are generally required. Practi-

cally, however, the estimation of these filters is avoided, as it was shown to worsen the

system estimate accuracy.

In this thesis, we investigate the problems of model-structure selection and model-order

selection for system identification in the STFT domain. The thesis starts by considering

the influence of undermodeling caused by restricting the number of estimated crossband

filters on the system identification performance. Specifically, we examine the dependency

of the model complexity, determined by the number of filters, on the level of noise in the

data and the length of the observable data. As the signal-to-noise ratio (SNR) increases

or as more data is employable, the optimal model complexity increases, and correspond-

7
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ingly additional crossband filters can be estimated to achieve better estimation accuracy.

This strategy of controlling the number of crossband filters is successfully applied to

acoustic echo cancellation applications in batch or adaptive forms. The thesis proceeds

with the widely-used multiplicative transfer function (MTF) approximation, which avoids

the crossband filters by approximating the linear system as multiplicative in the STFT

domain. The performance of a system identifier that utilizes this approximation is inves-

tigated, and the existence of an optimal window length is shown. These results are used

for deriving new approximations and models for linear systems in the STFT domain. The

research is then extended to nonlinear system identification, and a novel nonlinear STFT

model is introduced for this purpose. The model consists of a parallel combination of

a linear component, represented by crossband filters between subbands, and a nonlinear

component, which is modeled by multiplicative cross-terms. We mainly concentrate on

the error caused by nonlinear undermodeling; that is, when a purely linear model is em-

ployed for identifying the nonlinear system. Specifically, we consider the problem whether

the inclusion of a nonlinear component in the model is always preferable, taking into ac-

count the noise level, data length and the power ratio of nonlinear to linear components

of the system. We show that a significant reduction in computational cost as well as a

substantial improvement in estimation accuracy can be achieved over the conventional

time-domain Volterra model, particularly when long-memory nonlinear systems are con-

sidered. The applicability of this model to nonlinear acoustic echo cancellation problems

is also demonstrated.

In this chapter we briefly describe scientific background for the main topics of this

research and specify the structure of the thesis.

1.1 Subband system identification

Identification of systems based on input-output data has been extensively studied in the

past, and is of major importance in diverse fields of signal processing [1–9]. In acoustic

echo cancellation applications, for instance, a loudspeaker-enclosure-microphone (LEM)

system needs to be identified in order to reduce the coupling between loudspeakers and

microphones. Traditionally, the identification process has been carried out in the time
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domain using batch or adaptive methods. However, when long-memory systems are con-

sidered, these methods may suffer from slow convergence rate and extremely high compu-

tational complexity. Moreover, when the input signal to the adaptive filter is correlated,

which is often the case in acoustic echo cancellation applications, the adaptive algorithm

results in a slow convergence [10]. These drawbacks have motivated the use of subband

(multirate) techniques [11] for improved system identification (e.g., [12–18]). Accordingly,

the desired signals are filtered into subbands, then decimated and processed in distinct

subbands. Some time-frequency representations, such as the STFT, are employed for the

implementation of subband filtering [19–22]. The main motivation for subband approaches

is the reduction in computational cost compared to time-domain methods, due to process-

ing in distinct subbands. Together with a reduction in the spectral dynamic range of the

input signal, the reduced complexity may also lead to a faster convergence of adaptive

algorithms. Nonetheless, because of the decimation, subband techniques produce aliasing

effects, which necessitate crossband filters between the subbands [16, 23]. Accordingly,

the system output in each frequency bin is related to all frequency bins of the input, such

that the estimation process cannot be done in each frequency bin separately.

However, it has been found [16] that the convergence rate of subband adaptive algo-

rithms that involve crossband filters with critical sampling is worse than that of fullband

adaptive filters. Therefore, several techniques to avoid crossband filters have been pro-

posed, such as inserting spectral gaps between the subbands [12], employing auxiliary

subbands [15], using polyphase decomposition of the filter [17] and oversampling of the

filter-bank outputs [13,14]. Spectral gaps impair the subjective quality and are especially

annoying when the number of subbands is large, while the other approaches are costly in

terms of computational complexity.

The influence of crossband filters on the performance of a system identifier has not

been analytically investigated. There is still an open question regarding why the inclusion

of crossband filters worsen the performance of subband system identification algorithms.

The answer to this question may be related to the problem of model-order selection, where

in subband identification problems, the model order is determined by the number of es-

timated crossband filters. Selecting the optimal model order complexity for a given data

set is a fundamental problem in many system identification applications [24–30]. Many
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criteria have been proposed for this purpose, including the Akaike information criterion

(AIC) [29] and the minimum description length (MDL) [30]. Generally, the estimation

error can be decomposed into two terms: a bias term, which is monotonically decreasing

as a function of the model order, and a variance term, which is respectively monotonically

increasing. The optimal model order is affected by the level of noise in the data and the

length of the observable data. The observable data length employed for the system identi-

fication is restricted to enable tracking capability of the algorithm during time variations

in the impulse response. Consequently, as the SNR increases or as more data becomes

available, the model complexity may be increased, and correspondingly a lower mse may

be achieved by estimating additional crossband filters. Therefore, both convergence rate

and steady-state mse of a system identifier may be improved by adaptively controlling

the number of crossband filters.

It is worthwhile noting that the theoretical approaches as well as the practical algo-

rithms derived in this thesis are not limited only for STFT-based methods, but are also

applicable for other subband approaches. The are two main reasons for using the STFT as

a subband technique in this work. First, the STFT often provides very concise signal rep-

resentation and thereby can enhance the estimate accuracy of the identification algorithm.

In particular, it is well known that speech (commonly used in applications like acoustic

echo cancellation) has a sparse representation in the STFT domain, which effectively in-

creases the SNR in each frequency bin and may improve the system identifier performance.

Secondly, an STFT-based identification scheme may be easily combined with efficient al-

gorithms already implemented in the STFT domain. For instance, spectral techniques

are often used for enhancing noisy speech signals in the time-frequency domain [31, 32].

Such spectral enhancement techniques may be combined with STFT-based identification

methods and may be useful, for instance, in acoustic echo cancellation applications, where

both echo and noise reduction are required [33,34].
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1.2 Multiplicative transfer function (MTF) approxi-

mation

To perfectly represent a linear time-invariant (LTI) system in the STFT domain, crossband

filters between subbands are generally required. A widely-used approach to avoid the

crossband filters is to approximate the transfer function as multiplicative in the STFT

domain. This approximation relies on the assumption that the support of the STFT

analysis window is sufficiently large compared with the duration of the system impulse

response, and it is useful in many applications, including frequency-domain BSS [35],

acoustic echo cancellation [22] and RTF identification [3].

As the length of the analysis window increases, the multiplicative transfer function

(MTF) approximation becomes more accurate. On the other hand, the length of the input

signal that can be employed for the system identification must be finite to enable tracking

during time variations in the system. Therefore, increasing the analysis window length

while retaining the relative overlap between consecutive windows (the overlap between

consecutive analysis windows determines the redundancy of the STFT representation),

fewer observations in each frequency-band become available, which increases the variance

of the system estimate. Consequently, the mse in each subband may not necessarily

decrease as we increase the length of the analysis window, and it may reach its minimum

value for a certain optimal window length. Determining the optimal window length may

be useful in applications that utilize the MTF approximation and may further enhance

their performances.

1.3 Identification of Nonlinear Systems

In many real-world applications, the considered systems exhibit certain nonlinearities

that cannot be sufficiently estimated by conventional linear models. Examples of such

applications include acoustic echo cancellation [36–38], channel equalization [39, 40], bi-

ological system modeling [41], image processing [42], and loudspeaker linearization [43].

Volterra filters [44–46] are widely used for modeling nonlinear physical systems, such as

LEM systems in nonlinear acoustic echo cancellation applications [37, 47, 48], and digi-
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tal communication channels [39, 49], just to mention a few. An important property of

Volterra filters, which makes them useful in nonlinear estimation problems, is the linear

relation between the system output and the filter coefficients. Many approaches, which

attempt to estimate the Volterra kernels in the time domain, employ conventional linear

estimation methods in batch (e.g., [45, 50]) or adaptive forms (e.g., [37, 51]). A common

difficulty associated with time-domain methods is their high computational cost, which

is attributable to the large number of parameters of the Volterra model. This problem

becomes even more crucial when estimating systems with relatively large memory length,

as in acoustic echo cancellation applications. Another major drawback of the Volterra

model is its severe ill-conditioning [52], which leads to high estimation-error variance and

to slow convergence of the adaptive Volterra filter.

To overcome these problems, several approximations for the time-domain Volterra filter

have been proposed, including orthogonalized power filters [53], Hammerstein models [54],

parallel-cascade structures [55], multi-memory decomposition [56], and Volterra kernels

truncation [48]. The Hammerstein model consists of a static nonlinearity followed by a

dynamic linear block, and can represent some nonlinear systems very efficiently due to

its few parameters. Hence, it has attracted much interest and many various approaches

have been proposed for the estimation of its parameters [57,58]. However, similarly to the

other Volterra approximations, the Hammerstein model suggests a less general structure

than the Volterra filter.

Alternatively, frequency-domain methods have been introduced for Volterra system

identification, aiming at estimating the so-called Volterra transfer functions [59–61]. Sta-

tistical approaches based on higher order statistics (HOS) of the input signal use cumulants

and polyspectra information [59]. These approaches have relatively low computational

cost, but often assume a Gaussian input signal, which limits their applicability. In [60]

and [61], a discrete frequency-domain model is defined, which approximates the Volterra

filter in the frequency domain using multiplicative terms. Although this approach assumes

no particular statistics for the input signal, it requires a long duration of the input sig-

nal to validate the multiplicative approximation and to achieve satisfactory performance.

When the data is of limited size (or when the nonlinear system is not time-invariant),

this long duration assumption is very restrictive. Other frequency-domain approaches
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assume multitone sinusoidal input to efficiently estimate the Volterra transfer functions

by using explicit relations between the Fourier coefficients of the system input and output

signals [62–64]. These approaches, however, concentrate on estimating the linear transfer

function rather than on estimating the nonlinear distortions.

The aforementioned drawbacks of the conventional time- and frequency-domain meth-

ods may motivate the use of subband (multirate) techniques [11] for improved nonlinear

system identification. Computational efficiency as well as improved convergence rate can

then be achieved due to processing in distinct subbands. Consequently, a proper model in

the STFT domain may facilitate a practical alternative for conventional nonlinear models,

especially in estimating nonlinear systems with relatively long memory, which cannot be

practically estimated by existing methods. Moreover, and most importantly, an STFT-

based nonlinear model may be combined with efficient algorithms already implemented

in the STFT domain. For instance, it is well known that linear models in the STFT

domain with crossband filters are much more efficient in terms of computational com-

plexity than time-domain linear models [65]. Accordingly, the crossband filters model

can be used for estimating the first (linear) Volterra kernel, whereas the higher order

kernels will be estimated by an appropriate nonlinear model in the STFT domain. It

should be noted here that few time-frequency approaches have been recently proposed for

nonlinear system identification, including the mixed-domain method [66], wavelet-based

nonlinear signal transformation (NST) [67], and the partitioned block frequency-domain

adaptive Volterra filter (PBFDAVF) [68]. However, the existing approaches neither define

an equivalent time-frequency-domain model for Volterra filters nor perform the identifica-

tion procedure in the time-frequency domain. It is the purpose of this part of the research

to construct a new nonlinear model in the STFT domain which offers both structural gen-

erality and computational efficiency.

1.4 Thesis structure

This thesis is organized as follows. Chapter 2 briefly outlines the basic theories and

methods which were used during this research. The original contribution of this research

starts in Chapter 3.
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In Chapter 3, we consider an offline system identification in the STFT domain using

the least squares (LS) criterion, and investigate the influence of crossband filters on its

performance. We derive analytical relations between the input SNR, the length of the

input signal, and the number of crossband filters which are useful for system identification

in the STFT domain. We show that increasing the number of crossband filters not neces-

sarily implies a lower steady-state mse in subbands. The number of crossband filters, that

are useful for system identification in the STFT domain, depends on the length and power

of the input signal. More specifically, it depends on the SNR, i.e., the power ratio between

the input signal and the additive noise signal, and on the effective length of input signal

employed for system identification. The effective length of input signal employed for the

system identification is restricted to enable tracking capability of the algorithm during

time variations in the impulse response. We show that as the SNR increases or as the time

variations in the impulse response become slower (which enables to use longer segments

of the input signal), the number of crossband filters that should be estimated to achieve

the minimal mse (mmse) increases. Moreover, as the SNR increases, the mse that can be

achieved by the proposed approach is lower than that obtainable by the commonly-used

subband approach that relies on long STFT analysis window and MTF approximation.

Experimental results obtained using synthetic white Gaussian signals and real speech sig-

nals verify the theoretical derivations and demonstrate the relations between the number

of useful crossband filters and the power and length of the input signal.

In Appendix 3.C, we analyze the convergence of a direct adaptive algorithm used for

the adaptation of the crossband filters in the STFT domain. The band-to-band filters and

the crossband filters considered in a given frequency-band are all estimated by adaptive

filters, which are updated by the least-mean-square (LMS) algorithm. Explicit expressions

for the transient and steady-state mse in subbands are derived for both correlated and

white Gaussian processes. The number of crossband filters used for the echo canceller in

each frequency-band is generally lower than the number of filters needed for the STFT

representation of the unknown echo path. We therefore employ the performance analysis

of the deficient length LMS algorithm which was recently presented in [69]. Experimental

results are provided, which support our theoretical analysis and demonstrate the transient

and steady-state mse performances of the direct adaptation algorithm.
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Appendix 3.D introduces an explicit representation of LTI systems in the discrete-time

wavelet transform (DTWT) domain. We show that crossband filters between subbands are

necessary for perfect representation, and derive relations between the crossband filters and

the impulse response in the time domain. In contrast to the time-invariance property of

the crossband filters in the STFT domain [65], the crossband filters in the DTWT domain

are shown to be time-varying, due to nonuniform decimation factor over frequency-bands.

Nonetheless, the band-to-band filters (i.e., the filters that relate identical frequency-bands

of input and output signals) remain time invariant. Furthermore, we show that under

certain conditions, system representation in the DTWT domain can be approximated

with only band-to-band filters. We show that as the SNR increases, or as more input

data is available, longer band-to-band filters may be estimated to achieve the mmse.

Experimental results are provided to support the theoretical analysis.

Chapter 4 considers the MTF approximation and investigates the influence of the

analysis window length on the performance of a system identifier that utilizes this ap-

proximation. The MTF in each frequency-band is estimated offline using an LS criterion.

We derive an explicit expression for the mmse in the STFT domain and show that it can be

decomposed into two error terms. The first term is attributable to using a finite-support

analysis window. As we increase the support of the analysis window, this term reduces to

zero, since the MTF approximation becomes more accurate. However, the second term is

a consequence of restricting the length of the input signal. As the support of the analysis

window increases, this term increases, since less observations in each frequency-band can

be used for the system identification. Therefore, the system identification performance

does not necessarily improve by increasing the length of the analysis window. We show

that the optimal window length depends on both the SNR and the input signal length.

As the SNR or the input signal length increases, a longer analysis window should be used

to make the MTF approximation valid and the variance of the MTF estimate reasonably

low.

In Chapter 5, we introduce cross-multiplicative transfer function (CMTF) approx-

imation in the STFT domain. The transfer function of the system is represented by

cross-multiplicative terms between distinct subbands, and data from adjacent frequency

bins is used for the system identification. Two identification schemes are introduced:
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One is an off-line scheme in the STFT domain based on the LS criterion for estimating

the CMTF coefficients. In the second scheme, the cross-terms are estimated adaptively

using the LMS algorithm [10]. We analyze the performances of both schemes and derive

explicit expressions for the obtainable mmse. The analysis reveals important relations

between the noise level, data length, and number of cross-multiplicative terms, which are

useful for system identification. As more data becomes available or as the noise level

decreases, additional cross-terms should be considered and estimated to attain the mmse.

In this case, a substantial improvement in performance is achieved over the conventional

MTF approximation. The main contribution of this work is a derivation of an explicit

convergence analysis of the CMTF approximation, which includes the MTF approach as

a special case. We derive explicit expressions for the transient and steady-state mse in

frequency bins for white Gaussian processes. At the beginning of the adaptation process,

the length of the data is short, and only a few cross-terms should be estimated, whereas

as more data become available more cross-terms can be used to achieve the mmse. Conse-

quently, the MTF approach is associated with faster convergence, but suffers from higher

steady-state mse. Estimation of additional cross-terms results in a lower convergence rate,

but improves the steady-state mse with a small increase in computational cost. Experi-

mental results with white Gaussian signals and real speech signals validate the theoretical

results derived in this work, and demonstrate the relations between the number of useful

cross-terms and transient and steady-state mse.

Appendix 5.B extends the CMTF approach by adaptively controlling the number of

cross-terms. The proposed algorithm finds the optimal number of cross terms and achieves

the mmse at each iteration. At the beginning of the adaptation process, the proposed

algorithm is initialized by a small number of cross-terms to achieve fast convergence, and

as the adaptation process proceeds, it gradually increases this number to improve the

steady-state performance. This is done by simultaneously updating three system models,

each consisting of different (but consecutive) number of cross-terms, and determining the

optimal number using an appropriate decision rule. When compared to the conventional

MTF approach, the resulting algorithm achieves a substantial improvement in steady-

state performance, without degrading its convergence rate. Experimental results validate

the theoretical derivations and demonstrate the advantage of the proposed approach for
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acoustic echo cancellation.

In Chapter 6, we introduce a novel approach for improved nonlinear system identi-

fication in the STFT domain, which is based on a time-frequency representation of the

Volterra filter. We show that a homogeneous time-domain Volterra filter [44] with a cer-

tain kernel can be perfectly represented in the STFT domain, at each frequency bin, by a

sum of Volterra-like expansions with smaller-sized kernels. This representation, however,

is impractical for identifying nonlinear systems due to the extremely large complexity

of the model. We develop an approximate nonlinear model, which simplifies the STFT

representation of Volterra filters and significantly reduces the model complexity. The re-

sulting model consists of a parallel combination of linear and nonlinear components. The

linear component is represented by crossband filters between the subbands [16,65], while

the nonlinear component is modeled by multiplicative cross-terms, extending the so-called

CMTF approximation. It is shown that the proposed STFT model generalizes the con-

ventional discrete frequency-domain model [60], and forms a much reacher representation

for nonlinear systems. Concerning system identification, we employ the proposed model

and introduce an off-line scheme for estimating the model parameters using a LS crite-

rion. The proposed approach is more advantageous in terms of computational complexity

than the time-domain Volterra approach. When estimating long-memory systems, a sub-

stantial improvement in estimation accuracy over the Volterra model can be achieved,

especially for high SNR conditions. Experimental results with white Gaussian signals

and real speech signals demonstrate the advantages of the proposed approach.

Appendix 6.B considers the problem of nonlinear acoustic echo cancellation. We mod-

ify the nonlinear model proposed in Chapter 6 by representing the linear component of

the model with the MTF approximation, while the quadratic component is still modeled

by multiplicative cross-terms. We consider an off-line echo cancellation scheme based on

an LS criterion, and analyze the obtainable mse in each frequency bin. We mainly con-

centrate on the error arises due to nonlinear undermodeling; that is, when the linear MTF

model is utilized for estimating the nonlinear LEM system. We show that for low SNR

conditions, a lower mse is achieved by using the MTF model and allowing for nonlinear

undermodeling. However, as the SNR increases, the acoustic echo canceller (AEC) per-

formance can be generally improved by employing the proposed nonlinear model. When



18 CHAPTER 1. INTRODUCTION

compared to the conventional time-domain Volterra approach, a significant reduction in

computational complexity is achieved by the proposed approach, especially when long-

memory systems are considered. Experimental results demonstrate the advantage of the

proposed approach for nonlinear acoustic echo cancellation.

In Chapter 7, we analyze the performance of the nonlinear model proposed in Chap-

ter 6 for estimating quadratically nonlinear systems in the STFT domain. We consider

an off-line scheme based on an LS criterion, and derive explicit expressions for the ob-

tainable mse in each frequency bin. We mainly concentrate on the error that arises due

to undermodeling; that is, when the proposed model does not admit an exact description

of the true system. The analysis in this chapter reveals important relations between the

undermodeling errors, the noise level and the nonlinear-to-linear ratio (NLR), which rep-

resents the power ratio of nonlinear to linear components of the system. Specifically, we

show that the inclusion of a nonlinear component in the model is not always preferable.

The choice of the model structure (either linear or nonlinear) depends on the noise level

and the observable data length. We show that for low SNR conditions and rapidly time-

varying systems (which restricts the length of the data), a lower mse can be achieved by

allowing for nonlinear undermodeling and employing a purely linear model in the estima-

tion process. On the other hand, as the SNR increases or as the time variations in the

system become slower (which enables to use longer data), the performance can be gener-

ally improved by incorporating a nonlinear component into the model. This improvement

in performance becomes larger when increasing the NLR. Moreover, we show that as the

nonlinearity becomes weaker (i.e., the NLR decreases), higher SNR should be considered

to justify the inclusion of the nonlinear component in the model. Concerning undermod-

eling in the linear component, we show that similarly to linear system identification [65],

the number of crossband filters that should be estimated to attain the mmse increases as

the SNR increases, whether a linear or a nonlinear model is employed. For every noise

level there exists an optimal number of useful crossband filters, so increasing the num-

ber of estimated crossband filters does not necessarily imply a lower mse. Experimental

results demonstrate the theoretical results derived in this chapter.

Chapter 8 introduces an adaptive algorithm for the estimation of quadratically non-

linear systems in the STFT domain. The quadratic model proposed in Chapter 6 is
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employed, and its parameters are adaptively updated using the LMS algorithm. We de-

rive explicit expressions for the transient and steady-state mse in frequency bins for white

Gaussian processes, using different step-sizes for the linear and quadratic components

of the model. The analysis provides important insights into the influence of nonlinear

undermodeling (i.e., employing a purely linear model in the estimation process) and the

number of estimated crossband filters on the transient and steady-state performances.

We show that as the number of crossband filters increases, a lower steady-state mse is

achieved, whether a linear or a nonlinear model is employed; however, the algorithm then

suffers from a slower convergence. Accordingly, as more data is employed in the adap-

tation process, additional crossband filters should be estimated to achieve the mmse at

each iteration. Moreover, we show that the choice of the model structure (either linear

or nonlinear) is mainly influenced by the NLR. Specifically for high NLR conditions, a

lower steady-state mse can be achieved by incorporating a nonlinear component into the

model. On the other hand, as the nonlinearity becomes weaker (i.e., the NLR decreases),

the steady-state mse associated with the linear model decreases, while the relative im-

provement achieved by the nonlinear model becomes smaller. Consequently, for relatively

low NLR values, utilizing the nonlinear component in the estimation process may not

necessarily imply a lower steady-state mse in subbands. Experimental results support the

theoretical derivations.

Chapter 9 summarizes the main contributions of this dissertation and presents some

future research directions.

1.5 List of publications

The chapters of this thesis are based on the following publications:

Chapter 3 is based on:

1. Y. Avargel and I. Cohen, ”System Identification in the Short-Time Fourier Trans-

form Domain With Crossband Filtering,” IEEE Trans. Audio Speech Lang. Process-

ing, vol. 15, no. 4, pp. 1305-1319, May 2007.

Appendix 3.C is based on:



20 CHAPTER 1. INTRODUCTION

2. Y. Avargel and I. Cohen, ”Performance analysis of cross-band adaptation for sub-

band acoustic echo cancellation,” in Proc. Int. Workshop Acoust. Echo Noise

Control (IWAENC), Paris, France, Sep. 2006.

Appendix 3.D is based on:

3. Y. Avargel and I. Cohen, ”Representation and identification of systems in the

wavelet transform domain,” in Proc. IASTED Int. Conf. Applied Simulation and

Modelling (ASM), Palma De Mallorca, Spain, Aug. 2007.

Chapter 4 is based on:

4. Y. Avargel and I. Cohen, ”On multiplicative transfer function approximation in the

short-time Fourier transform domain,” IEEE Signal Processing Lett., vol. 14, no.

5, pp. 337-340, May 2007.

Chapter 5 is based on:

5. Y. Avargel and I. Cohen, ”Adaptive system identification in the short-time Fourier

transform domain using cross-multiplicative transfer function approximation,” IEEE

Trans. Audio Speech Lang. Processing, vol. 16, no. 1, pp. 162-173, Jan. 2008.

Appendix 5.B is based on:

6. Y. Avargel and I. Cohen, ”Identification of linear systems with adaptive control of

the cross-multiplicative transfer function approximation,” in Proc. IEEE Int. Conf.

Acoust. Speech, Signal Processing (ICASSP), Las Vegas, Nevada, Apr. 2008, pp.

3789-3792.

Chapter 6 is based on:

7. Y. Avargel and I. Cohen, ”Nonlinear systems in the short-time Fourier transform

domain–Part I: Representation and identification,” submitted to IEEE Trans. Signal

Processing.



1.5. LIST OF PUBLICATIONS 21

Appendix 6.B is based on:

8. Y. Avargel and I. Cohen, ”Nonlinear acoustic echo cancellation based on a multi-

plicative transfer function approximation,” in Proc. Int. Workshop Acoust. Echo

Noise Control (IWAENC), Seattle, WA, USA, Sep. 2008.

Chapter 7 is based on:

9. Y. Avargel and I. Cohen, ”Nonlinear systems in the short-time Fourier trans-

form domain–Part II: Estimation error analysis,” submitted to IEEE Trans. Signal

Processing.

and Chapter 8 is based on:

10. Y. Avargel and I. Cohen, ”Adaptive nonlinear system identification in the short-

time Fourier transform domain,” submitted to IEEE Trans. Signal Processing.



22 CHAPTER 1. INTRODUCTION



Chapter 2

Research Methods

In this chapter, we briefly review research methods which were useful during this re-

search. We start by introducing the crossband filters, which are required for a perfect

representation of linear time-invariant (LTI) systems in the short-time Fourier transform

(STFT) domain. We then continue by representing the multiplicative transfer function

(MTF) approximation, which avoids the crossband filters by approximating the system as

multiplicative in the STFT domain. Finally, we introduce the Volterra filters and briefly

review existing methods for Volterra-based nonlinear system identification.

2.1 Crossband filters representation

In subband system identification techniques, the considered signals are filtered into sub-

bands, then decimated and processed in distinct subbands [13,16–18,65]. As a result, the

computational complexity is substantially reduced compared to time-domain methods.

Moreover, together with a reduction in the spectral dynamic range of the input signal,

the reduced complexity may also lead to a faster convergence of subband adaptive al-

gorithms. However a major drawback of these methods is the aliasing effects caused by

the subsampling factor, which necessitates crossband filters between the subbands for a

perfect representation of the system. In the following, we derive explicit expressions for

the representation of linear system in the short-time Fourier transform (STFT) domain

(the STFT can be regarded as a discrete Fourier transform (DFT) filter bank [70], and

as such it forms a specific implementation of subband filtering).

23
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The STFT representation of a signal x(n) is given by [71]

xp,k =
∑
m

x(m)ψ̃∗p,k(m) (2.1)

where

ψ̃p,k(n) , ψ̃(n− pL)ej 2π
N

k(n−pL) , (2.2)

ψ̃(n) denotes an analysis window (or analysis filter) of length N , p is the frame index, k

represents the frequency-bin index, L is the discrete-time shift (in filter bank interpretation

L denotes the decimation factor) and ∗ denotes complex conjugation. The inverse STFT,

i.e., reconstruction of x(n) from its STFT representation xp,k, is given by

x(n) =
∑

p

N−1∑

k=0

xp,kψp,k(n) (2.3)

where

ψp,k(n) , ψ(n− pL)ej 2π
N

k(n−pL) (2.4)

and ψ(n) denotes a synthesis window (or synthesis filter) of length N . Throughout this

work, we assume that ψ̃(n) and ψ(n) are real functions. Substituting (2.1) into (2.3), we

obtain the so-called completeness condition:

∑
p

ψ(n− pL)ψ̃(n− pL) =
1

N
for all n . (2.5)

Given analysis and synthesis windows that satisfy (2.5), a signal x(n) ∈ `2(Z) is guaran-

teed to be perfectly reconstructed from its STFT coefficients xp,k. However, for L ≤ N

and for a given synthesis window ψ(n), there might be an infinite number of solutions to

(2.5); therefore, the choice of the analysis window is generally not unique [72,73].

Let an input x(n) and output d(n) of an LTI system be related by

d(n) =

Nh−1∑

`=0

h(`)x(n− `) (2.6)

where h(n) represents the impulse response of the system, and Nh is its length. Applying

the STFT to d(n), we have in the time-frequency domain

dp,k =
∑
m

Nh−1∑

`=0

h(`)x(m− `)ψ̃∗p,k(m) . (2.7)
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Substituting (2.3) into (2.7), we obtain

dp,k =
∑
m

Nh−1∑

`=0

h(`)
N−1∑

k′=0

∑

p′
xp′,k′ψp′,k′(m− `)ψ̃∗p,k(m)

=
N−1∑

k′=0

∑

p′
xp′,k′hp,k,p′,k′ (2.8)

where

hp,k,p′,k′ =
∑
m

Nh−1∑

`=0

h(`)ψp′,k′(m− `)ψ̃∗p,k(m) (2.9)

may be interpreted as the STFT of h(n) using a composite analysis window
∑

m ψp′,k′(m−
`)ψ̃∗p,k(m). Substituting (2.2) and (2.4) into (2.9) yields

hp,k,p′,k′ =
∑
m

Nh−1∑

`=0

h(`)ψ(m− `− p′L)ej 2π
N

k′(m−`−p′L)ψ̃(m− pL)e−j 2π
N

k(m−pL)

=

Nh−1∑

`=0

h(`)
∑
m

ψ̃(m)e−j 2π
N

kmψ ((p− p′)L− ` + m) ej 2π
N

k′((p−p′)L−`+m)

= {h(n) ∗ φk,k′(n)} |n=(p−p′)L , hp−p′,k,k′ (2.10)

where ∗ denotes convolution with respect to the time index n, and

φk,k′(n) , ej 2π
N

k′n
∑
m

ψ̃(m)ψ(n + m)e−j 2π
N

m(k−k′) . (2.11)

Equation (2.10) indicates that hp,k,p′,k′ depends on (p− p′) rather than on p and p′ sepa-

rately. Then, by substituting (2.10) into (2.8), dp,k can be expressed as

dp,k =
N−1∑

k′=0

∑

p′
xp′,k′hp−p′,k,k′ =

N−1∑

k′=0

∑

p′
xp−p′,k′hp′,k,k′ . (2.12)

Equation (2.12) indicates that for a given frequency-bin index k, the temporal signal dp,k

can be obtained by convolving the signal xp,k′ in each frequency-band k′ (k′ = 0, 1, . . . , N−
1 ) with the corresponding filter hp,k,k′ and then summing over all the outputs. We refer

to hp,k,k′ for k = k′ as a band-to-band filter and for k 6= k′ as a crossband filter. Crossband

filters are used for canceling the aliasing effects caused by the subsampling, and they are

related to the time-domain impulse response h(n) via (2.10). Note that equation (2.9)

implies that for fixed k and k′, the filter hp,k,k′ is noncausal in general, with
⌈

N
L

⌉ − 1

noncausal coefficients. Practically, in order to consider these coefficients, an extra delay
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of
(⌈

N
L

⌉− 1
)
L samples is introduced into the system output signal d(n) [13]. It can also

be seen from (2.9) that the length of each cross-band filter is given by

M =

⌈
Nh + N − 1

L

⌉
+

⌈
N

L

⌉
− 1 . (2.13)

In Chapter 3.2, we further investigate the significance of crossband filters, and show that

practically only few crossband filters should be used to capture most of the energy of the

STFT representation of a typical system.

2.2 MTF approximation

The widely-used MTF approach [74] avoids the crossband filters by approximating the

transfer function as multiplicative in the STFT domain. This approximation relies on the

assumption that the support of the STFT analysis window is sufficiently large compared

with the duration of the system impulse response, and it is useful in many applications,

including frequency-domain BSS [35], acoustic echo cancellation [22] and RTF identifica-

tion [3].

Let h(n) denote a length Nh impulse response of an LTI system, whose input and

output signals are denoted by x(n) and d(n), respectively. Using the STFT definition

from (2.1), the STFT of d(n) can be written as

dpk =
∑
m

Nh−1∑

`=0

h(`) x(m− `) ψ̃∗pk(m)

=
∑
m

x(m)
∑

`

h(`) ψ̃∗pk(m + `) . (2.14)

Substituting (2.2) into (2.14) yields

dpk =
∑
m

x(m)

Nh−1∑

`=0

h(`)ψ̃(m + `− pL)e−j 2π
N

k(m+`−pL) . (2.15)

Let us assume that the analysis window ψ̃(n) is long and smooth relative to the im-

pulse response h(n) so that ψ̃(n) is approximately constant over the duration of h(n).

Mathematically, this assumption can be written as

ψ̃(n−m) h(m) ≈ ψ̃(n) h(m) . (2.16)
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Then, substituting (2.16) into (2.15), dpk can be approximated as

dpk ≈
∑
m

x(m)

Nh−1∑

`=0

h(`)ψ̃(m− pL)e−j 2π
N

k(m+`−pL)

=

Nh−1∑

`=0

h(`)e−j 2π
N

k`
∑
m

x(m)ψ̃(m− pL)e−j 2π
N

k(m−pL) . (2.17)

Finally, recognizing the last summation in (2.17) as the STFT of x(n), we may write

dpk ≈ hk xpk (2.18)

where

hk ,
Nh−1∑

`=0

h(`)e−j 2π
N

k` . (2.19)

The approximation in (2.18) is the well-known MTF approximation for modeling an LTI

system in the STFT domain, where hk is referred to as the MTF coefficient at the kth

frequency bin. In the limit, for an infinitly long smooth analysis window, the transfer

function would be exactly multiplicative in the STFT domain. However, since practical

implementations employ finite length analysis windows, the MTF approximation is never

accurate. A comparison of the crossband filters representation (2.12) and the MTF ap-

proximation (2.18) shows the computational efficiency of the latter. However, as will be

shown in Chapter 3.2, the MTF approach results in an insufficient accuracy of the system

estimate, whenever the assumption of a long analysis window is not valid. In Chapter 4,

we investigate the influence of the analysis window length on the performance of a system

identifier that utilizes the MTF approximation.

2.3 Volterra system identification

The Volterra filter is one of the most commonly used models for nonlinear systems [44–46,

75]. Nonlinear system identification using Volterra filters aims at estimating the Volterra

kernels (in the time domain) or the Volterra transfer functions (in the frequency domain).

In the following, we introduce the Volterra filters representation and briefly review existing

methods for Volterra-based nonlinear system identification.
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Consider a generalized qth-order nonlinear system with an input x(n) and an output

d(n). A corresponding Volterra filter representation of this system is given by

d(n) =

q∑

`=1

d`(n) (2.20)

where d`(n) represents the output of the `th-order homogeneous Volterra filter, which is

related to the input x(n) by

d`(n) =

N`−1∑
m1=0

· · ·
N`−1∑
m

`
=0

h`(m1, . . . m`)
∏̀
i=1

x(n−mi) (2.21)

where h`(m1, . . . m`) is the `th-order Volterra kernel, and N` (1 ≤ ` ≤ q) represents its

memory length. It is easy to verify that the representation in (2.21) consists of (N`)
` pa-

rameters, such that representing the system by the full model (2.20) requires
∑q

`=1 (N`)
`

parameters. Clearly, from (2.21), it is reasonable to assume that the Volterra kernels

are symmetric, such that h`(m1, . . .m`) = h`(mσ(1), . . . mσ(`)) for any permutation of

σ (1, . . . , `). This representation, however, is redundant and often replaced by the trian-

gular representation:

d`(n) =

N`−1∑
m1=0

N`−1∑
m2=m1

· · ·
N`−1∑

m
`
=m

`−1

g`(m1, . . .m`)
∏̀
i=1

x(n−mi) (2.22)

where g`(m1, . . . m`) is the `th-order triangular Volterra kernel. The representation in

(2.22) consists of
(

N`+`−1
`

)
parameters, and representing the system by the full model

(2.20) requires
∑q

`=1

(
N`+`−1

`

)
parameters. The reduction in model complexity compared

to the symmetric representation in (2.21) is obvious. Moreover, comparing (2.21) and

(2.22), it can be verified that the symmetric kernels yield the triangular kernels as [44]

g`(m1, . . . m`
) = `!h`(m1, . . . m`)u(m2 −m1) · · ·u(m` −m`−1) (2.23)

where u(n) is the unit step function [i.e., u(n) = 1 for n ≥ 0, and u(n) = 0 otherwise].

Note that either of these representations (symmetric or triangular) is uniquely specified

by the other.

The main goal in Volterra-based nonlinear system identification is to estimate the

parameters of Volterra model based on input-output data. One of the most important

properties of Volterra filters, which makes them useful in nonlinear estimation problems,
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is the linear relation between the system output and the filter coefficients. Consequently,

many algorithms known from linear estimation theory are applied for estimating the

Volterra kernels, either in time or frequency domains. Specifically, let an input x(n) and

output y(n) of an unknown nonlinear system φ(·) be related by y(n) = {φx} (n)+ξ(n), and

let ŷ(n) represent the output of an qth-order Volterra model, which attempts to estimate

(or predict) the measured output signal. Since the Volterra model output depends linearly

on the filter coefficients (either in the symmetric or the triangular representation), it can

be written in a vector form as

ŷ(n) = xT (n)θ (2.24)

where θ is the model parameter vector, and x(n) is the corresponding input data vector.

An estimate of θ can now be derived using conventional linear estimation algorithms

in batch or adaptive forms. Batch methods have been introduced in [45, 50], providing

both least squares (LS) and mean-square error (mse) estimates. That is, denoting the

observable data length by Nx, the LS estimate of the Volterra kernels is given by

θ̂LS =
(
XHX

)−1
XHy (2.25)

where XT =
[

x (0) x (1) · · · x (Nx − 1)
]

and y is the observable data vector. Simi-

larly, the mse estimate is given by

θ̂MSE =
[
E

{
x(n)xT (n)

}]−1
E {x(n)y(n)} . (2.26)

Linear adaptive algorithms have also applied for the estimation of the Volterra kernels

[48]. Specifically, using the least-mean-square (LMS) algorithm, the Volterra kernels are

estimated using the following recursion

θ̂(n + 1) = θ̂(n) + µe(n)x(n) (2.27)

where θ̂(n) is the adaptive parameter vector at time n, µ is the step size, and e(n) = y(n)−
xT (n)θ̂(n) is the error signal. A common difficulty associated with the aforementioned

approaches is their high computational cost, which is attributable to the large number of

parameters of the Volterra model. The complexity of the model, together with its severe

ill-conditioning [52], leads to high estimation-error variance and to slow convergence of

the adaptive Volterra filter.
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Alternatively, frequency-domain methods have been introduced for Volterra system

identification, aiming at estimating the so-called Volterra transfer functions [59–61]. Sta-

tistical approaches based on higher order statistics (HOS) of the input signal use cumulants

and polyspectra information [59]. Accordingly, a closed form of the transfer function of

an `th-order homogeneous Volterra filter is derived assuming Gaussian inputs:

H`(ω1, . . . , ω`) =
Cyx···x(−ω1, . . . ,−ω`)

m!Cxx(ω`) · · ·Cxx(ω`)
(2.28)

where Cxx(·) is the spectrum of x(n), and Cyx···x(·) is the (` + 1)th-order crosspolyspec-

trum between y and x [76]. The estimation of the transfer function H`(ω1, . . . , ω`) is

then accomplished by deriving a proper estimator for the cumulants. However, a ma-

jor drawback of cumulant estimators is their extremely-high variance, which necessitates

enormous amount of data to achieve satisfactory performances. Moreover, the assump-

tion of Gaussian inputs is very restrictive and limits the applicability of these approaches.

In [60], a discrete frequency-domain model is defined, which approximates the Volterra

filter in the frequency domain using multiplicative terms. Specifically for a second-order

Volterra system, the frequency-domain model consists of a parallel combination of linear

and quadratic components as follows:

Ŷ (k) = H1(k)X(k) +
N−1∑

k′,k′′=0
(k′+k′′)mod N=k

H2(k
′, k′′)X(k′)X(k′′) (2.29)

where X(k) and Ŷ (k) are the Nth-length DFT’s of the input x(n) and the output ŷ(n),

respectively, and H1(k) and H2(k
′, k′′) are the linear and quadratic Volterra transfer func-

tions (in the discrete Fourier domain), respectively. As in the time-domain Volterra repre-

sentation, the output of the frequency-domain model depends linearly on its coefficients,

and therefore can be written as

Ŷ (k) = xT
k (n)θk (2.30)

where θk is the model parameter vector at the kth frequency bin, and xk(n) is the cor-

responding transformed input data vector. Using the formulation in (2.30), batch [60]

and adaptive [61,77] algorithms were proposed for estimating the model parameters. Al-

though these approaches are computationally efficient and assume no particular statistics

for the input signal, they requires a long duration of the input signal to validate the
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multiplicative approximation and to achieve satisfactory performance. When the data is

of limited size (or when the nonlinear system is not time-invariant), this long duration

assumption is very restrictive. In Chapters 6-8, we consider the problem of nonlinear

system identification and introduce a new nonlinear model in the STFT domain. Off-line

and adaptive schemes for estimating quadratically nonlinear systems in the STFT domain

are presented.
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Chapter 3

System Identification in the STFT

with Crossband Filtering1

In this chapter, we investigate the influence of crossband filters on a system identifier

implemented in the short-time Fourier transform (STFT) domain. We derive analytical

relations between the number of crossband filters, which are useful for system identifica-

tion in the STFT domain, and the power and length of the input signal. We show that

increasing the number of crossband filters not necessarily implies a lower steady-state

mean-square error (mse) in subbands. The number of useful crossband filters depends on

the power ratio between the input signal and the additive noise signal. Furthermore, it

depends on the effective length of input signal employed for system identification, which

is restricted to enable tracking capability of the algorithm during time variations in the

system. As the power of input signal increases or as the time variations in the system be-

come slower, a larger number of crossband filters may be utilized. The proposed subband

approach is compared to the conventional fullband approach and to the commonly-used

subband approach that relies on multiplicative transfer function (MTF) approximation.

The comparison is carried out in terms of mse performance and computational complex-

ity. Experimental results verify the theoretical derivations and demonstrate the relations

between the number of useful crossband filters and the power and length of the input

signal.

1This chapter is based on [65].
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3.1 Introduction

Identification of systems with long impulse responses is of major importance in many

applications, including acoustic echo cancellation [1, 2], relative transfer function (RTF)

identification [3], dereverberation [4,5], blind source separation [6,7] and beamforming in

reverberant environments [8,9]. In acoustic echo cancellation applications, a loudspeaker-

enclosure-microphone (LEM) system needs to be identified in order to reduce the coupling

between loudspeakers and microphones. A typical acoustic echo canceller (AEC) for an

LEM system is depicted in Fig. 3.1. The far-end signal x(n) propagates through the

enclosure, which is characterized by a time-varying impulse response h(n), and received

in the microphone as an echo signal d(n) together with the near-end speaker and a local

noise. To cancel the echo signal, we commonly identify the echo path impulse response

using an adaptive transversal filter ĥ(n) and produce an echo estimate d̂(n). The cancel-

lation is then accomplished by subtracting the echo estimate from the microphone signal.

Adaptation algorithms used for the purpose of system identification are generally of a gra-

dient type (e.g., least-mean-square (LMS) algorithm) and are known to attain acceptable

performances in several applications, especially when the length of the adaptive filter is

relatively short. However, in applications like acoustic echo cancellation, the number of

filter taps that need to be considered is several thousands, which leads to high computa-

tional complexity and slow convergence rate of the adaptive algorithm. Moreover, when

the input signal to the adaptive filter is correlated, which is often the case in acoustic echo

cancellation applications, the adaptive algorithm suffers from slow convergence rate [10].

To overcome these problems, block processing techniques have been introduced [10,78].

These techniques partition the input data into blocks and perform the adaptation in the

frequency domain to achieve computational efficiency. However, block processing intro-

duces a delay in the signal paths and reduces the time-resolution required for control pur-

poses. Alternatively, the loudspeaker and microphone signals are filtered into subbands,

then decimated and processed in distinct subbands (e.g., [12–18]). The computational

complexity is reduced and the convergence rate is improved due to the shorter indepen-

dent filters in subbands. However, as in block processing structures, subband techniques

introduce a delay into the system by the analysis and synthesis filter banks. Moreover,
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Figure 3.1: A typical acoustic echo canceller (AEC) for a loudspeaker-enclosure-microphone

(LEM) system.

they produce aliasing effects because of the decimation, which necessitates crossband

filters between the subbands [16,23].

It has been found [16] that the convergence rate of subband adaptive filters that involve

crossband filters with critical sampling is worse than that of fullband adaptive filters. Sev-

eral techniques to avoid crossband filters have been proposed, such as inserting spectral

gaps between the subbands [12], employing auxiliary subbands [15], using polyphase de-

composition of the filter [17] and oversampling of the filter-bank outputs [13,14]. Spectral

gaps impair the subjective quality and are especially annoying when the number of sub-

bands is large, while the other approaches are costly in terms of computational complexity.

Some time-frequency representations, such as the short-time Fourier transform (STFT)

have been introduced for the implementation of subband adaptive filtering [19–22]. A

typical system identification scheme in the STFT domain is illustrated in Fig. 3.2. The

block Ĥ represents a matrix of adaptive filters which models the system h(n) in the STFT

domain. The off-diagonal terms of Ĥ (if exist) correspond to the crossband filters, while

the diagonal terms represent the band-to-band filters. Recently, we analyzed the perfor-

mance of an LMS-based direct adaptive algorithm used for the adaptation of crossband

filters in the STFT domain [79].

In this chapter, we consider an offline system identification in the STFT domain

using the least squares (LS) criterion, and investigate the influence of crossband filters

on its performance. We derive analytical relations between the input signal-to-noise ratio
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(SNR), the length of the input signal, and the number of crossband filters which are useful

for system identification in the STFT domain. We show that increasing the number of

crossband filters not necessarily implies a lower steady-state mse in subbands. The number

of crossband filters, that are useful for system identification in the STFT domain, depends

on the length and power of the input signal. More specifically, it depends on the SNR, i.e.

the power ratio between the input signal and the additive noise signal, and on the effective

length of input signal employed for system identification. The effective length of input

signal employed for the system identification is restricted to enable tracking capability of

the algorithm during time variations in the impulse response.

We show that as the SNR increases or as the time variations in the impulse response

become slower (which enables to use longer segments of the input signal), the number of

crossband filters that should be estimated to achieve the minimal mse increases. More-

over, as the SNR increases, the mse that can be achieved by the proposed approach is

lower than that obtainable by the commonly-used subband approach that relies on long

STFT analysis window and multiplicative transfer function (MTF) approximation. Ex-

perimental results obtained using synthetic white Gaussian signals and real speech signals

verify the theoretical derivations and demonstrate the relations between the number of

useful crossband filters and the power and length of the input signal.

The chapter is organized as follows. In Section 3.2, we briefly review the representation

of digital signals and linear time-invariant (LTI) systems in the STFT domain and derive

relations between the crossband filters in the STFT domain and the impulse response in

the time domain. In Section 3.3, we consider the problem of system identification in the

STFT domain and formulate an LS optimization criterion for estimating the crossband

filters. In Section 3.4, we derive an explicit expression for the attainable minimal mse

(mmse) in subbands. In Section 3.5, we explore the influence of both the input SNR

and the observable data length on the mmse performance. In Section 3.6, we address

the computational complexity of the proposed approach and compare it to that of the

conventional fullband and MTF approaches. Finally, in Section 3.7, we present simulation

results which verify the theoretical derivations.
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Figure 3.2: System identification scheme in the STFT domain. The unknown system h(n) is

modeled by the block Ĥ in the STFT domain.

3.2 Representation of LTI systems in the STFT do-

main

In this section, we briefly review the representation of digital signals and LTI systems in

the STFT domain. For further details, see e.g., [71, 80] and Chapter 2.1. We also derive

relations between the crossband filters in the STFT domain and the impulse response in

the time domain, and show that the number of crossband filters required for the represen-

tation of an impulse response is mainly determined by the analysis and synthesis windows

employed for the STFT. Throughout this work, unless explicitly noted, the summation

indexes range from −∞ to ∞.

The STFT representation of a signal x(n) is given by

xp,k =
∑
m

x(m)ψ̃∗p,k(m) , (3.1)

where

ψ̃p,k(n) , ψ̃(n− pL)ej 2π
N

k(n−pL) , (3.2)

ψ̃(n) denotes an analysis window (or analysis filter) of length N , p is the frame index, k

represents the frequency-band index, L is the discrete-time shift (in filter bank interpre-

tation L denotes the decimation factor as illustrated in Fig. 3.2) and ∗ denotes complex
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conjugation. The inverse STFT, i.e., reconstruction of x(n) from its STFT representation

xp,k, is given by

x(n) =
∑

p

N−1∑

k=0

xp,kψp,k(n) , (3.3)

where

ψp,k(n) , ψ(n− pL)ej 2π
N

k(n−pL) (3.4)

and ψ(n) denotes a synthesis window (or synthesis filter) of length N . Throughout this

chapter, we assume that ψ̃(n) and ψ(n) are real functions. Substituting (3.1) into (3.3),

we obtain the so-called completeness condition:

∑
p

ψ(n− pL)ψ̃(n− pL) =
1

N
for all n . (3.5)

Given analysis and synthesis windows that satisfy (3.5), a signal x(n) ∈ `2(Z) is guaran-

teed to be perfectly reconstructed from its STFT coefficients xp,k. However, for L ≤ N

and for a given synthesis window ψ(n), there might be an infinite number of solutions to

(3.5); therefore, the choice of the analysis window is generally not unique [72,73].

We now proceed with an STFT representation of LTI systems. Let h(n) denote a

length Q impulse response of an LTI system, whose input x(n) and output d(n) are

related by

d(n) =

Q−1∑
i=0

h(i)x(n− i) . (3.6)

In the STFT domain, we obtain after some manipulations (see Chapter 2.1)

dp,k =
N−1∑

k′=0

∑

p′
xp′,k′hp−p′,k,k′ =

N−1∑

k′=0

∑

p′
xp−p′,k′hp′,k,k′ , (3.7)

where hp−p′,k,k′ may be interpreted as a response to an impulse δp−p′,k−k′ in the time-

frequency domain (the impulse response is translation-invariant in the time axis and is

translation varying in the frequency axis). The impulse response hp,k,k′ in the time-

frequency domain is related to the impulse response h(n) in the time domain by

hp,k,k′ = {h(n) ∗ φk,k′(n)}|n=pL , h̄n,k,k′
∣∣
n=pL

, (3.8)

where ∗ denotes convolution with respect to the time index n and

φk,k′(n) , ej 2π
N

k′n
∑
m

ψ̃(m)ψ(n + m)e−j 2π
N

m(k−k′)

= ej 2π
N

k′nψn,k−k′ , (3.9)
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where ψn,k is the STFT representation of the synthesis window ψ(n) calculated with a

decimation factor L = 1. Equation (3.7) indicates that for a given frequency-band index k,

the temporal signal dp,k can be obtained by convolving the signal xp,k′ in each frequency-

band k′ (k′ = 0, 1, . . . , N − 1 ) with the corresponding filter hp,k,k′ and then summing

over all the outputs. We refer to hp,k,k′ for k = k′ as a band-to-band filter and for k 6= k′

as a crossband filter. Crossband filters are used for canceling the aliasing effects caused

by the subsampling. Note that equation (3.8) implies that for fixed k and k′, the filter

hp,k,k′ is noncasual in general, with
⌈

N
L

⌉ − 1 noncasual coefficients. In echo cancellation

applications, in order to consider those coefficients, an extra delay of
(⌈

N
L

⌉− 1
)
L samples

is generally introduced into the microphone signal (y(n) in Fig. 3.1) [13]. It can also be

seen from (3.8) that the length of each crossband filter is given by

Nh =

⌈
Q + N − 1

L

⌉
+

⌈
N

L

⌉
− 1 . (3.10)

To illustrate the significance of the crossband filters, we apply the discrete-time Fourier

transform (DTFT) to the undecimated crossband filter h̄n,k,k′ (defined in (3.8)) with

respect to the time index n and obtain

H̄k,k′(θ) =
∑

n

h̄n,k,k′e
−jnθ = H(θ)Ψ̃(θ − 2π

N
k)Ψ(θ − 2π

N
k′) , (3.11)

where H(θ), Ψ̃(θ) and Ψ(θ) are the DTFT of h(n), ψ̃(n) and ψ(n), respectively. Had

both Ψ̃(θ) and Ψ(θ) been ideal low-pass filters with bandwidth fs/2N (where fs is the

sampling frequency), a perfect STFT representation of the system h(n) could be achieved

by using just the band-to-band filter hn,k,k, since in this case the product of Ψ̃(θ − 2π
N

k)

and Ψ(θ− 2π
N

k′) is identically zero for k 6= k′. However, the bandwidths of Ψ̃(θ) and Ψ(θ)

are generally greater than fs/2N and therefore, H̄k,k′(θ) and h̄n,k,k′ are not zero for k 6= k′.

One can observe from (3.11) that the energy of a crossband filter from frequency-band k′

to frequency-band k decreases as |k − k′| increases, since the overlap between Ψ̃(θ− 2π
N

k)

and Ψ(θ − 2π
N

k′) becomes smaller. As a result, relatively few crossband filters need to be

considered in order to capture most of the energy of the STFT representation of h(n).

Figure 3.3 illustrates a synthetic LEM impulse response based on a statistical re-

verberation model, which assumes that a room impulse response can be described as a

realization of a nonstationary stochastic process h(n) = u(n)β(n)e−αn, where u(n) is a
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Figure 3.3: (a) A synthetic LEM impulse response: h(n) = β(n)e−αn and (b) its frequency

response. β(n) is unit-variance white Gaussian noise and α corresponds to T60 = 300 ms

(sampling rate is 16 kHz).

step function (i.e., u(n) = 1 for n ≥ 0, and u(n) = 0 otherwise), β(n) is a zero-mean

white Gaussian noise and α is related to the reverberation time T60 (the time for the

reverberant sound energy to drop by 60 dB from its original value). In our example, α

corresponds to T60 = 300 ms (where fs = 16 kHz) and β(n) has a unit variance.

To compare the crossband filters obtained for this synthetic impulse response with

those obtained in anechoic chamber (i.e., impulse response h(n) = δ(n)), we employed a

Hamming synthesis window of length N = 256, and computed a minimum energy analysis

window ψ̃(n) that satisfies (3.5) for L = 128 (50% overlap) [72]. Then we computed

the undecimated crossband filters h̄n,k,k′ using (3.8). Figures 3.4(a) and (b) show mesh

plots of the
∣∣h̄n,1,k′

∣∣ and contours at −40 dB (values outside this contour are lower than

−40 dB) for h(n) = δ(n) and for the synthetic impulse response depicted in Fig. 3.3.

Figure 3.4(c) shows an ensemble averaging of
∣∣h̄n,1,k′

∣∣2 over realizations of the stochastic

process h(n) = u(n)β(n)e−αn which is given by

E
{∣∣h̄n,1,k′

∣∣2
}

= u(n)e−2αn ∗ |φ1,k′(n)|2 . (3.12)

Recall that the crossband filter hp,k,k′ is obtained from h̄n,k,k′ by decimating the time

index n by a factor of L (see (3.8)). We observe from Fig. 3.4 that most of the energy

of h̄n,k,k′ (for both anechoic chamber and the LEM reverberation model) is concentrated
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in the eight crossband filters, i.e., k′ ∈ {(k + i)modN | i = −4, . . . , 4}; therefore, both

impulse responses may be represented in the time-frequency domain by using only eight

crossband filters around each frequency-band. As expected from (3.11), the number of

crossband filters required for the representation of an impulse response is mainly deter-

mined by the analysis and synthesis windows, while the length of the crossband filters

(with respect to the time index n) is related to the length of the impulse response.

3.3 System identification in the STFT domain

In this section, we consider system identification in the STFT domain and address the

problem of estimating the crossband filters of the system using an LS optimization cri-

terion for each frequency-band. Throughout this section, scalar variables are written

with lowercase letters and vectors are indicated with lowercase boldface letters. Capital

boldface letters are used for matrices and norms are always `2 norms.

Consider the STFT-based system identification scheme as illustrated in Fig. 3.2. The

input signal x(n) passes through an unknown system characterized by its impulse response

h(n), obtaining the desired signal d(n). Together with the corrupting noise signal ξ(n) ,

the system output signal is given by

y(n) = d(n) + ξ(n) = h(n) ∗ x(n) + ξ(n) . (3.13)

Note that the noise signal ξ(n) may often include a useful signal, as in acoustic echo

cancellation where it consists of the near-end speaker signal as well as a local noise. From

(3.13) and (3.7), the STFT of y(n) may be written as

yp,k = dp,k + ξp,k =
N−1∑

k′=0

Nh−1∑

p′=0

xp−p′,k′hp′,k,k′ + ξp,k , (3.14)

where Nh is the length of the crossband filters. Here, we do not consider the case where

the crossband filters in the k-th frequency-band are shorter than the band-to-band filter,

as in [16]. We assume that all the filters have the same length Nh. Defining Nx as

the length of xp,k in frequency band k, we can write the length of yp,k for a fixed k as

Ny = Nx + Nh− 1. It is worth noting that due to the noncasuality of the filter hp,k,k′ (see

Section 3.2), the index p′ in (3.14) should have ranged from − ⌈
N
L

⌉
+1 to Nh−

⌈
N
L

⌉
, where
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(a) (b)

(c)

Figure 3.4: A mesh plot of the crossband filters |h̄n,1,k′ | for different impulse responses. (a) An

anechoic chamber impulse response: h(n) = δ(n). (b) An LEM synthetic impulse response:

h(n) = u(n)β(n)e−αn, where u(n) is a step function, β(n) is zero-mean unit-variance white

Gaussian noise and α corresponds to T60 = 300 ms (sampling rate is 16 kHz). (c) An ensemble

averaging E|h̄n,1,k′ |2 of the impulse response given in (b).
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⌈
N
L

⌉ − 1 is the number of noncasual coefficients of hp,k,k′ . However, we assume that an

artificial delay of
(⌈

N
L

⌉− 1
)
L samples has been introduced into the system output signal

y(n) in order to compensate for those noncasual coefficients, so the signal yp,k in (3.14)

corresponds to the STFT of a delayed signal y
(
n− (⌈

N
L

⌉− 1
)
L

)
. Therefore, both p and

p′ take on values starting with 0 rather than with − ⌈
N
L

⌉
+ 1.

Let hk,k′ denote the crossband filter from frequency-band k′ to frequency-band k

hk,k′ =
[

h0,k,k′ h1,k,k′ · · · hNh−1,k,k′

]T

(3.15)

and let hk denote a column-stack concatenation of the filters {hk,k′}N−1
k′=0

hk =
[

hT
k,0 hT

k,1 · · · · · · hT
k,N−1

]T

. (3.16)

Let

Xk =




x0,k 0 · · · · · · 0

x1,k x0,k 0 · · · 0
...

...
...

...
...

xNy−1,k · · · · · · · · · xNy+Nh−2,k




(3.17)

represent an Ny×Nh Toeplitz matrix constructed from the input signal STFT coefficients

of the k-th frequency-band, and let ∆k be a concatenation of {Xk}N−1
k=0 along the column

dimension

∆k =
[

X0 X1 · · · · · · XN−1

]
. (3.18)

Then, (3.14) can be written in a vector form as

yk = dk + ξk = ∆khk + ξk , (3.19)

where

yk =
[

y0,k y1,k y2,k · · · yNy−1,k

]T

(3.20)

represents the output signal STFT coefficients of the k-th frequency-band, and the vectors

dk and ξk are defined similarly.

Let ĥp′,k,k′ be an estimate of the crossband filter hp′,k,k′ , and let d̂p,k be the resulting

estimate of dp,k using only 2K crossband filters around the frequency-band k, i.e.,

d̂p,k =
k+K∑

k′=k−K

Nh−1∑

p′=0

ĥp′,k,k′modNxp−p′,k′modN , (3.21)
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Figure 3.5: Crossband filters illustration for frequency-band k = 0 and K = 1.

where we exploited the periodicity of the frequency-bands (see an example illustrated in

Fig. 3.5). Let ˆ̃hk be the 2K + 1 estimated filters at frequency band k

ˆ̃hk =
[

ĥT
k,(k−K)modN ĥT

k,(k−K+1)modN · · · · · · ĥT
k,(k+K)modN

]T

, (3.22)

where ĥk,k′ is the estimated crossband filter from frequency-band k′ to frequency-band k,

and let ∆̃k be a concatenation of {Xk′}(k+K)modN
k′=(k−K)modN along the column dimension

∆̃k =
[

X(k−K)modN X(k−K+1)modN · · · · · · X(k+K)modN

]
. (3.23)

Then, the estimated desired signal can be written in a vector form as

d̂k = ∆̃k
ˆ̃hk , (3.24)

Note that both ˆ̃hk and d̂k depend on the parameter K, but for notational simplicity K has

been omitted. Using the above notations, the LS optimization problem can be expressed

as

ˆ̃hk = arg min
h̃k

∥∥∥yk − ∆̃kh̃k

∥∥∥
2

. (3.25)

The solution to (3.25) is given by

ˆ̃hk =
(
∆̃H

k ∆̃k

)−1

∆̃H
k yk , (3.26)

where we assumed that ∆̃H
k ∆̃k is not singular2. Substituting (3.26) into (3.24), we ob-

tain an estimate of the desired signal in the STFT domain at the k-th frequency-band,

2In the ill-conditioned case, when ∆̃H
k ∆̃k is singular, matrix regularization is required [81].
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using 2K crossband filters. Our objective is to analyze the mse in each frequency-band,

and investigate the influence of the number of estimated crossband filters on the mse

performance.

3.4 MSE analysis

In this section, we derive an explicit expression for the mmse obtainable in the k-th

frequency-band3. To make the following analysis mathematically tractable we assume that

xp,k and ξp,k are zero-mean white Gaussian signals with variances σ2
x and σ2

ξ , respectively.

We also assume that xp,k is statistically independent of ξp,k. The Gaussian assumption

of the corresponding STFT signals is often justified by a version of the central limit

theorem for correlated signals [82, Theorem 4.4.2], and it underlies the design of many

speech-enhancement systems [31,32].

The (normalized) mse is defined by

εk(K) =

E

{∥∥∥dk − d̂k

∥∥∥
2
}

E
{‖dk‖2} , (3.27)

Substituting (3.24) and (3.26) into (3.27), the mse can be expressed as

εk(K) =
1

E
{‖dk‖2}E

{∥∥∥∥
[
1− ∆̃k

(
∆̃H

k ∆̃k

)−1

∆̃H
k

]
dk

∥∥∥∥
2
}

+
1

E
{‖dk‖2}E

{∥∥∥∥∆̃k

(
∆̃H

k ∆̃k

)−1

∆̃H
k ξk

∥∥∥∥
2
}

. (3.28)

Equation (3.28) can be rewritten as

εk(K) = 1 + ε1 − ε2, (3.29)

where

ε1 =
1

E
{‖dk‖2}E

{
ξH

k ∆̃k

(
∆̃H

k ∆̃k

)−1

∆̃H
k ξk

}
(3.30)

and

ε2 =
1

E
{‖dk‖2}E

{
dH

k ∆̃k

(
∆̃H

k ∆̃k

)−1

∆̃H
k dk

}
. (3.31)

3We are often interested in the time-domain mmse, i.e., in the mmse of d̂(n). However, the time-

domain mmse is related to the sum of MMSEs in all the frequency-bands.
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To proceed with the mean-square analysis, we derive simplified expressions for ε1 and ε2.

Recall that for any two vectors a and b we have aHb = tr(abH)∗, where the operator

tr(·) denotes the trace of a matrix. Then ε1 can be expressed as

ε1 =
1

E
{‖dk‖2}tr

(
E

{
ξkξ

H
k

}
E

{
∆̃k

(
∆̃H

k ∆̃k

)−1

∆̃H
k

})∗
. (3.32)

The whiteness assumption for ξp,k yields E
{
ξkξ

H
k

}
= σ2

ξINy×Ny , where INy×Ny is an

identity matrix of size Ny × Ny. Using the property that tr(AB) = tr(BA) for any two

matrices A and B, we have

ε1 =
1

E
{‖dk‖2}σ2

ξE

{
tr

(
∆̃H

k ∆̃k

(
∆̃H

k ∆̃k

)−1
)∗}

=
1

E
{‖dk‖2}σ2

ξE
{
tr

(
I(2K+1)Nh×(2K+1)Nh

)∗}

=
σ2

ξNh (2K + 1)

E
{‖dk‖2} . (3.33)

Using (3.19), E
{‖dk‖2} can be expressed as

E
{‖dk‖2} = hH

k E
{
∆H

k ∆k

}
hk , (3.34)

and by using the whiteness property of xp,k, the (m, l)-th term of E
{
∆H

k ∆k

}
is given by

(
E

{
∆H

k ∆k

})
m,l

=
∑

n

E

{
x

n−lmodNh,
j

l
Nh

kx∗
n−mmodNh,

j
m

Nh

k
}

=
∑

n

σ2
xδ(lmodNh −mmodNh)δ

(⌊
l

Nh

⌋
−

⌊
m

Nh

⌋)

= Nxσ
2
xδ(l −m) . (3.35)

Accordingly, E
{
∆H

k ∆k

}
is a diagonal matrix, and (3.34) reduces to

E
{‖dk‖2} = σ2

xNx ‖hk‖2 . (3.36)

Substituting (3.36) into (3.33), we obtain

ε1 =
σ2

ξNh (2K + 1)

σ2
xNx ‖hk‖2 . (3.37)

We now evaluate ε2 defined in (3.31), assuming that xp,k is variance-ergodic [83] and

that Nx is sufficiently large. More specifically, we assume that 1
Nx

∑Nx−1
p=0 xp,kx

∗
p+s,k′ ≈
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E
{
xp,kx

∗
p+s,k′

}
. Hence, the (m, l)-th term of ∆̃H

k ∆̃k can be approximated by

(
∆̃H

k ∆̃k

)
m,l

=
∑

n

x
n−lmodNh,

�
k−K+

j
l

Nh

k�
modN

x∗
n−mmodNh,

�
k−K+

j
m

Nh

k�
modN

≈ NxE

{
x

n−lmodNh,
�
k−K+

j
l

Nh

k�
modN

x∗
n−mmodNh,

�
k−K+

j
m

Nh

k�
modN

}
(3.38)

which reduces to (see Appendix 3.A)

(
∆̃H

k ∆̃k

)
m,l
≈ Nxσ

2
xδ(l −m) . (3.39)

Substituting (3.39), (3.36) and the definition of dk from (3.19) into (3.31), we obtain

ε2 =
1

σ4
xN

2
x ‖hk‖2h

H
k Ωkhk (3.40)

where Ωk,E
{
∆H

k ∆̃k∆̃
H
k ∆k

}
. Using the fourth-order moment factoring theorem for

zero-mean complex Gaussian samples [84], Ωk can be expressed as (see Appendix 3.B)

Ωk = σ4
xNx

[
Nh (2K + 1) IN ·Nh×N ·Nh

+ NxĨN ·Nh×N ·Nh

]
, (3.41)

where ĨN ·Nh×N ·Nh
is a diagonal matrix whose (m,m)-th term satisfies

(
ĨN ·Nh×N ·Nh

)
m,m

=





1, m ∈ Lk(K)

0, otherwise
(3.42)

where Lk(K) = { [(k −K + n1)modN ] Nh + n2 | n1 ∈ {0, . . . , 2K} , n2 ∈ {0, . . . , Nh − 1}}.
Substituting (3.41) into (3.40), we obtain

ε2 =
Nh (2K + 1)

Nx

+

∑2K
m=0

∥∥hk,(k−K+m)modN

∥∥2

‖hk‖2 . (3.43)

Finally, substituting (3.37) and (3.43) into (3.29), we have an explicit expression for εk(K):

εk(K) = 1 +
Nh (2K + 1)

Nx

[
σ2

ξ

σ2
x ‖hk‖2 − 1

]
−

∑2K
m=0

∥∥hk,(k−K+m)modN

∥∥2

‖hk‖2 . (3.44)

Expression (3.44) represents the mmse obtained in the k-th band using LS estimates of 2K

crossband filters. It is worth noting that εk(K) depends, through hk, on the time impulse

response h(n) and on the analysis and synthesis parameters, e.g., N , L and window type

(see (3.8)). However, in this chapter, we address only with the influence of K on the value

of εk(K).
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3.5 Relations between MMSE and SNR

In this section, we explore the relations between the input SNR and the mmse perfor-

mance. The mmse performance is also dependent on the length of the input signal, but

we first consider a fixed Nx, and subsequently discuss the influence of Nx on the mmse

performance.

Denoting the SNR by η = σ2
x/σ

2
ξ , (3.44) can be rewritten as

εk(K) =
αk(K)

η
+ βk(K) , (3.45)

where

αk(K) , Nh

Nx ‖hk‖2 (2K + 1) , (3.46)

βk(K) , 1− Nh (2K + 1)

Nx

− 1

‖hk‖2

2K∑
m=0

∥∥hk,(k−K+m)modN

∥∥2
. (3.47)

From (3.45), the mmse εk(K) for fixed k and K values, is a monotonically decreasing

function of η, which expectedly indicates that higher SNR values enable a better estima-

tion of the relevant crossband filters. Moreover, it is easy to verify from (3.46) and (3.47)

that αk(K + 1) > αk(K) and βk(K + 1) ≤ βk(K). Consequently εk(K) and εk(K + 1) are

two monotonically decreasing functions of η that satisfy

εk(K + 1) > εk(K), for η → 0 (low SNR),

εk(K + 1) ≤ εk(K), for η →∞ (high SNR). (3.48)

Accordingly, these functions must intersect at a certain SNR value ηk (K + 1 → K), that

is, εk(K + 1) ≤ εk(K) for η ≥ ηk (K + 1 → K), and εk(K + 1) > εk(K) otherwise (see

typical mse curves in Fig. 3.6). For SNR values higher than ηk (K + 1 → K), a lower mse

value can be achieved by estimating 2(K +1) crossband filters rather than only 2K filters.

Increasing the number of crossband filters is related to increasing the complexity of the

system model [26], as will be explained in more details at the end of this section.

The SNR-intersection point ηk (K + 1 → K) is obtained from (3.45) by requiring that

εk(K + 1) = εk(K)

ηk (K + 1 → K) =
αk(K + 1)− αk(K)

βk(K)− βk(K + 1)
. (3.49)
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Substituting (3.46) and (3.47) into (3.49), we have

ηk (K + 1 → K) =
2Nh

2Nh ‖hk‖2 + Nx

(∥∥hk,(k−K−1)modN

∥∥2
+

∥∥hk,(k+K+1)modN

∥∥2
) . (3.50)

Since the crossband filter’s energy ‖hk,k′‖2 decreases as |k − k′| increases (see Section 3.2),

we have

ηk (K → K − 1) ≤ ηk (K + 1 → K) . (3.51)

Specifically, the number of crossband filters, which should be used for the system identifier,

is a monotonically increasing function of the SNR. Estimating just the band-to-band filter

and ignoring all the crossband filters yields the minimal mse only when the SNR is lower

than ηk (1 → 0).

Another interesting point that can be concluded from (3.50) is that ηk (K + 1 → K) is

inversely proportional to Nx, the length of xp,k in frequency-band k. Therefore, for a fixed

SNR value, the number of crossband filters, which should be estimated in order to achieve

the minimal mse, increases as we increase Nx. For instance, suppose that Nx is chosen

such that the input SNR satisfies ηk (K → K − 1) ≤ η ≤ ηk (K + 1 → K), so that 2K

crossband filters should be estimated. Now, suppose that we increase the value of Nx, so

that the same SNR now satisfies ηk (K + 1 → K) ≤ η ≤ ηk (K + 2 → K + 1). In this case,

although the SNR remains the same, we would now prefer to estimate 2(K +1) crossband

filters rather than 2K. It is worth noting that Nx is related to the update rate of ĥp,k,k′ .

We assume that during Nx frames the system impulse response does not change, and its

estimate is updated every Nx frames. Therefore, a small Nx should be chosen whenever

the system impulse response is time varying and fast tracking is desirable. However, in

case the time variations in the system are slow, we can increase Nx, and correspondingly

increase the number of crossband filters.

It is worthwhile noting that the number of crossband filters determines the complex-

ity of system model. As the model complexity increases, the empirical fit to the data

improves (i.e.,
∥∥∥dk − d̂k

∥∥∥
2

can be smaller), but the variance of parametric estimates in-

creases too (i.e., variance of d̂), thus possibly worsening the accuracy of the model on

new measurements [24–26], and increasing the mse, εk(K). Hence, the appropriate model

complexity is affected by the level of noise in the data and the length of observable data
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Figure 3.6: Illustration of typical mse curves as a function of the input SNR showing the relation

between εk(K) (solid) and εk(K + 1) (dashed).

that can be employed for the system identification. As the SNR increases or as more

data is employable, additional crossband filters can be estimated and lower mmse can be

achieved.

3.6 Computational complexity

In this section, we address the computational complexity of the proposed approach and

compare it to the conventional fullband approach and to the commonly-used subband

approach that relies on the multiplicative transfer function (MTF) approximation. The

computational complexity is computed by counting the number of arithmetic operations4

needed for the estimation process in each method.

3.6.1 Proposed subband approach

The computation of the proposed subband approach requires the solution of the LS normal

equations (see (3.26))

4An arithmetic operation is considered to be any complex multiplication, complex addition, complex

subtraction, or complex division.
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(
∆̃H

k ∆̃k

)
ˆ̃hk = ∆̃H

k yk (3.52)

for each frequency-band. Assuming that ∆̃H
k ∆̃k is nonsingular, we may solve the normal

equations in (3.52) using the Cholesky decomposition [85]. The number of arithmetic

operations involved in forming the normal equations and solving them using the Cholesky

decomposition is Ny [(2K + 1) Nh]
2 + [(2K + 1) Nh]

3 /3 [85]. As the system is identified,

the desired signal estimate is computed by using (3.24), which requires 2NyNh (2K + 1)

arithmetic operations. In addition to the above computations, we need to consider the

complexity of implementing the STFT. Each frame index in the STFT domain is computed

by applying the discrete Fourier transform (DFT) on a short-time section of the input

signal multiplied by a length N analysis window. This can be efficiently done by using fast

Fourier transform (FFT) algorithms [86], which involve 5N log2 N arithmetic operations.

Consequently, each STFT frame index requires N +5N log2 N arithmetic operations (the

complexity of the ISTFT is approximately the same). Since the subband approach consists

of two STFT (analysis filter bank) and one ISTFT (synthesis filter bank), the overall

complexity of the STFT-ISTFT operations is 3Ny (N + 5N log2 N). Note that we also

need to calculate the minimum energy analysis window by solving (3.5); however, since

we compute it only once, we do not consider the computations required for its calculation.

Therefore, the total number of computations required in the proposed approach is

N
{
Ny [(2K + 1) Nh]

2 + [(2K + 1) Nh]
3 /3 + 2Ny (2K + 1) Nh

}

+3Ny (N + 5N log2 N) arithmetic operations . (3.53)

Assuming that Ny is sufficiently large (more specifically, Ny > (2K + 1) Nh/3) and that

the computations required for the STFT-ISTFT calculation can be neglected, the compu-

tational complexity of the subband approach with 2K crossband filters in each frequency-

band can be expressed as

OK
SB(Nh, Ny) = O

(
NNy [(2K + 1) Nh]

2) . (3.54)



52 CHAPTER 3. SYSTEM IDENTIFICATION WITH CROSSBAND FILTERING

3.6.2 Fullband approach

In the fullband approach, we consider the following LS optimization problem:

ĥ = arg min
h
‖y −Xh‖2 , (3.55)

where X is the M ×Q Toeplitz matrix constructed from the input data x(n) , M is the

observable data length, y is the M ×1 system output vector constructed from y(n) and ĥ

is the Q× 1 system estimate vector. In this case, the LS normal equations take the form

of

(
XHX

)
ĥ = XHy . (3.56)

As in the subband approach, forming the normal equations, solving them using the

Cholesky decomposition and calculating the desired signal estimate, require MQ2+Q3/3+

2MQ arithmetic operations. For sufficiently large M (i.e., M > Q/3), the computational

complexity of the fullband approach can be expressed as

OFB(Q,M) = O
(
MQ2

)
. (3.57)

A comparison of the fullband and subband complexities is given in subsection 3.6.4, by

rewriting the subband complexity in terms of the fullband parameters (Q and M).

3.6.3 Multiplicative transfer function (MTF) approach

The MTF approximation is widely-used for the estimation of linear system in the STFT

domain. Examples of such applications include frequency-domain blind source separation

(BSS) [35], STFT-domain acoustic echo cancellation [22], relative transfer function (RTF)

identification [3] and multichannel processing [8, 87]. Therefore, it is of great interest to

compare the performance of the proposed approach to that of the MTF approach. In

the above-mentioned applications, it is commonly assumed that the support of the STFT

analysis window is sufficiently large compared with the duration of the system impulse

response, so the system is approximated in the STFT domain with a single multiplication

per frequency-band and no crossband filters are utilized. Following this assumption, the

STFT of the system output signal y(n) is approximated by [74]
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yp,k ≈ Hkxp,k + ξp,k , (3.58)

where Hk ,
∑

m h(m) exp (−j2πmk/N). The single coefficient Hk is estimated using the

following LS optimization problem:

Ĥk = arg min
Hk

‖yk −Hkxk‖2 , (3.59)

where yk was defined in (3.19) and xk is the first column of Xk (defined in (3.17)). The

solution of (3.59) is given by

Ĥk =
xH

k yk

‖xk‖2 . (3.60)

In contrast with the fullband and the proposed approaches, the estimation of the desired

signal in the MTF approach does not necessitate the inverse of a matrix. In fact, it

requires only N (5Ny + 1) + 3Ny (N + 5N log2 N) arithmetic operations. Neglecting the

STFT-ISTFT calculation (the second term), the computational complexity of the MTF

approach can be expressed as

OMTF (Ny) = O (NNy) . (3.61)

3.6.4 Comparison and discussion

To make the comparison of the above three approaches tractable, we rewrite the complex-

ities of the subband approaches in terms of the fullband parameters by using the relations

Ny ≈ M/L and Nh ≈ Q/L. Consequently, (3.54) and (3.61) can be rewritten as

OK
SB(Q,M) = O

(
MQ2N (2K + 1)2

L3

)
(3.62)

and

OMTF (M) = O

(
N

M

L

)
. (3.63)

A comparison of (3.57), (3.62) and (3.63) indicates that the complexity of the

proposed subband approach is lower than that of the fullband approach by a fac-

tor of L3/
[
N (2K + 1)2] but higher than that of the MTF approach by a factor of
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[Q (2K + 1) /L]2 . For instance, for N = 256, L = 0.5N , Q = 1500 and K = 4 the

proposed approach complexity is reduced by a factor 100, when compared to the fullband

approach complexity and increased by a factor 104, when compared to the MTF approach

complexity. However, the relatively high computational complexity of the fullband ap-

proach is compensated with a better mse performance of the system identifier (see Section

3.7). On the other hand, the substantial low complexity of the MTF approach results in

an insufficient accuracy of the system estimate, especially when the large window support

assumption is not valid (e.g., when long impulse response duration is considered). This

point will be demonstrated in Section 3.7.

It can be seen from (3.62) that the computational complexity of the proposed approach

increases as we increase the number of crossband filters. However, as was shown in the

previous section, this does not necessarily imply a lower steady-state mse in subbands.

Consequently, under appropriate conditions (i.e., low SNR or fast time variations in the

system), a lower mse can be attained in each frequency-band with relatively few crossband

filters, resulting in low computational complexity. It is worth noting that the complexities

of both the fullband and the proposed approaches may be reduced by exploiting the

Toeplitz and block-Toeplitz structures of the corresponding matrices in the LS normal

equations (XHX and ∆̃H
k ∆̃k, respectively) [85].

3.7 Experimental results

In this section, we present experimental results that verify the theoretical derivations

obtained in sections 3.4 and 3.5. The signals employed for testing include synthetic white

Gaussian signals as well as real speech signals. The performance of the proposed approach

is evaluated for several SNR and Nx values and compared to that of the fullband approach

and the MTF approach. Results are obtained by averaging over 200 independent runs.

We use the following parameters for all simulations presented in this section: Sampling

rate of 16 kHz; A Hamming synthesis window of length N = 256 (16 ms) with 50%

overlap (L = 128), and a corresponding minimum energy analysis window which satisfies

the completeness condition (3.5) [72]. The impulse response h(n) used in the experiments

was measured in an office which exhibits a reverberation time of about 300 ms. Figure 3.7
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Figure 3.7: (a) Measured impulse response and (b) its frequency response (sampling fre-

quency=16kHz).

shows the impulse and frequency responses of the measured system. The length of the

impulse response was truncated to Q = 1500.

In the first experiment, we examine the system identifier performance in the STFT

domain under the assumptions made in Section 3.4. That is, the STFT of the input

signal xp,k is a zero-mean white Gaussian process with variance σ2
x. Note that, xp,k is not

necessarily a valid STFT signal, as not always a sequence whose STFT is given by xp,k may

exist [88]. Similarly, the STFT of the noise signal ξp,k is also a zero-mean white Gaussian

process with variance σ2
ξ , which is uncorrelated with xp,k. Figure 3.8 shows the mse curves

for the frequency-band k = 1 as a function of the input SNR for Nx = 200 and Nx = 1000

(similar results are obtained for the other frequency-bands). The results confirm that as

the SNR increases, the number of crossband filters that should be estimated to achieve a

minimal mse increases. We observe, as expected from (3.51), that the intersection-points

of the mse curves are a monotonically increasing series. Furthermore, a comparison of

Figs. 3.8(a) and (b) indicates that the intersection-points values decrease as we increase

Nx, as expected from (3.50). This verifies that when the signal length increases (while

the SNR remains constant), more crossband filters need to be used in order to attain the

mmse.

In the second experiment, we demonstrate the proposed theory on subband acoustic
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Figure 3.8: MSE curves as a function of the input SNR for white Gaussian signals. (a) Nx = 200.

(b) Nx = 1000.

echo cancellation application (see Fig. 3.1). The far-end signal x(n) is a speech signal

and the local disturbance ξ(n) consists of a zero-mean white Gaussian local noise with

variance σ2
ξ . The echo canceller performance is evaluated in the absence of near-end

speech, since in such case a double-talk detector (DTD) is often applied in order to freeze

the system adaptation process. Commonly used measure for evaluating the performance

of conventional AECs is the echo-return loss enhancement (ERLE), defined in dB by

ERLE(K) = 10 log
E {d2(n)}

E

{(
d(n)− d̂K(n)

)2
} , (3.64)

where d̂K(n) is the inverse STFT of the estimated echo signal using 2K crossband filters

around each frequency-band. The ERLE performance of a conventional fullband AEC,

where the echo signal is estimated by (3.55), is also evaluated. Figure 3.9 shows the ERLE

curves of both the fullband and the proposed approaches as a function of the input SNR

obtained for a far-end signal of length 1.5 sec (Fig. 3.9(a)) and for a longer signal of length

2.56 sec (Fig. 3.9(b)). Clearly, as the SNR increases, the performance of the proposed

algorithm can be generally improved (higher ERLE value can be obtained) by using a

larger number of crossband filters. Figure 3.9(a) shows that when the SNR is lower than

−7 dB, estimating just the band-to-band filter (K = 0) and ignoring all the crossband

filters yields the maximal ERLE. Incorporating into the proposed AEC two crossband
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Figure 3.9: ERLE curves for the proposed subband approach and the conventional fullband

approach as a function of the input SNR for a real speech input signal. (a) Signal length is 1.5

sec (Nx = 190); (b) Signal length is 2.56 sec (Nx = 322).

filters (K = 1) decreases the ERLE by approximately 5 dB. However, when considering

SNR values higher than −7 dB, the inclusion of two crossband filters (K = 1) is preferable.

It enables an increase of 10− 20 dB in the ERLE relative to that achieved by using only

the band-to-band filter. Similar results are obtained for a longer signal (Fig. 3.9(b)),

with the only difference that the intersection-points of the subband ERLE curves move

towards lower SNR values. A comparison of the proposed subband approach with the

fullband approach indicates that higher ERLE values can be obtained by using the latter,

but at the expense of substantial increase in computational complexity. The advantage

of the fullband approach in terms of ERLE performance stems from the fact that ERLE

criterion is defined in the time domain and fullband estimation is also performed in the

time domain.

In the third experiment, we compare the proposed approach to the MTF approach and

investigate the influence of the STFT analysis window length (N) on their performances.

We use a 1.5 sec length input speech signal and a white additive noise, as described in

the previous experiment. A truncated impulse response with 256 taps (16 ms) is used.

Figure 3.10 shows the ERLE curves of both the MTF and the proposed approaches as a

function of the input SNR obtained for an analysis window of length N = 256 (16 ms,

Fig. 3.10(a)) and for a longer window of length N = 2048 (128 ms, Fig. 3.10(b)). In both
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Figure 3.10: ERLE curves for the proposed subband approach and the commonly-used multi-

plicative transfer function (MTF) approach as a function of the input SNR for a real speech

input signal and an impulse response 16 ms length. (a) Length of analysis window is 16 ms

(N = 256); (b) Length of analysis window is 128 ms (N = 2048).

cases we have L = 0.5N . As expected, the performance of the MTF approach can be

generally improved by using a longer analysis window. This is because the MTF approach

heavily relies on the assumption that the support of the analysis window is sufficiently

large compared with the duration of the system impulse response. As the SNR increases,

using the proposed approach yields the maximal ERLE, even for long analysis window.

For instance, Fig. 3.10(b) shows that for 20 dB SNR the MTF algorithm achieves an

ERLE value of 20 dB, whereas the inclusion of two crossband filters (K = 1) in the

proposed approach increases the ERLE by approximately 10 dB. Furthermore, it seems

to be preferable to reduce the window length, as seen from Fig. 3.10(a), as it enables an

increase of approximately 7 dB in the ERLE (for a 20 dB SNR) by using the proposed

method. A short window is also essential for the analysis of nonstationary input signal,

which is the case in acoustic echo cancellation application. However, a short window

support necessitate the estimation of more crossband filters for performance improvement,

and correspondingly increases the computational complexity.

Another interesting point that can be concluded from Fig. 3.10 is that for low SNR

values, a higher ERLE can be achieved by using the MTF approach, even when the large

support assumption is not valid (Fig. 3.10(a)).
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3.8 Conclusions

We have derived explicit relations between the attainable mmse in subbands and the power

and length of the input signal for a system identifier implemented in the STFT domain.

We showed that the mmse is achieved by using a variable number of crossband filters,

determined by the power ratio between the input signal and the additive noise signal,

and by the effective length of input signal that can be used for the system identification.

Generally the number of crossband filters that should be utilized in the system identifier

is larger for stronger and longer input signals. Accordingly, during fast time variations

in the system, shorter segments of the input signal can be employed, and consequently

less crossband filters are useful. However, when the time variations in the system become

slower, additional crossband filters can be incorporated into the system identifier and

lower mse is attainable. Furthermore, each subband may be characterized by a different

power ratio between the input signal and the additive noise signal. Hence, a different

number of crossband filters may be employed in each subband.

The strategy of controlling the number of crossband filters is related to and can be

combined with step-size control implemented in adaptive echo cancellation algorithms,

e.g., [89, 90]. Step-size control is designed for faster tracking during abrupt variations

in the system, while not compromising for higher mse when the system is time invari-

ant. Therefore, joint control of step-size and the number of crossband filters may further

enhance the performance of adaptive echo cancellation algorithms.

3.A Derivation of (3.39)

Using the whiteness property of xp,k, the (m, l)-th term of ∆̃H
k ∆̃k given in (3.38) can be

derived as

(
∆̃H

k ∆̃k

)
m,l

≈ NxE

{
x

n−lmodNh,
�
k−K+

j
l

Nh

k�
modN

x∗
n−mmodNh,

�
k−K+

j
m

Nh

k�
modN

}

= Nxσ
2
xδ (lmodNh −mmodNh)

×δ

((
k −K +

⌊
l

Nh

⌋)
modN −

(
k −K +

⌊
m

Nh

⌋)
modN

)
.(3.65)
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Therefore,
(
∆̃H

k ∆̃k

)
m,l

is nonzero only if lmodNh = mmodNh and
(
k −K +

⌊
l

Nh

⌋)
mod

N =
(
k −K +

⌊
m
Nh

⌋)
modN. Those conditions can be rewritten as

l = m + rNh for r = 0,±1,±2, . . . (3.66)

and

k −K +
⌊

l
Nh

⌋
= k −K +

⌊
m
Nh

⌋
+ qN for q = 0,±1,±2, . . . . (3.67)

Substituting (3.66) into (3.67), we obtain

r = qN ; q = 0,±1,±2, . . . . (3.68)

However, recall that 0 ≤ l,m ≤ (2K + 1)Nh− 1 ≤ NNh− 1, then it is easy to verify from

(3.66) that

max {|r|} = N − 1 . (3.69)

From (3.68) and (3.69) we conclude that r = 0, so (3.66) reduces to m = l and we obtain

(3.39).

3.B Derivation of (3.41)

The (m, l)-th term of Ωk from (3.40) can be written as

(Ωk)m,l =
∑
n,r,q

E

{
x

r−nmodNh,
�
k−K+

j
n

Nh

k�
modN

x∗
r−mmodNh,

j
m

Nh

k

× x
q−lmodNh,

j
l

Nh

kx∗
q−nmodNh,

�
k−K+

j
n

Nh

k�
modN

}
. (3.70)

By using the fourth-order moment factoring theorem for zero-mean complex Gaussian

samples [84], (3.70) can be rewritten as

(Ωk)m,l =
∑
n,r,q

E

{
x

r−nmodNh,
�
k−K+

j
n

Nh

k�
modN

x∗
q−nmodNh,

�
k−K+

j
n

Nh

k�
modN

}

×E

{
x∗

r−mmodNh,
j

m
Nh

kx
q−lmodNh,

j
l

Nh

k
}

+
∑
n,r,q

E

{
x

r−nmodNh,
�
k−K+

j
n

Nh

k�
modN

x∗
r−mmodNh,

j
m

Nh

k
}

×E

{
x

q−lmodNh,
j

l
Nh

kx∗
q−nmodNh,

�
k−K+

j
n

Nh

k�
modN

}
. (3.71)
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Using the whiteness property of xp,k, we can write (3.71) as

(Ωk)m,l = ω1 + ω2 , (3.72)

where

ω1 = σ4
x

∑
n,r,q

δ (r − q) δ (r − q + lmodNh −mmodNh) δ

(⌊
m

Nh

⌋
−

⌊
l

Nh

⌋)
(3.73)

and

ω2 = σ4
x

∑
n,r,q

δ (nmodNh −mmodNh) δ

((
k −K +

⌊
n

Nh

⌋)
modN −

⌊
m

Nh

⌋)

×δ (nmodNh − lmodNh) δ

((
k −K +

⌊
n

Nh

⌋)
modN −

⌊
l

Nh

⌋)
. (3.74)

Recall that n ranges from 0 to (2K + 1)Nh − 1, and that r and q range from 0 to Ny − 1

(although for fixed m, l and n values only Nx values of r and q contribute), (3.73) reduces

to

ω1 = σ4
xNx(2K + 1)Nhδ(m− l) . (3.75)

We now proceed with expanding ω2. It is easy to verify from (3.74) that m and l satisfy

mmodNh = lmodNh and
⌊

m
Nh

⌋
=

⌊
l

Nh

⌋
, therefore m = l. In addition, n satisfies both

nmodNh = mmodNh (3.76)

and (
k −K +

⌊
n

Nh

⌋)
modN =

⌊
m

Nh

⌋
, (3.77)

where (3.77) can be rewritten as

k −K +

⌊
n

Nh

⌋
=

⌊
m

Nh

⌋
+ hN, for h = 0,±1,±2, . . . . (3.78)

Writing n as n =
⌊

n
Nh

⌋
Nh + nmodNh, we obtain

n = m− (k −K − hN) Nh, for h = 0,±1,±2, . . . . (3.79)

From (3.79), one value of n, at the most, contributes to ω2 for a fixed value of m. Therefore,

we can bound the range of m, such that values outside this range will not contribute to
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ω2. Since n ∈ {0, 1, ..., (2K + 1)Nh − 1}, we can use (3.79) to obtain

m ∈ {(k −K − hN) Nh + n| n ∈ {0, 1, ..., (2K + 1)Nh − 1} , h = 0,±1,±2, . . .}
= {(k −K + n1 − hN) Nh + n2| n1 ∈ {0, 1, ..., 2K} ,

n2 ∈ {0, 1, ..., Nh − 1} , h = 0,±1,±2, . . .} . (3.80)

Now, since the size of Ωk is NhN × NhN, m should also range from 0 to NNh − 1 and

therefore, (3.80) reduces to

m ∈ { [(k −K + n1)modN ] Nh + n2| n1 ∈ {0, 1, ..., 2K} , n2 ∈ {0, 1, ..., Nh − 1}} .

(3.81)

Finally, since ω2 is independent of both r and q, it can be written as

ω2 = σ4
xN

2
xδ (m− l) δ (m ∈ Lk(K)) (3.82)

where Lk(K) = { [(k −K + n1)modN ] Nh + n2| n1 ∈ {0, 1, ..., 2K} , n2 ∈ {0, 1, ..., Nh − 1}}.
Substituting (3.75) and (3.82) into (3.72), and writing the result in a vector form yields

(3.41).

3.C Performance analysis of crossband adaptation

for subband acoustic echo cancellation5

In this appendix, we analyze the performance of cross-band adaptation in the short-time

Fourier transform (STFT) domain for the application of acoustic echo cancellation. The

band-to-band filters and the cross-band filters considered in each frequency-band are all

estimated by adaptive filters, which are updated by the LMS algorithm. We derive explicit

expressions for the transient and steady-state mean-square error (mse) in subbands for

both correlated and white Gaussian processes. The theoretical analysis is supported by

experimental results.

3.C.1 Introduction

Subband acoustic echo cancellation systems generally require adaptive cross-band filters

for the identification of time-varying echo path [16]. Recently, we investigated the influ-

5This appendix is based on [79].
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ence of cross-band filters on the performance of an acoustic echo canceller implemented

in the STFT domain, and analyzed the steady-state mean-square error (mse) in sub-

bands [65]. We derived explicit relations between the cross-band filters in the STFT

domain and the impulse response in the time domain. It has been shown that in order

to capture most of the energy of the STFT representation of the time domain impulse

response, relatively few cross-band filters need to be considered.

In this appendix, we analyze the convergence of a direct adaptive algorithm used for

the adaptation of the cross-band filters in the STFT domain. The band-to-band filters and

the cross-band filters considered in a given frequency-band are all estimated by adaptive

filters, which are updated by the LMS algorithm. Explicit expressions for the transient

and steady-state mse in subbands are derived for both correlated and white Gaussian

processes. The number of cross-band filters used for the echo canceller in each frequency-

band is generally lower than the number of filters needed for the STFT representation

of the unknown echo path. We therefore employ the performance analysis of the defi-

cient length LMS algorithm which was recently presented in [69]. Experimental results

are provided, which support our theoretical analysis and demonstrate the transient and

steady-state mse performances of the direct adaptation algorithm.

3.C.2 Problem formulation

An acoustic echo canceller operating in the STFT domain is depicted in Fig. 3.11. The

microphone signal y(n) can be written as y(n) = d(n)+ξ(n), where d(n) is the echo signal

and ξ(n) is the near-end signal. Applying the STFT to y(n), we have in the time-frequency

domain

yp,k = dp,k + ξp,k , (3.83)

where p is the frame index (p = 0, 1, . . .) and k is the frequency-band index (k =

0, 1, . . . , N − 1). dp,k can be written as [65]

dp,k =
N−1∑

k′=0

Nh−1∑

p′=0

xp−p′,k′hp′,k,k′ , (3.84)
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Figure 3.11: Acoustic echo cancellation in the STFT domain.

where hp′,k,k′ depends on both the echo path impulse response h(n) and the STFT analy-

sis/synthesis parameters, and Nh is its length (with respect to index p′). That is, for a

given frequency-band index k, the signal dp,k is obtained by convolving the signal xp,k′

in each frequency-band k′ with the corresponding filter hp,k,k′ and then summing over all

the outputs. We refer to hp,k,k′ for k = k′ as a band-to-band filter and for k 6= k′ as a

cross-band filter. It has been shown [65] that in order to capture most of the energy of the

STFT representation of h(n), relatively few cross-band filters need to be considered. Our

objective is to adapt those cross-band filters in the STFT domain in order to produce an

echo estimate.

3.C.3 Direct adaptation algorithm

In this section, we present a direct adaptation algorithm (first introduced in [16]), in

which each of the cross-band filters used for the echo canceller is estimated by using an

adaptive filter. Let ĥp′,k,k′(p) be an adaptive filter of length Nh that attempts to estimate

the cross-band filter hp′,k,k′ at frame index p, and let d̂p,k be the resulting estimate of dp,k

using only 2K adaptive filters around the frequency-band k, where 2K + 1 ≤ N , i.e.,

d̂p,k =
k+K∑

k′=k−K

Nh−1∑

p′=0

xp−p′,k′ĥp′,k,k′(p) , (3.85)
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when we recall that due to the periodicity of the frequency-bands the summation

index k′ satisfies k′ = k′modN . Let hk,k′ =
[
h0,k,k′ · · · hNh−1,k,k′

]T

denote

a cross-band filter from frequency-band k′ to frequency-band k and let χk(p) =[
xp,k xp−1,k · · · xp−Nh+1,k

]T

. Then, using (3.83) and (3.84), yp,k can be rewritten

as

yp,k = x̃T
k (p)h̃k + ξp,k , (3.86)

where x̃k(p) =
[
χT

0 (p) · · · χT
N−1(p)

]T

and h̃k =
[
hT

k,0 · · · hT
k,N−1

]T

are the column-

stack concatenations of {χk′(p)}N−1
k′=0 and {hk,k′}N−1

k′=0, respectively. Let ĥk,k′(p) =[
ĥ0,k,k′(p) · · · ĥNh−1,k,k′(p)

]T

denote an adaptive cross-band filter from frequency-band

k to frequency-band k′. Then the estimated echo signal in (3.85) can be rewritten as

d̂p,k = xT
k (p)ĥk(p) , (3.87)

where xk(p) and ĥk(p) are the column-stack concatenations of {χk′(p)}k+K
k′=k−K and{

ĥk,k′(p)
}k+K

k′=k−K
, respectively. The coefficients of the 2K + 1 adaptive cross-band fil-

ters are then updated using the LMS algorithm:

ĥk(p + 1) = ĥk(p) + µep,kx
∗
k(p) (3.88)

where

ep,k = yp,k − d̂p,k (3.89)

is the error signal (see Fig. 3.11), µ is the step-size and ∗ denotes complex conju-

gation. Observe that we attempt to estimate the unknown system in the STFT do-

main represented by a vector of length NNh (h̃k), by using a deficient length vector

ĥk(p) with only (2K + 1)Nh coefficients. Let us write h̃k and x̃k(p), respectively, as

h̃k =
[

hT
k h̄T

k

]T

, x̃k(p) =
[

xT
k (p) x̄T

k (p)
]T

where hk, h̄k and x̄k(p) are the column-

stack concatenations of {hk,k′}k+K
k′=k−K , {hk,k′}k′∈L and {χk′(p)}k′∈L, respectively, where

L = {k′| k′ ∈ [0, N − 1] and k′ /∈ [k −K, k + K]}. Then, by substituting (3.86) and

(3.87) into (3.89), the error signal can be written as

ep,k = x̄T
k (p)h̄k − xT

k (p)gk(p) + ξp,k , (3.90)
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where gk(p) = ĥk(p) − hk represents the misalignment vector. Substituting (3.90) into

(3.88), the LMS update equation can be expressed as

gk(p + 1) =
[
I−µx∗k(p)xT

k (p)
]
gk(p)

+µ
[
x̄T

k (p)h̄k

]
x∗k(p) + µξp,kx

∗
k(p) .

(3.91)

3.C.4 MSE performance analysis

We proceed with the mean-square analysis of the adaptive algorithm assuming that xp,k

is a zero-mean correlated Gaussian complex signal with variance σ2
x, and that ξp,k is a

zero-mean white complex signal with variance σ2
ξ that is uncorrelated with xp,k. We also

use the common independence assumption that xk(p) is independent of ĥk(p) [91].

Transient performance

The mse is defined by

εk(p) = E
{|ep,k|2

}
, (3.92)

Let Rk = E
{
xk(p)xH

k (p)
}

and R̄k = E
{
x̄k(p)x̄H

k (p)
}

be the autocorrelation matrices of

xk(p) and x̄k(p), respectively. Then, by substituting (3.90) into (3.92), the mse can be

expressed as

εk(p) = σ2
ξ + h̄T

k R̄kh̄
∗
k − 2 Re

{
fH
k E {gk(p)}}

+E
{
gT

k (p)Rkg
∗
k(p)

}
(3.93)

where fk = h̄T
k E {x̄k(p)x∗k(p)}, the operator tr(·) denotes the trace of a matrix and H

denotes conjugation transpose. Now, since Rk is Hermitian matrix it can be decomposed

into Rk = QkΛkQ
H
k , where Λk = diag(λ1

k, . . . , λ
(2K+1)Nh

k ) is the diagonal eigenvalue ma-

trix, λi
k is the i-th eigenvalue of Rk, and Qk is a unitary matrix whose columns are the

eigenvectors of Rk. By decomposing Rk in (3.93), the mse can be rewritten as
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εk(p) = σ2
ξ + h̄T

k R̄kh̄
∗
k − 2 Re

{
fH
k E {gk(p)}}

+λT
k zk(p) , (3.94)

where λk = diag(Λk) is a vector whose components are the diagonal elements of Λk and

zk(p) = diag
(
QH

k E
{
g∗k(p)gT

k (p)
}
Qk

)
. To proceed with the analysis, we need to find

recursive formulas for E {gk(p)} and zk(p). By taking expectation in (3.91) and using the

independence assumption we get

E {gk(p + 1)} = [I − µR∗
k] E {gk(p)}+ µfk . (3.95)

Furthermore, substituting (3.91) into the expression for zk(p) and using the fourth-order

moment factoring theorem for zero-mean complex Gaussian samples, we obtain the fol-

lowing recursive formula for zk(p):

zk(p + 1) = Akzk(p) + bk(p) + µ2ck + µ2σ2
ξλk (3.96)

where Ak = I−2µΛk +µ2Λ2
k +µ2λkλ

T
k , bk(p) = 2µ Re

{
FkQ

H
k E {g∗k(p)}}−2µ2 Re{uk(p)}

and ck = diag
(
QH

k CkQk

)
, where Fk is a diagonal matrix whose diagonal contains the

elements of the vector f̂k = QT
k fk and uk(p) = diag

(
QH

k Uk(p)Qk

)
. The matrices Uk(p)

and Ck are given by

Uk(p) = E
{[

x̄T
k (p)h̄k

]
xk(p)xH

k (p)z∗k(p)xH
k (p)

}

Ck = E
{∣∣x̄T

k (p)h̄k

∣∣2 xk(p)xH
k (p)

}
, (3.97)

where by defining R̃k = E
{
x̄k(p)xH

k (p)
}
, the (n,m)-th term of Uk(p) and Ck can be

written, respectively, as (Uk(p))n,m = E
{
gH

k (p)
} [

(Rk)n,m R̃T
k + (Rk)

T
n,:

(
R̃k

)T

:,m

]
h̄ and

(Ck)n,m = h̄T

[
(Rk)n,m R̄k +

(
R̃k

)
:,m

(
R̃∗

k

)T

:,n

]
h̄∗, where (·)n,: and (·):,n denote the n-th

row and the n-th column of a matrix, respectively. Equations (3.94)-(3.97) represent the

mse behavior in the k-th frequency-band using a direct cross-band filters’ adaptation.
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Steady-state performance

To examine the steady-state solution of (3.94), we first need to find the steady-state

solutions of (3.95) and (3.96). It can be verified that equation (3.95) is convergent if µ

satisfies

0 < µ <
2

tr(R∗
k)

=
2

tr(Rk)
(3.98)

and its steady-state solution is

E {gk(∞)} = (R∗
k)
−1 fk , (3.99)

that is, E
{
ĥk(∞)

}
= hk + (R∗

k)
−1 fk. It indicates that each of the adaptive cross-

band filters does not converge in the mean to the true unknown cross-band filter and it

suffers from a bias quantified by (R∗
k)
−1 fk. This bias, however, reduces to zero whenever

2K + 1 = N (i.e., all the cross-band filters are estimated) or xp,k is white, which in both

cases fk = 0. Substituting (3.99) for gk(p) in (3.93) we find the minimum mse (mmse)

obtainable in the k-th frequency-band:

εmin
k = σ2

ξ + h̄T
k R̄kh̄

∗
k − f̂T

k Λ−1
k f̂∗k (3.100)

We proceed with deriving the steady-state solution of (3.96). Observe that bk(p) in (3.96)

is bounded whenever µ satisfies (3.98). As a result, equation (3.96) is convergent if and

only if the eigenvalues of Ak are all within the unit circle. Following the theoretical

analysis in [92] we find that this condition results in

0 < µ <
1

tr(Rk)
, µmax. (3.101)

It is clear that condition (3.98) is dominated by (3.101), therefore the mean-square con-

vergence of this algorithm is guaranteed if µ satisfies (3.101). The steady-state solution

of (3.96) is given by

zk(∞) = [I−Ak]
−1 [

bk(∞) + µ2ck + µ2σ2
ξλk

]
, (3.102)

where bk(∞) can be easily computed using (3.97) and (3.99). Observe that by substituting

(3.99) into (3.94), the steady-state mse can be written as
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εk(∞) = εmin
k + εex

k (∞) , (3.103)

where εex
k (∞) = λT

k zk(∞)− f̂T
k Λ−1

k f̂∗k is the steady-state excess mse and εmin
k is defined in

(3.100). Using the matrix inverse lemma to solve (3.102), we obtain after some manipu-

lations

εex
k (∞) =

∑(2K+1)Nh

i=1
µqi

k

2−µλi
k

+
∑(2K+1)Nh

i=1
µλi

kεmin
k

2−µλi
k

1−∑(2K+1)Nh

i=1

µλi
k

2−µλi
k

, (3.104)

where qi
k is the i-th element of the vector qk = ck − 2 Re {uk(∞)} +[

2f̂T
k Λ−1

k f̂∗k − h̄T
k R̄kh̄

∗
k

]
λk+ diag(̂fk f̂

H
k ). Equations (3.103), (3.100) and (3.104) provide

an explicit expression for the steady-state mse achieved in each frequency-band using a

direct adaptation for the cross-band filters. Note that for small step-size values, (3.104)

can be written as

εex
k (∞) ∼= µ

2

(2K+1)Nh∑
i=1

qi
k +

µ

2

(2K+1)Nh∑
i=1

λi
kε

min
k . (3.105)

That is, the excess mse is mainly influenced by both the fluctuations of the adaptive filters

coefficients around the optimal values and the bias in those coefficients, caused by the

deficient number of adaptive cross-band filters used in the algorithm. Note that when

the input signal xp,k is white we have qk = 0, leading to simplified expressions for the

steady-state mse

εex
k (∞)white =

µσ2
x(2K + 1)Nh

2− µσ2
x [(2K + 1)Nh + 1]

εmin
kwhite

, (3.106)

where εmin
kwhite

= σ2
ξ + σ2

x

∥∥h̄k

∥∥2
, and εk(∞)white = εmin

kwhite
+ εex

k (∞)white.

3.C.5 Simulations results and discussion

Simulations results verify the theoretical results derived in this appendix. A sampling

rate of 16 kHz was used. An impulse response h(n) was measured in an office which

exhibits a reverberation time (the time for the reverberant sound energy to drop by 60

dB from its original value) of about 300 ms. The STFT was applied to the desired

signals by using a Hamming synthesis window of length N = 256 (16 ms) with 50%
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overlap (L = 128), and a corresponding minimum energy analysis window which satisfies

the completeness condition [72]. The STFT of the far-end signal xp,k and the STFT

of the near-end signal ξp,k are both zero-mean white Gaussian processes with variances

σ2
x = 1 and σ2

ξ = 0.001, respectively. We chose K = 2 (i.e., 4 adaptive cross-band

filters), and used a large step-size µ = 0.006 (≈ 0.5µmax) and a small one µ = 0.0012

(≈ 0.1µmax). Fig. 3.12 shows the mse curves for the frequency-band k = 1 that obtained

from simulations (by averaging over 1000 independent runs) and from the theoretical

expression in (3.94) (similar results are obtained for the other frequency-bands). It can

be seen that the theoretical analysis accurately describes both the transient and steady-

state performance of the direct adaptation algorithm. Generally, as the step-size increases,

the theoretical mse curves are less accurate in predicting the algorithm performance since

the independence assumption used in this appendix is valid only for small step-size values.

As expected from (3.106), as we decrease the step-size, lower steady-state mse is achieved;

however, the algorithm then suffers from slow convergence rate. Note that the analysis

presented here is performed under the assumption of a uniform step-size for each adaptive

cross-band filter. Performance may be further improved by incorporating different step-

size values for each filter (e.g., matching the step-size to the signal energy at the input of

each adaptive cross-band filter).

3.D Representation and identification of systems in

the Wavelet transform domain6

In this appendix, we introduce an explicit representation of linear time-invariant system

in the discrete-time wavelet transform (DTWT) domain. It is shown that crossband

filters between subbands are required for perfect representation of the system. These

filters depend on the DTWT parameters and on the system impulse response, and are

shown to be time-varying. An approximate representation based on band-to-band filters

without crossband filters is employed for system identification in the wavelet domain.

We show that for longer and stronger input signals, longer band-to-band filters may be

6This appendix is based on [93].
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Figure 3.12: Comparison of simulation (light) and theoretical (dark) mse curves for white

Gaussian signals, obtained using a large step-size µ = 0.006 and a small step-size µ = 0.0012.

estimated. Experimental results validate the theoretical analysis and demonstrate the

proposed system identification approach

3.D.1 Introduction

Time-frequency domain is often more advantageous than time domain for linear time-

invariant (LTI) system identification, mainly due to the lower computational complexity

and faster convergence rate [16]. However, time-frequency techniques generally produce

aliasing effects, which necessitate crossband filters between the subbands [16, 65]. The

influence of these crossband filters on a system identifier implemented in the short-time

Fourier transform (STFT) domain has been recently investigated [65], and explicit ex-

pressions for the STFT representation of LTI systems have been derived.

In contrast to the fixed time-frequency resolution of the STFT, the wavelet transform

provides good localization both in frequency and time domains, and, as such, has attracted

significant research in system identification and subband filtering [94–96]. In [94], the

nonuniform filter banks interpretation of the discrete-time wavelet transform (DTWT) is

used to perform linear filtering by directly convolving the subband signals and combining

the results. In another scheme [95], it was shown that the DTWT of the system output
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signal can be computed by a weighted combination of the DTWT of shifted versions of the

input signal. The use of the undecimated DTWT, which is linear and shift invariant, was

introduced in [96] to overcome the lack of shift invariance and to implement time-domain

convolution. However, none of the existing approaches provides an explicit representation

of the system in the DTWT domain. A typical system identification scheme in the DTWT

domain is illustrated in Fig. 3.13, where the block Â represents the DTWT model of the

system.

In this appendix, we represent LTI systems in the DTWT domain and show that

crossband filters between subbands are necessary for perfect representation. We derive

relations between the crossband filters in the DTWT domain and the impulse response

in the time domain. In contrast to the time-invariance property of the crossband filters

in the STFT domain [65], the crossband filters in the DTWT domain are shown to be

time-varying, due to nonuniform decimation factor over frequency-bands. Nonetheless,

the band-to-band filters (i.e., the filters that relate identical frequency-bands of input

and output signals) remain time invariant. Furthermore, we show that under certain

conditions, system representation in the DTWT domain can be approximated with only

band-to-band filters. We show that as the signal-to-noise ratio (SNR) increases, or as

more input data is available, longer band-to-band filters may be estimated to achieve

the minimal mean-square error (mse). Experimental results are provided to support the
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theoretical analysis.

The appendix is organized as follows. In Section 3.D.2, we briefly review the DTWT.

In Section 3.D.3, we derive explicit expressions for the representation of LTI systems

in the DTWT domain. In Section 3.D.4, we consider an offline system identification in

the DTWT domain using a least squares (LS) optimization criterion. Finally, in Section

3.D.5, we present simulation results to validate the theoretical analysis.

3.D.2 The discrete wavelet transform

In this section, we introduce the DTWT and relate it to nonuniform filter banks (for

further details, see e.g., [97] and the references therein).

Let x(n) ∈ `2 (Z) denote a discrete-time signal, and let xp,k be the N -level wavelet

coefficients at frequency-band k (0 ≤ k ≤ N) and at frame index p. The DTWT is

commonly interpreted as a tree structured filter bank. Specifically, the N -level wavelet

decomposition of x(n) uses a low-pass filter h(n) and a high-pass filter g(n) to split the

original space in two. One of the resulting half spaces is then divided in two, etc., such

that the signal is decomposed into N + 1 adjacent octave bands7. Similarly, the inverse

DTWT (IDTWT), i.e., reconstruction of x(n) from its DTWT representation xp,k, has

also a tree structure with synthesis low-pass filter h̄(n) and high-pass filter ḡ(n). In order

to perfectly recovered x(n) from xp,k, the analysis and synthesis filters must satisfy perfect

reconstruction constraints [97].

The DTWT is closely related to nonuniform filter banks, and these relations have been

studied extensively (e.g., [97]). In particular, we consider a decomposition of the signal

x(n) by using the nonuniform filter bank as illustrated in Fig. 3.14(a). By nonuniform we

mean that the analysis filters have nonuniform bandwidths and that they are followed by

an unequal decimation factor 2k+1. Let H(z) be the z-transform of the low-pass filter h(n),

and let G(z), H̄(z) and Ḡ(z) be defined similarly. Then, using the ”Nobel identities” [70],

7Note that low values of k correspond to high frequency range.
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(a) (b)

Figure 3.14: (a) Analysis and (b) synthesis nonuniform filter bank interpretation of the DTWT.

it is easy to verify that the analysis filters Hk(z) are given by

Hk(z) =





G (z) ; k = 0

G
(
z2k

) k−1∏
i=0

H
(
z2i

)
; k = 1, ..., N − 1

k−1∏
i=0

H
(
z2i

)
; k = N

(3.107)

Similarly, the inverse wavelet transform can be represented in terms of a synthesis (nonuni-

form) filter bank, as shown in Fig. 3.14(b). The synthesis filters Fk(z) are given by

Fk(z) =





Ḡ (z) ; k = 0

Ḡ
(
z2k

) k−1∏
i=0

H̄
(
z2i

)
; k = 0, 1, ..., N − 1

k−1∏
i=0

H̄
(
z2i

)
; k = N

(3.108)

Considering the nonuniform filter bank representation of the DTWT, the wavelet

coefficients xp,k at each frequency-band k, can be expressed as

xp,k =





∑
m x(m) hk

(
2k+1p−m

)
; k = 0, ..., N − 1

∑
m x(m) hk

(
2Np−m

)
; k = N

(3.109)

where hk (n) is the inverse z-transform of Hk(z). Similarly, the reconstruction of x(n)
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from its wavelet coefficients xp,k can be written as

x(n) =
N−1∑

k=0

∑
p

xp,k fk

(
n− 2k+1p

)

+
∑

p

xN,p fN

(
n− 2Np

)
, (3.110)

where fk (n) is the inverse z-transform of Fk(z). Let us define ψ̃p,k(n) and ψp,k(n), as

ψ̃p,k(n) =





h̃k

(
n− 2k+1p

)
; k = 0, 1, ..., N − 1

h̃k

(
n− 2Np

)
; k = N

(3.111)

and

ψp,k(n) =





fk

(
n− 2k+1p

)
; k = 0, 1, ..., N − 1

fk

(
n− 2Np

)
; k = N

(3.112)

where h̃k (n) , hk (−n). Using (3.111) and (3.112), the DTWT and IDTWT of x(n) can

be written, respectively, as

xp,k =
∑
m

x(m)ψ̃∗p,k(m) (3.113)

and

x(n) =
∑

p

N∑

k=0

xp,k ψp,k(n) , (3.114)

where ∗ denotes complex conjugation. Here ψp,k(n) are the wavelet basis functions, and

the weights xp,k are the wavelet coefficients of x(n) with respect to the above basis.

Expressions (3.113)-(3.114) represent the DTWT and IDTWT of a discrete signal x(n)

in terms of basis functions, and will be used in the following sections for deriving an

explicit representation of an LTI system in the DTWT domain. It is worth noting that

when orthonormal basis functions are considered, the analysis and synthesis filters satisfy

fk (n) = h∗k (−n) [70].

3.D.3 Representation of LTI systems in the DTWT domain

In this section, we derive explicit expressions for the representation of LTI systems in

the DTWT domain, and show that crossband filters between subbands are essential for

perfect modeling of the system.
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Let a(n) denote a length La impulse response of an LTI system, whose input x(n) and

output d(n) are related by

d(n) =
La−1∑
i=0

a(i)x(n− i) . (3.115)

Using (3.113) and (3.115), the DTWT of d(n) can be written as

dp,k =
∑

m,`

a(`)x(m− `)ψ̃∗p,k(m) . (3.116)

Substituting (3.114) for x(n) into (3.116), we obtain

dp,k =
N∑

k′=0

∑

p′
xp−p′,k′ ap′,k,k′ (p) , (3.117)

where

ap′,k,k′(p) =
∑

m,`

ψp−p′,k′(m− l)ψ̃∗p,k(m)a(`) (3.118)

may be interpreted as a response to an impulse δp′,k−k′ in the time-frequency domain (the

impulse response is translation varying in both time and frequency axes). An explicit

relation between the time-frequency domain impulse response ap′,k,k′ (p) and the time-

domain impulse response a(n) is achieved by substituting (3.111) and (3.112) into (3.118),

resulting in

ap′,k,k′(p) =
∑

m,`

fk′

(
m− `− 2min(k′+1,N) (p− p′)

)

× h̃k

(
m− 2min(k+1,N)p

)
a(`)

= {a(n) ∗ φk,k′(n)}|n=λk,k′ (p,p′)

, ān,k,k′|n=λk,k′ (p,p′) (3.119)

where ∗ denotes convolution with respect to the time index n,

φk,k′(n) ,
∑
m

h̃k (m) fk′(n + m) (3.120)

and λk,k′(p, p
′) =

(
2min(k+1,N) − 2min(k′+1,N)

)
p + 2min(k′+1,N)p′. The min (·) operator is

attributable to the equal decimation factor used at the last two frequency-bands (k =

N−1, N). Equation (3.117) indicates that the temporal signal dp,k, for a given frequency-

band index k, is related via the time-varying filters ap′,k,k′(p) to all the frequency-bands k′



3.D. SYSTEM IDENTIFICATION IN THE WAVELET DOMAIN 77

(k′ = 0, 1, . . . , N) of the input signal xp,k′ . We refer to ap′,k,k′(p) for k = k′ as a band-to-

band filter and for k 6= k′ as a crossband filter. The crossband filters are used for canceling

the aliasing effects caused by the subsampling. It is worth noting that in contrast with

the STFT representation of LTI systems [65], for which the crossband filters are time

invariant, in the DTWT domain these filters are time-varying. The time variation of the

filters are represented by the dependence of the system response ap′,k,k′ (p) on the frame

index p. This dependence, however, vanishes when k = k′, which indicates the time

invariance of the band-to-band filters ap′,k,k. The time variations of the crossband filters

are a consequence of utilizing an unequal decimation factor at each frequency-band.

The significance of the crossband filters can be well illustrated by applying the discrete-

time Fourier transform (DTFT) to the undecimated crossband filter ān,k,k′ [defined in

(3.119)] with respect to the time index n:

Āk,k′(θ) =
∑

n

ān,k,k′ e
−jnθ = A(θ)Hk (θ) Fk′ (θ) , (3.121)

where A(θ), Hk (θ) and Fk′ (θ) are the DTFT of a(n), hk(n) and fk′(n), respectively. Equa-

tion (3.121) implies that the number of crossband filters required for the representation of

an impulse response is mainly determined by the analysis and synthesis filters, while the

length of the crossband filters (with respect to the time index n) is related to the length

of the impulse response. Had both h(n) and h̄(n) been ideal halfband low-pass filters and

had g(n) and ḡ(n) been ideal halfband high-pass filters, a perfect DTWT representation

of the system a(n) could be achieved by using just the band-to-band filter ap′,k,k, since

in this case the product of Hk (θ) and Fk′ (θ) is identically zero for k 6= k′. However, the

low-pass and high-pass filters are practically not ideal and therefore, Āk,k′(θ) and ān,k,k′

are not zero for k 6= k′. Figure 3.15 illustrates the magnitude response of a 6-band filter

bank corresponding to a 5-level wavelet decomposition, using a Daubechies orthonormal

wavelet of length 64. It can be seen that a substantial overlap exists between the analysis

filters due to the compact support of the low-pass filter h(n). It is worth noting that

since we employ orthonormal wavelet bases [such that fk(n) = h∗k(−n)], only the overlap

between the analysis filters hk(n) is of interest. Figure 3.16 illustrates the energy of the

crossband filters, defined in dB by

Ek,k′ = 10 log10

∑
n

|ān,k,k′ |2 , (3.122)
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at the third frequency-band (k = 3), and for 5-level Daubechies wavelet with prototype

low-pass filter lengths L = 4, 16 and 64. We use a synthetic room impulse response

a(n) of length La = 1000 based on a statistical reverberation model, which exhibits a

reverberation time of T60 = 50 ms (for further simulation details see Section 3.D.5). It

can be seen that the energy of a crossband filter from frequency-band k′ to frequency-

band k decreases as |k − k′| increases, since the overlap between adjacent analysis filters

becomes smaller. Clearly, this overlap is determined by the compact support of the time-

domain low-pass wavelet function h(n). As L, the length of h(n), increases, a smaller

overlap is obtained and lower crossband filters energy is achieved, as shown in Fig. 3.16.

As a result, for large L values, relatively few crossband filters need to be considered in

order to capture most of the energy of the DTWT representation of a(n). We observe

from Fig. 3.16 that for L = 64, for instance, most of the energy of ān,3,k′ is concentrated in

only three filters (k′ = 2, 3 and 4). In the following sections, for the sake of simplicity, we

assume that the analysis and synthesis filters are selective enough so that adjacent filters

have insignificant overlap with each other, and therefore no crossband filters should be

considered. Denoting by Lak
the length of the band-to-band filter at the kth frequency-

band, it is easy to verify from (3.119) that

Lak
=

⌈
La + Lhk

+ Lfk
− 2

2k+1

⌉
, (3.123)

where Lhk
and Lfk

are the length of the analysis filter hk(n) and the synthesis filter fk(n),

respectively, at the kth frequency-band. Using (3.107) and (3.108), we obtain after some

manipulations

Lhk
= Lfk

= 2k (2L− 1)− (L− 1) (3.124)

which can be substituted into (3.123) to obtain

Lak
=

⌈
La − 2L

2min(k+1,N)

⌉
+ 2L− 1 , (3.125)

where L is the length of the low-pass and high-pass filters [i.e., h(n), g(n), h̃(n) and g̃(n)].

Equation (3.125) indicates that the length of the band-to-band filter at each frequency-

band decreases as k increases8, which is in contrast with the fixed-length filters in STFT-

based identification schemes [65]. Note that in many applications, such as acoustic echo

8Note that the length of the band-to-band filter in the last frequency-band k = N is equal to that of

k = N − 1 [see (3.119)].
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Figure 3.15: Magnitude responses of analysis filters in a 6-band nonuniform filter bank using a

prototype Daubechies low-pass filter of length 64.

cancellation, the length of the system impulse response is much larger than that of the

analysis/synthesis filters, such that (3.125) can be approximated as

Lak
≈

⌈
La

2min(k+1,N)

⌉
. (3.126)

3.D.4 System identification in the DTWT domain

In this section, we consider an offline system identification in the DTWT domain using

the LS criterion for the estimation of the band-to-band filter in each frequency-band.

Consider the DTWT-based system identification scheme as illustrated in Fig. 3.13.

The system output signal y(n) is given by

y(n) = d(n) + ξ(n) = a(n) ∗ x(n) + ξ(n) , (3.127)

where a(n) is the impulse response of the unknown LTI system, and ξ(n) is the corrupting

noise signal. From (3.127) and (3.117), the DTWT of y(n) may be written as

yp,k = dp,k + ξp,k =
N∑

k′=0

∑

p′
xp−p′,k′ ap′,k,k′ (p) + ξp,k . (3.128)

Let Pk denote the number of samples in the time-trajectory of yp,k. The subscript k in

Pk indicates the unequal length of yp,k in each frequency-band, due to the frequency-

dependent decimation factor. Then, (3.128) can be written in a vector form as

yk = dk + ξk , (3.129)
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Figure 3.16: Energy of the crossband filters ān,3,k′ for a synthetic room impulse response a(n).

where

yk =
[

y0,k y1,k y2,k · · · yPk−1,k

]T

(3.130)

represents the DTWT coefficients of the output signal in the kth frequency-band, and the

vectors dk and ξk are defined similarly.

Let âp′,k,k be an estimate of the (time-invariant) band-to-band filter ap′,k,k, and let d̂p,k

be the resulting estimate of dp,k, i.e.,

d̂p,k =

Lak
−1∑

p′=0

âp′,k,k xp−p′,k . (3.131)

We disregard the crossband filters in the identification process, relying on the assump-

tion that the overlap between Hk (θ) and Fk′ (θ) for k 6= k′ is small enough. How-

ever, when the overlap is relatively large, ignoring the crossband filters yields a model

mismatch which may degrade the system estimate accuracy and result in an insuffi-

cient mse performance. This point will be further demonstrated in Section 3.D.5. Let

âk =
[

â0,k,k â1,k,k · · · âLak
−1,k,k

]T

denote the LS estimate of the band-to-band filter

at frequency-band k:

âk = arg min
ak

‖yk −Xkak‖2

=
(
XH

k Xk

)−1
XH

k yk , (3.132)
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where yk is defined in (3.130), Xk represents an Pk × Lak
Toeplitz matrix with xm−`,k

being its (m, `)th term, and XH
k Xk is assumed to be not singular. An estimate of the

desired signal in the DTWT domain, using only the band-to-band filter, is then given by

d̂k = Xkâk = Xk

(
XH

k Xk

)−1
XH

k yk . (3.133)

The model defined in (3.131) for the system identification contains N + 1 filters, each

of length Lak
=

⌈
La/2

min(k+1,N)
⌉
, k = 0, ..., N , resulting in La coefficients that should

be estimated for identifying the impulse response a(n) in the DTWT domain. It is well

known, however, that the optimal model order, i.e., the number of model coefficients that

should be estimated to attain the minimum mse (mmse), is affected by the level of noise

in the data and the length of the observable data [24]. Here the model order is deter-

mined by the length of the band-to-band filters Lak
. Consequently, as the SNR increases

or as more data is employable, the optimal model order increases, and correspondingly

longer band-to-band filters can be estimated. Note that the time-domain impulse response

length La determines the length of the band-to-band filters in each frequency-band [see

(3.126)]. Therefore, denoting by L̂a the length of a(n) that is practically employed for the

identification process, the resulting mse is defined by

ε(L̂a) =

E

{(
d(n)− d̂L̂a

(n)
)2

}

E {d2(n)} , (3.134)

where d̂L̂a
(n) is the inverse DTWT of the estimated desired signal d̂p,k using band-to-band

filters of lengths L̂ak
=

⌈
L̂a/2

min(k+1,N)
⌉
. The optimal model order is therefore given by

L̂a,opt = arg min
L̂a

ε(L̂a) . (3.135)

The influence of the power and length of the input signal on the optimal model order is

investigated in the next section.

3.D.5 Experimental results

In this section, we present experimental results that verify the theoretical analysis. We

use a synthetic room impulse response a(n) based on a statistical reverberation model,

which generates a room impulse response as a realization of a nonstationary stochastic
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process a(n) = u(n)β(n)e−αn, where u(n) is a step function, β(n) is a zero-mean white

Gaussian noise and α is related to the reverberation time T60 (the time for the reverberant

sound energy to drop by 60 dB from its original value). In the following simulations, the

sampling rate is 16 kHz, the length of the impulse response is set to 62.5 ms (La = 1000),

α corresponds to T60 = 50 ms and β(n) is unit-variance zero-mean white Gaussian noise.

We employ a 5-level Daubechies wavelet (N = 5) of length L = 64. The input signal x(n)

and the additive noise signal ξ(n) are uncorrelated zero-mean white Gaussian processes

with variances σ2
x and σ2

ξ , respectively, and the SNR is defined by σ2
x/σ

2
ξ .

Figure 3.17 shows the mse curves ε(L̂a) [see (3.134)], for several L̂a values, as a function

of the input SNR obtained by an input signal of length 0.5 sec [Fig. 3.17(a)] and a longer

signal of length 2 sec [Fig. 3.17(b)]. It can be seen that as the SNR increases, a lower mse

value can be obtained by utilizing longer band-to-band filters (larger L̂a). We observe

that assuming the true system order (L̂a = La = 1000) not necessarily improves the

system identifier performance. Figure 3.17(a) shows that when the SNR is lower than

−30 dB, assuming a length of L̂a = 100 samples (= 0.1La) yields the minimal mse,

and enables a decrease of 7 dB in the mse value relative to that achieved by assuming

L̂a = 1000 (true system length). When considering SNR values higher than −30 dB, the

inclusion of 300 samples in the model (L̂a = 300) is preferable. Moreover, a comparison

of Figs. 3.17(a) and (b) indicates that when the signal length increases (while the SNR

remains constant), longer band-to-band filters should be considered in order to attain

the mmse. The relatively high mse value obtained in this experiment is attributable to

the significance overlap exists between adjacent filters (see Fig 3.15), which necessitates

the estimation of crossband filters. Note that surprisingly, a lower mse is achieved for

the shorter signal [Fig. 3.17(a)] at high SNR values. This result, however, is somehow

misleading since the proposed model is not accurate and a model mismatch is introduced

by ignoring the crossband filters. If the model was accurate and all crossband filters were

estimated, a lower mse would have been achieved by increasing the signal length. As was

explained in Section 3.D.3, ignoring the crossband filters is justified by assuming a long

low-pass filter, such that the overlap between adjacent frequency-bands is negligible. To

validate this assumption, we repeat the previous experiment for several low-pass filter

lengths. Figure 3.18 shows the resulting mse curves as a function of L̂a for analysis



3.D. SYSTEM IDENTIFICATION IN THE WAVELET DOMAIN 83

−40 −20 0 20 40
−8

−6

−4

−2

0

2

4

6

8

10

12

SNR [dB]

ε(
L^ a) 

[d
B

]

 

 

L^
a
 = 100

L^
a
 = 300

L^
a
 = 1000

−40 −20 0 20 40
−8

−6

−4

−2

0

2

4

6

8

10

12

SNR [dB]
ε(

L^ a) 
[d

B
]

 

 

L^
a
 = 100

L^
a
 = 300

L^
a
 = 1000

(a) (b)

Figure 3.17: MSE curves as a function of the input SNR for white Gaussian signals. (a) Signal

length is 0.5 sec. (b) Signal length is 2 sec.

Daubechies low-pass filter of lengths L = 4, 8, 16 and 32, obtained for a 25 dB SNR and

a 2 sec length input signal. Indeed, a lower mse value is achieved with increasing L.

Figure 3.18 also compares the Daubechies wavelet, which is associated with minimum-

phase filters, to the least asymmetry wavelet associated with near linear-phase filters

(both of length 32). No improvement is visible by using the least asymmetry filter, which

indicates that the linearity of the phase is not critical for efficiently representing an LTI

system in the DTWT domain. The representation is mainly influenced by the filter’s

frequency response amplitude rather than its phase.

3.D.6 Conclusions

We have presented LTI systems in the DTWT domain, and showed that time-varying

crossband filters are required for a perfect representation. We showed that not only do

the crossband filters vary in time but also their length changes with frequency. When

using an approximate representation without crossband filters, the system identification
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Figure 3.18: MSE curves as a function of L̂a for several low-pass filter lengths (L).

performance is greatly affected by the assumed lengths of band-to-band filters, which are

related to the SNR and length of input signal. As the SNR or the signal length increases,

longer band-to-band filters may be estimated. Further improvement is obtainable by

incorporating crossband filters into the identification process. However, the time variation

of crossband filters has to be carefully considered when estimating these filters.



Chapter 4

On Multiplicative Transfer Function

Approximation in the Short-Time

Fourier Transform Domain1

The multiplicative transfer function (MTF) approximation is widely used for modeling a

linear time invariant system in the short-time Fourier transform (STFT) domain. It relies

on the assumption of a long analysis window compared with the length of the system

impulse response. In this chapter, we investigate the influence of the analysis window

length on the performance of a system identifier that utilizes the MTF approximation.

We derive analytic expressions for the minimum mean-square error (mmse) in the STFT

domain and show that the system identification performance does not necessarily improve

by increasing the length of the analysis window. The optimal window length, that achieves

the mmse, depends on the signal-to-noise ratio and the length of the input signal. The

theoretical analysis is supported by simulation results.

4.1 Introduction

Identification of linear time-invariant (LTI) systems in the short-time Fourier transform

(STFT) domain is a fundamental problem in many practical applications [3,8,19,22,35,65].

To perfectly represent an LTI system in the STFT domain, cross-band filters between

1This chapter is based on [98].
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subbands are generally required [16,65]. A widely-used approach to avoid the cross-band

filters is to approximate the transfer function as multiplicative in the STFT domain. This

approximation relies on the assumption that the support of the STFT analysis window

is sufficiently large compared with the duration of the system impulse response, and it

is useful in many applications, including frequency-domain blind source separation (BSS)

[35], acoustic echo cancellation [22], relative transfer function (RTF) identification [3] and

adaptive beamforming [8].

As the length of the analysis window increases, the multiplicative transfer function

(MTF) approximation becomes more accurate. On the other hand, the length of the input

signal that can be employed for the system identification must be finite to enable tracking

during time variations in the system. Therefore, increasing the analysis window length

while retaining the relative overlap between consecutive windows (the overlap between

consecutive analysis windows determines the redundancy of the STFT representation), a

fewer number of observations in each frequency-band become available, which increases

the variance of the system estimate. Consequently, the mean-square error (mse) in each

subband may not necessarily decrease as we increase the length of the analysis window.

In this chapter, we investigate the influence of the analysis window length on the

performance of a system identifier that utilizes the MTF approximation. The MTF in

each frequency-band is estimated offline using a least squares (LS) criterion. We derive an

explicit expression for the mmse in the STFT domain and show that it can be decomposed

into two error terms. The first term is attributable to using a finite-support analysis

window. As we increase the support of the analysis window, this term reduces to zero,

since the MTF approximation becomes more accurate. However, the second term is a

consequence of restricting the length of the input signal. As the support of the analysis

window increases, this term increases, since less observations in each frequency-band can

be used for the system identification. Therefore, the system identification performance

does not necessarily improve by increasing the length of the analysis window. We show

that the optimal window length depends on both the SNR and the input signal length.

As the SNR or the input signal length increases, a longer analysis window should be used

to make the MTF approximation valid and the variance of the MTF estimate reasonably

low. The theoretical analysis is supported by simulation results.
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The chapter is organized as follows. In Section 4.2, we present the MTF approximation

and address the relation between the analysis window length and system identification

performance. In Section 4.3, we derive an explicit expression for the mmse obtainable by

using the MTF approximation. In Section 4.4, we investigate the influence of the window

length on the mmse. Finally, in Section 4.5, we present simulation results that verify the

theoretical derivations.

4.2 The MTF approximation

Let an input x(n) and output y(n) of an unknown LTI system be related by

y(n) = h(n) ∗ x(n) + ξ(n) , d(n) + ξ(n) , (4.1)

where h(n) represents the impulse response of the system, ξ(n) is an additive noise signal,

d(n) is the signal component in the system output, and ∗ denotes convolution. The STFT

of x(n) is given by [71]

xpk =
∑
m

x(m) ψ̃∗pk(m) , (4.2)

where

ψ̃pk(m) = ψ̃(m− pL) ej 2π
N

k(m−pL) (4.3)

denotes a translated and modulated window function, ψ̃(n) is a real-valued analysis win-

dow of length N , p is the frame index, k represents the frequency-bin index, L is a

discrete-time shift and ∗ denotes complex conjugation. Applying the STFT to d(n) yields

dpk =
∑
m

∑

`

h(`) x(m− `) ψ̃∗pk(m)

=
∑
m

x(m)
∑

`

h(`) ψ̃∗pk(m + `) . (4.4)

Let us assume that the analysis window ψ̃(n) is long and smooth relative to the im-

pulse response h(n) so that ψ̃(n) is approximately constant over the duration of h(n).

Then ψ̃(n − m) h(m) ≈ ψ̃(n) h(m), and by substituting (4.3) into (4.4), we obtain (see

Chapter 2.2)

dpk ≈ hk xpk , (4.5)
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where hk ,
∑

m h(m) exp (−j2πmk/N). The approximation in (4.5) is the well-known

MTF approximation for modeling an LTI system in the STFT domain. In the limit,

for an infinitly long smooth analysis window, the transfer function would be exactly

multiplicative in the STFT domain. However, since practical implementations employ

finite length analysis windows, the MTF approximation is never accurate.

Let P denote the number of samples in a time-trajectory of xpk, let xk =[
x0,k x1,k · · · xP−1,k

]T

denote a time-trajectory of xpk at frequency-bin k, and let

the vectors yk, dk and ξk be defined similarly. Then,

yk = dk + ξk , (4.6)

and the MTF approximation can be written in a vector form as

dk = xk hk . (4.7)

The LS estimate of hk is therefore given by

ĥk = arg min
hk

‖yk − xk hk‖2

=
xH

k yk

xH
k xk

. (4.8)

Clearly, as N , the length of the analysis window, increases, the MTF approximation be-

comes more accurate. However, the length of the input signal is generally finite2 and the

overlap between consecutive analysis windows is chosen to be fixed (the ratio N/L deter-

mines the redundancy of the STFT representation). Hence, increasing N yields shorter

time-trajectories (smaller P ) and less observations in each frequency-band can be used

for the system identification, which increases the variance of ĥk. Therefore, we need to

find an appropriate window length, which is sufficiently large to make the MTF approx-

imation valid, and sufficiently small to make the system identification performance most

satisfactory. In the following sections, we investigate the relation between the analysis

window length and the system identification performance, and show that the optimal

window length depends on both the SNR and the input signal length.

2Note that the length of the input signal is related to the update rate of ĥk as we assume that during

that period the system remains constant. Therefore, a finite length input signal is practically employed

for system identification, to enable tracking the time variations in h(n).
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4.3 MSE analysis

In this section, we derive an explicit expression for the mmse in the STFT domain under

the assumptions of the MTF approximation and a finite-length input signal. To make

the analysis mathematically tractable we assume that the input signal x(n) and the noise

signal ξ(n) are uncorrelated zero-mean white Gaussian signals with variances σ2
x and σ2

ξ ,

respectively. The system identification performance is evaluated using the (normalized)

mse of the output signal in the STFT domain, defined by

ε =

∑N−1
k=0 E

{∥∥∥dk − d̂k

∥∥∥
2
}

∑N−1
k=0 E

{‖dk‖2} . (4.9)

where d̂k = xkĥk. Substituting (4.8) into (4.9), the mse can be expressed as

ε = 1 + ε1 − ε2 , (4.10)

where

ε1 =

∑N−1
k=0 E

{(
xH

k xk

)−1
ξH

k xkx
H
k ξk

}

∑N−1
k=0 E

{‖dk‖2} (4.11)

and

ε2 =

∑N−1
k=0 E

{(
xH

k xk

)−1
dH

k xkx
H
k dk

}

∑N−1
k=0 E

{‖dk‖2} . (4.12)

Using (4.4) and the assumption that x(n) is white, we obtain

E
{‖dk‖2} = Pσ2

x

∑
m

rψ̃(m) rh(m) e−j 2π
N

km, (4.13)

where rf (n) =
∑

m f(n+m)f ∗(m) denotes the cross-correlation sequence of f(n). Assum-

ing that xpk is variance-ergodic and that P is sufficiently large, so that 1
P

∑P−1
p=0 |xpk|2 ≈

E
{|xpk|2

}
, we have

xH
k xk = P σ2

x rψ̃(0) . (4.14)

Using the STFT representations of x(n) and ξ(n) (as defined in (4.2)), it can be verified

that

E
{
ξH

k xkx
H
k ξk

}
=

P−1∑

p,p′=0

E
{
ξ∗pkξp′k

}
E

{
xpkx

∗
p′k

}

= Pσ2
xσ

2
ξ

∑
p

r2
ψ̃
(pL) . (4.15)
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Substituting (4.13), (4.14) and (4.15) into (4.11), we obtain

ε1 =
σ2

ξ

σ2
x

N
∑

p r2
ψ̃
(pL)

rψ̃(0)
∑N−1

k=0

∑
m rψ̃(m)rh(m)e−j 2π

N
km

. (4.16)

To simplify the expression for ε2, we substitute the STFT representations of x(n) and

d(n) into E
{
dH

k xkx
H
k dk

}
=

∑P−1
p,p′=0 E

{
d∗pkxpkdp′kx

∗
p′k

}
, and obtain

E
{
dH

k xkx
H
k dk

}
=

P−1∑
p=0

∑
m,n

ψ̃pk(m)ψ̃∗pk(n)
P−1∑

p′=0

∑

m′,n′
ψ̃p′k(m

′)ψ̃∗p′k(n
′)

×
∑
i,j

h(m− i)h(n′ − j)E {x(i)x(n)x(j)x(m′)} . (4.17)

Define

θk(n) ,
∑
m

h(n−m)ψ̃∗0,k(m) (4.18)

φk(n) ,
∑
m

θk(n + m)ψ̃∗0,k(m) . (4.19)

Then, using the fourth-order moment factoring theorem for zero-mean real Gaussian sam-

ples [84], we can express (4.17) as

E
{
dH

k xkx
H
k dk

}
= σ4

xP
2

∣∣∣∣∣
∑
m

θk(m)ψ̃0,k(m)

∣∣∣∣∣

2

+ σ4
xP

∑
p

φk(pL)φ∗k(−pL)

+ σ4
xP

∑
p

rψ̃(m)rh(m)ej 2π
N

kpL

(4.20)

where we assumed that ψ̃(n) is a symmetric function (i.e., ψ̃(n) = ψ̃(−n)). Using (4.13),

(4.14) and (4.20) we obtain an explicit expression for ε2 that, together with ε1 in (4.16),

can be substituted into (4.10), which yields

ε = 1− a +
1

P

(
b

η
− c

)
, (4.21)



4.4. OPTIMAL WINDOW LENGTH 91

where η = σ2
x/σ

2
ξ denotes the SNR and

a , 1

R

N−1∑

k=0

∣∣∣∣∣
∑
m

θk(m)ψ̃0,k(m)

∣∣∣∣∣

2

, (4.22a)

b , N

R

∑
p

r2
ψ̃
(pL) , (4.22b)

c , 1

R

N−1∑

k=0

{∑
p

φk(pL)φ∗k(−pL)

+
∑

p

rψ̃(pL)rh(pL)ej 2π
N

kpL

}
(4.22c)

where R , rψ̃(0)
∑N−1

k=0

∑
m rψ̃(m)rh(m)e−j 2π

N
km. Expectedly, we observe from (4.21) that

as the SNR increases, a lower mse can be achieved.

4.4 Optimal window length

In this section, we investigate the relation between the length of the analysis window and

the mmse obtainable by using the MTF approximation. Rewrite (4.21) as

ε = εN + εP , (4.23)

where εN = 1 − a and εP = 1
P

(b/η − c). Then, the error εN is attributable to using a

finite-support analysis window. For sufficiently large N , we can apply the approximation

ψ̃(n −m)h(m) ≈ ψ̃(n)h(m) to (4.22a) and verify that a = 1 and εN(N → ∞) = 0. On

the other hand, the error εP is a consequence of restricting the length of the input signal.

It decreases as we increase P , and reduces to zero when P →∞.

Figure 4.1 shows the mse curves ε, εN and εP as a function of the ratio between

the analysis window length, N , and the impulse response length, Nh, for a 0 dB SNR

(for other simulation parameters see Section 4.5). Expectedly, we observe that εN is a

monotonically decreasing function of N , while εP is a monotonically increasing function

(since P decreases as N increases). Consequently, the total mse, ε, may reach its minimum

value for a certain optimal window length N∗, i.e.,

N∗ = arg min
N

ε . (4.24)
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Figure 4.1: Theoretical mse curves as a function of the ratio between the analysis window length

(N) and the impulse response length (Nh), obtained for a 0 dB SNR.

In the example of Figure 1, we obtained that N∗ is approximately 32 Nh.

The optimal window length represents the trade-off between the number of observa-

tions in time-trajectories of the STFT representation and accuracy of the MTF approxi-

mation. Equation (4.23) implies that the optimal window length depends on the relative

weight of each error, εN or εP , in the overall mse ε. Since εP decreases as we increase

either the SNR, η, or the length of the time-trajectories, P , we expect that the optimal

window length N∗ would increase as η or P increases. Denote by Nx the length of the

input signal. Then, the number of samples in a time-trajectory of the STFT representa-

tion is P ≈ Nx/L. For given analysis window and overlap between consecutive windows

(given N and N/ L), P is proportional to the length of the input signal. Hence, the opti-

mal window length generally increases as Nx increases. Recall that the impulse response

is assumed time invariant during Nx samples, in case the time variations in the system

are slow, we can increase Nx, and correspondingly increase the analysis window length

in order to achieve lower mmse. These points will be further demonstrated in the next

section.
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4.5 Simulation results

In this section, we present simulation results which verify the theoretical analysis. We

use a synthetic room impulse response h(n) based on a statistical reverberation model,

which generates a room impulse response as a realization of a nonstationary stochastic

process h(n) = u(n)β(n)e−αn, where u(n) is a step function, β(n) is a zero-mean white

Gaussian noise and α is related to the reverberation time T60 (the time for the reverberant

sound energy to drop by 60 dB from its original value). In the following simulations, the

length of the impulse response is set to 16 ms, the sampling rate is 16 kHz, α corresponds

to T60 = 50 ms and β(n) is unit-variance zero-mean white Gaussian noise. We use a

Hamming synthesis window with 50% overlap (L = 0.5N), and a corresponding minimum

energy analysis window which satisfies the completeness condition [72]. The signals x(n)

and ξ(n) are uncorrelated zero-mean white Gaussian. Figure 4.2 shows the mse curves,

both in theory and in simulation, as a function of the ratio between the analysis window

length and the impulse response length. Figure 4.2(a) shows the mse curves for SNR

values of −10, 0 and 10 dB, obtained with a signal length of 3 seconds (corresponding

to Nx=48,000), and Fig. 4.2(b) shows the mse curves for signal lengths of 3 and 15 sec,

obtained with a −10 dB SNR. The experimental results are obtained by averaging over

100 independent runs. Clearly, the theoretical analysis well describes the mse performance

achievable by using the MTF approximation. As the SNR or the signal length increases,

a lower mse can be achieved by using a longer analysis window. Accordingly, as the power

of the input signal increases or as the time variations in the system become slower (which

enables one to use of a longer input signal), a longer analysis window should be used to

make the MTF approximation appropriate for system identification in the STFT domain.

4.6 Conclusions

We have derived explicit relations between the mmse and the analysis window length,

for a system identifier implemented in the STFT domain and relying on the MTF ap-

proximation. We showed that the mmse does not necessarily decrease with increasing the
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window length, due to the finite length of the input signal. The optimal window length

that achieves the mmse depends on the SNR and length of the input signal.

It is worthwhile noting, that the stationarity of the input signal should also be taken

into account when determining the appropriate window length. For nonstationary input

signals it may be necessary to use a shorter analysis window for more efficient representa-

tion in the STFT domain. Furthermore, the performance analysis is evaluated based on

a normalized mse in the STFT domain. One may also be interested to analyze the mse

in the time-domain, which is a topic for further research.
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Figure 4.2: Comparison of simulation (solid) and theoretical (dashed) mse curves as a function

of the ratio between the analysis window length (N) and the impulse response length (Nh).

(a) Comparison for several SNR values (input signal length is 3 seconds); (b) Comparison for

several signal lengths (SNR is −10 dB).
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Chapter 5

Adaptive System Identification in

the STFT Domain Using Cross-MTF

Approximation1

In this chapter, we introduce cross-multiplicative transfer function (CMTF) approxima-

tion for modeling linear systems in the short-time Fourier transform (STFT) domain.

We assume that the transfer function can be represented by cross-multiplicative terms

between distinct subbands. We investigate the influence of cross-terms on a system iden-

tifier implemented in the STFT domain, and derive analytical relations between the noise

level, data length, and number of cross-multiplicative terms, which are useful for system

identification. As more data becomes available or as the noise level decreases, additional

cross-terms should be considered and estimated to attain the minimal mean-square error

(mse). A substantial improvement in performance is then achieved over the conventional

multiplicative transfer function (MTF) approximation. Furthermore, we derive explicit

expressions for the transient and steady-state mse performances obtained by adaptively

estimating the cross-terms. As more cross-terms are estimated, a lower steady-state mse

is achieved, but the algorithm then suffers from slower convergence. Experimental results

validate the theoretical derivations and demonstrate the effectiveness of the proposed

approach as applied to acoustic echo cancellation.

1This chapter is based on [99].
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5.1 Introduction

Identifying linear time-invariant (LTI) systems in the short-time Fourier transform

(STFT) domain has been studied extensively, and is of major importance in many appli-

cations [3,19,21,22,35,65,100]. LTI system representation in the STFT domain generally

requires crossband filters between subbands [16,65]. To avoid the crossband filters, a mul-

tiplicative transfer function (MTF) approximation is often employed (e.g., [3, 35]). This

approximation relies on the assumption that the support of the STFT analysis window is

sufficiently large compared to the duration of the system impulse response, and that the

transfer function of the system can be modeled as multiplicative. As the length of the

analysis window increases, the MTF approximation becomes more accurate. However, the

length of the input signal that can be employed for the system identification is usually

finite to enable tracking during time variations of the system. Hence, as the length of the

analysis window increases, fewer observations in each frequency bin become available.

Recently, we have investigated the influence of the analysis window length on the per-

formance of a system identifier that relies on the MTF approximation [98]. We showed

that the minimum mean-square error (mse) attainable under this approximation can be

decomposed into two error terms. The first term, attributable to using a finite-support

analysis window, is monotonically decreasing as a function of the window length, while

the second term is a consequence of restricting the length of the input signal, and is

monotonically increasing as a function of the window length. Therefore, system identifi-

cation performance does not necessarily improve by increasing the length of the analysis

window. The signal-to-noise ratio (SNR) and the input signal length determine the opti-

mal length of the window. We showed that as the SNR or input signal length decreases,

a shorter analysis window should be used.

In this chapter, we introduce cross-multiplicative transfer function (CMTF) approx-

imation in the STFT domain. The transfer function of the system is represented by

cross-multiplicative terms between distinct subbands, and data from adjacent frequency

bins is used for the system identification. Two identification schemes are introduced: One

is an off-line scheme in the STFT domain based on the least-squares (LS) criterion for

estimating the CMTF coefficients. In the second scheme, the cross-terms are estimated
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adaptively using the least-mean-square (LMS) algorithm [10]. We analyze the perfor-

mances of both schemes and derive explicit expressions for the obtainable minimum mse

(mmse). The analysis reveals important relations between the noise level, data length,

and number of cross-multiplicative terms, which are useful for system identification. As

more data becomes available or as the noise level decreases, additional cross-terms should

be considered and estimated to attain the mmse. In this case, a substantial improvement

in performance is achieved over the conventional MTF approximation. For every data

length and noise level there exists an optimal number of useful cross-multiplicative terms,

so increasing the number of estimated cross-terms does not necessarily imply a lower mse.

Note that similar results have been obtained in the context of system identification with

crossband filters [65].

The main contribution of this work is a derivation of an explicit convergence analysis

of the CMTF approximation, which includes the MTF approach as a special case. We

derive explicit expressions for the transient and steady-state mse in frequency bins for

white Gaussian processes. At the beginning of the adaptation process, the length of the

data is short, and only a few cross-terms should be estimated, whereas as more data

become available more cross-terms can be used to achieve the mmse. Consequently, the

MTF approach is associated with faster convergence, but suffers from higher steady-state

mse. Estimation of additional cross-terms results in a lower convergence rate, but improves

the steady-state mse with a small increase in computational cost. Experimental results

with white Gaussian signals and real speech signals validate the theoretical results derived

in this work, and demonstrate the relations between the number of useful cross-terms and

transient and steady-state mse.

The chapter is organized as follows. In Section 5.2, we introduce the CMTF approxi-

mation for system identification in the STFT domain. In Section 5.3, we consider off-line

estimation of the cross-terms, and derive an explicit expression for the attainable mmse.

In Section 5.4, we present an adaptive implementation of the CMTF estimation, and an-

alyze the transient and steady-state mse in subbands. Finally, in Section 5.5, we present

experimental results which verify the theoretical derivations.
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5.2 Cross-MTF approximation

In this section, we introduce an CMTF approximation for system identification in the

STFT domain. Throughout this work, unless explicitly noted, the summation indexes

range from −∞ to ∞.

Let an input x(n) and output y(n) of an unknown LTI system be related by

y(n) = h(n) ∗ x(n) + ξ(n) , d(n) + ξ(n) , (5.1)

where h(n) represents the impulse response of the system, ξ(n) is an additive noise signal,

d(n) is the signal component in the system output, and ∗ denotes convolution. The STFT

of x(n) is given by [71]

xpk =
∑
m

x(m) ψ̃∗pk(m) , (5.2)

where

ψ̃pk(m) = ψ̃(m− pL) ej 2π
N

k(m−pL) (5.3)

denotes a translated and modulated window function, ψ̃(n) is a real-valued analy-

sis window of length N , p is the frame index, k represents the frequency-bin index

(0 ≤ k ≤ N − 1), L is the translation factor and ∗ denotes complex conjugation. A

system identifier operating in the STFT domain is illustrated in Fig. 3.2, where the un-

known system h(n) is modeled in the STFT domain by a block Ĥ. Applying the STFT

to y(n), we have in the time-frequency domain [65]

yp,k = dp,k + ξp,k . (5.4)

The signal component in the system output is related to its input in the STFT domain

through crossband filters:

dp,k =
N−1∑

k′=0

M−1∑

p′=0

xp−p′,k′hp′,k,k′ , (5.5)

where hp,k,k′ denotes a crossband filter of length M from frequency bin k′ to frequency

bin k. The crossband filters depend on both the system impulse response h(n) and the

STFT parameters. The widely-used MTF approximation [98] avoids crossband filters

by assuming that the analysis window ψ̃(n) is long and smooth relative to the impulse
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response h(n) so that ψ̃(n) is approximately constant over the duration of h(n). In this

case, ψ̃(n−m) h(m) ≈ ψ̃(n) h(m), and consequently (5.5) reduces to [74]

dp,k ≈ hkxp,k , (5.6)

where hk ,
∑Nh−1

m=0 h(m) exp (−j2πmk/N) and Nh is the length of h(n). Note that the

MTF approximation (5.6) approximates the time-domain linear convolution in (5.1) by

a circular convolution of the input signal’s pth frame and the system impulse response,

using a frequency-bin product of the corresponding discrete Fourier transforms (DFTs).

In the limit, for an infinitly long analysis window, the linear convolution would be ex-

actly multiplicative in the frequency domain. This approximation is employed in some

block frequency-domain methods, which attempt to estimate the unknown system in the

frequency domain using block updating techniques (e.g., [78, 101–103]).

Due to the finite length of the input signal, the MTF approximation results in insuffi-

cient accuracy of the system estimate, even for a long analysis window. This inaccuracy

is attributable to the fact that fewer observations become available in each frequency

band [98]. Furthermore, the exact STFT representation of the system in (5.5) implies that

the drawback of the MTF approximation may be related to ignoring cross-terms between

subbands. Using data from adjacent frequency bins and including cross-multiplicative

terms between distinct subbands, we may improve the system estimate accuracy without

significantly increasing the computational cost.

Specifically, let hk,k′ be a cross-term from frequency bin k′ to frequency bin k and let

dp,k be approximated by 2K + 1 cross-terms around frequency bin k, i.e.,

dp,k ≈
k+K∑

k′=k−K

hk,k′modNxp,k′modN . (5.7)

Note that for K = 0, (5.7) reduces to the MTF approximation (5.6). Equation (5.7)

represents the CMTF approximation for modeling an LTI system in the STFT domain.

5.3 Off-line system identification

In this section, we consider an off-line scheme for estimating the CMTF coefficients using

an LS optimization criterion for each frequency bin, and derive an explicit expression for

the obtainable mmse.
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Let

xk =
[

x0,k x1,k · · · xP−1,k

]T

(5.8)

denote a finite-length time-trajectory of xpk for frequency bin k, and let the vectors yk,

dk, and ξk be defined similarly. Then, (5.4) can be written in vector form as

yk = dk + ξk . (5.9)

Let Xk =
[

x(k−K)modN · · · x(k+K)modN

]
and let

h̃k =
[

hk,(k−K)modN · · · hk,(k+K)modN

]T

(5.10)

denote 2K + 1 cross-terms for frequency bin k. Then, the CMTF approximation (5.7)

can be written in vector form as

dk = Xkh̃k , (5.11)

The LS estimate of h̃k is therefore given by

ˆ̃hk = arg min
h̃k

∥∥∥yk −Xkh̃k

∥∥∥
2

=
(
XH

k Xk

)−1
XH

k yk , (5.12)

where we assume that XH
k Xk is not singular. Substituting (5.12) into (5.11), we obtain

an estimate of the desired signal in the STFT domain, using 2K + 1 cross-terms.

5.3.1 MSE analysis

We now derive an explicit expression for the mmse in the STFT domain. To make

the analysis mathematically tractable we assume that xp,k and ξp,k are zero-mean white

Gaussian signals with variances σ2
x and σ2

ξ , respectively, and that they are statistically

independent. The Gaussian assumption of the corresponding STFT signals underlies the

design of many speech-enhancement systems [104], and can be justified by a version of the

central limit theorem [82, Theorem 4.4.2]. The following mse analysis is closely related

to that derived in [65] and the reader is referred to there for further details.

The (normalized) mse is defined as

ε(K) =
1

Ed

N−1∑

k=0

E

{∥∥∥dk − d̂k

∥∥∥
2
}

, (5.13)
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where Ed ,
∑N−1

k=0 E
{‖dk‖2}, and d̂k = Xk

ˆ̃hk. Substituting (5.12) into (5.13), the mse

can be expressed as

ε(K) =
1

Ed

N−1∑

k=0

E

{∥∥∥Xk

(
XH

k Xk

)−1
XH

k ξk

∥∥∥
2
}

+
1

Ed

N−1∑

k=0

E

{∥∥∥
[
IP−Xk

(
XH

k Xk

)−1
XH

k

]
dk

∥∥∥
2
}

(5.14)

where IP is the identity matrix of size P × P . Equation (5.14) can be rewritten as

ε(K) = ε1 + 1− ε2 , (5.15)

where

ε1 =
1

Ed

N−1∑

k=0

E
{

ξH
k Xk

(
XH

k Xk

)−1
XH

k ξk

}
(5.16)

ε2 =
1

Ed

N−1∑

k=0

E
{
dH

k Xk

(
XH

k Xk

)−1
XH

k dk

}
. (5.17)

Let hk,k′ denote the crossband filter from frequency bin k′ to frequency bin k

hk,k′ =
[

h0,k,k′ h1,k,k′ · · · hM−1,k,k′

]T

(5.18)

and let ck denote a column-stack concatenation of the filters {hk,k′}N−1
k′=0

ck =
[

hT
k,0 hT

k,1 · · · hT
k,N−1

]T

. (5.19)

In addition, let us assume that xp,k is variance-ergodic and that the length P of the time-

trajectories is sufficiently large, so that 1
P

∑P−1
p=0 xp,kx

∗
p+s,k′ ≈ E

{
xp,kx

∗
p+s,k′

}
. Accordingly,

using the fourth-order moment factoring theorem for zero-mean complex Gaussian samples

[84] and following a similar analysis to that given in [65], we obtain an explicit expression

for ε(K):

ε(K) =
a(K)

η
+ b(K) , (5.20)
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where

a(K) , (2K + 1) N

P

N−1∑

k=0

‖ck‖2

(5.21)

b(K) , 1− (2K + 1)

P
,

−

N−1∑

k=0

2K∑
m=0

∣∣h0,k,(k−K+m)modN

∣∣2

N−1∑

k=0

‖ck‖2

(5.22)

and η = σ2
x/σ

2
ξ denotes the SNR. Equations (5.20)–(5.22) represent the mmse obtained by

using LS estimates of 2K + 1 cross-terms. The mmse ε(K) is a monotonically decreasing

function of η. Furthermore, it is easy to verify from (5.21) and (5.22) that ε(K+1) > ε(K)

for low SNR, and ε(K+1) ≤ ε(K) for high SNR. Hence, ε(K) and ε(K+1) must intersect at

a certain SNR value, denoted by ηK+1→K . That is, for SNR values higher than ηK+1→K ,

a lower mse can be achieved by estimating 2(K + 1) + 1 cross-terms rather than only

2K + 1 cross-terms. Employing the conventional MTF approximation (i.e., ignoring all

the cross-terms), yields the minimal mse only when the SNR is lower than η1→0. The

SNR intersection point ηK+1→K , obtained by requiring that ε(K + 1) = ε(K), is given by

ηK+1→K =
2N

2
N−1∑

k=0

‖ck‖2 + P

N−1∑

k=0

fk(K)

, (5.23)

where

fk(K) =
∣∣h0,k,(k−K−1)modN

∣∣2 +
∣∣h0,k,(k+K+1)modN

∣∣2 . (5.24)

Since ηK+1→K is inversely proportional to P , the number of cross-terms that should be

estimated in order to achieve the mmse increases as we increase P . Note that we implicitly

assume that during P frames the system impulse response does not change, and the

estimated cross-terms are updated every P frames. Therefore, in case time variations

in the system are slow, we can increase P , and correspondingly increase the number of

estimated cross-terms to achieve a lower mse. These relations indicate that for a given

power and length of the input signal, there exists an optimal number of estimated cross-
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terms that achieves the minimal mse. Note that similar mse behavior was demonstrated

in the context of system identification with crossband filters [65].

5.3.2 Computational complexity

The computational complexity of the proposed approach requires the solution of LS nor-

mal equations
(
XH

k Xk

) ˆ̃hk = XH
k yk [see (5.12)] for each frequency bin. This results

in P (2K + 1)2 + (2K + 1)3 /3 arithmetic operations when using the Cholesky decom-

position [85]. Computing the desired signal estimate (5.11) results in an additional

2P (2K + 1) arithmetic operations. Assuming P is sufficiently large and neglecting the

computations required for the forward and inverse STFTs, the complexity associated with

the CMTF approach is given by

OCMTF(K) = O
[
NP (2K + 1)2] . (5.25)

We observe that the computational complexity obtained by using the CMTF approxima-

tion is (2K +1)2 times larger than that obtained by using the MTF approximation. How-

ever, incorporating cross-terms into the system model may yield lower mse for stronger

and longer input signals.

5.4 Adaptive system identification

In this section, we adaptively update the cross-terms in frequency bins by the LMS al-

gorithm [10], and derive explicit expressions for the transient and steady-state mse in

subbands.

Let d̂p,k be an estimate of dp,k using 2K +1 adaptive cross-terms around the frequency

bin k, i.e.,

d̂p,k =
k+K∑

k′=k−K

xp,k′ĥk,k′(p) , (5.26)

where ĥk,k′(p) is an adaptive cross-term that represents an estimate of the CMTF

hk,k′ at frame index p (recall that due to periodicity of the frequency bins,

the summation index k′ is related to frequency bin k′ mod N). Let ĥk(p) =[
ĥk,k−K(p) ĥk,k−K+1(p) · · · ĥk,k+K(p)

]T

denote 2K + 1 adaptive cross-terms at the
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kth frequency bin, and let xk(p) =
[

xp,k−K xp,k−K+1 · · · xp,k+K

]T

be the input data

vector corresponding to ĥk(p). Then the estimated desired signal d̂p,k from (5.26) can be

rewritten as

d̂p,k = xT
k (p)ĥk(p) . (5.27)

The 2K + 1 adaptive cross-terms are updated using the LMS algorithm as

ĥk(p + 1) = ĥk(p) + µep,kx
∗
k(p) (5.28)

where

ep,k = yp,k − d̂p,k (5.29)

is the error signal in the kth frequency bin, yp,k is defined in (5.4), and µ is a step-size.

Let hk be a vector containing the first element in each of the 2K + 1 crossband filters

around the kth frequency bin, i.e.,

hk =
[

h0,k,k−K h0,k,k−K+1 · · · h0,k,k+K

]T

. (5.30)

In addition, let h̄k,k′ =
[

h1,k,k′ · · · hM−1,k,k′

]T

be the last M − 1 elements of the

crossband filter hk,k′ [as defined in (5.18)], let χk(p) =
[
xp,k xp−1,k · · · xp−M+1,k

]T

,

and let χ̄k(p) =
[

xp−1,k · · · xp−M+1,k

]T

. Then, defining

gk(p) = ĥk(p)− hk (5.31)

as the misalignment vector and substituting (5.4), (5.5), and (5.27) into (5.29), the error

signal can be written as

ep,k = x̃T
k (p)c̃k + x̄T

k (p)c̄k − xT
k (p)gk(p) + ξp,k , (5.32)

where c̃k, c̄k, x̃k(p), and x̄k(p) are the column-stack concatenations of

{hk,k′}k′∈L,
{
h̄k,k′

}k+K

k′=k−K
, {χk′(p)}k′∈L, and {χ̄k′(p)}k+K

k′=k−K , respectively, and

L = {k′| k′ ∈ [0, N − 1] and k′ /∈ [k −K, k + K]}. Substituting (5.32) into (5.28),

the LMS update equation can be expressed as

gk(p + 1) =
[
I−µx∗k(p)xT

k (p)
]
gk(p) + µ

[
x̃T

k (p)c̃k

]
x∗k(p)

+ µ
[
x̄T

k (p)c̄k

]
x∗k(p) + µξp,kx

∗
k(p) , (5.33)

where I is the identity matrix.



5.4. ADAPTIVE SYSTEM IDENTIFICATION 107

5.4.1 MSE analysis

We proceed with the mean-square analysis of the adaptation algorithm under the assump-

tions made in Section 5.3.1. The analysis relies on the common assumption that xk(p) is

independent of ĥk(p) (e.g., [91], [69]).

Transient Performance

The transient mse is defined by

εk(p) = E
{|ep,k|2

}
. (5.34)

Using the whiteness property of the input signal, and substituting (5.32) into (5.34), the

mse can be expressed as

εk(p) = σ2
ξ + σ2

x

(‖c̃k‖2 + ‖c̄k‖2) + σ2
xE

{‖gk(p)‖2} . (5.35)

In order to find an explicit expression for the transient mse, a recursive formula for

E
{‖gk(p)‖2} is required. From (5.33), we obtain

E
{‖gk(p + 1)‖2} = E

{∥∥[
I−µx∗k(p)xT

k (p)
]
gk(p)

∥∥2
}

+ µ2E
{∥∥[

x̃T
k (p)c̃k

]
x∗k(p)

∥∥2
}

+ µ2E
{∥∥[

x̄T
k (p)c̄k

]
x∗k(p)

∥∥2
}

+ µ2E
{‖ξp,kx

∗
k(p)‖2} . (5.36)

Using the independence assumption, and the fourth-order moment factoring theorem for

zero-mean complex Gaussian samples, the first term on the right of (5.36) can be expressed

as (see Appendix 5.A)

E
{∥∥[

I−µx∗k(p)xT
k (p)

]
gk(p)

∥∥2
}

=
[
1− 2µσ2

x + 2µ2σ4
x (K + 1)

]
E

{‖gk(p)‖2} . (5.37)

The evaluation of the last three terms in (5.36) is straightforward, and they can be

expressed as

µ2E
{∥∥[

x̃T
k (p)c̃k

]
x∗k(p)

∥∥2
}

= µ2σ4
x ‖c̃k‖2 (2K + 1) , (5.38a)

µ2E
{∥∥[

x̃T
k (p)c̄k

]
x∗k(p)

∥∥2
}

= µ2σ4
x ‖c̄k‖2 (2K + 1) , (5.38b)

µ2E
{‖ξp,kx

∗
k(p)‖2} = µ2σ2

ξσ
2
x (2K + 1) . (5.38c)



108 CHAPTER 5. ADAPTIVE IDENTIFICATION USING CMTF

Substituting (5.37) and (5.38) into (5.36), we have an explicit recursive expression for

E
{‖gk(p)‖2}:

E
{‖gk(p)‖2} = α(K) E

{‖gk(p− 1)‖2} + βk(K) , (5.39)

where

α(K) , 1− 2µσ2
x + 2µ2σ4

x (K + 1) , (5.40)

βk(K) , µ2σ2
x (2K + 1)

[
σ2

ξ + σ2
x

(‖c̃k‖2 + ‖c̄k‖2)] . (5.41)

Equations (5.35) and (5.39)–(5.41) represent the mse behavior in the kth frequency bin

using 2K + 1 adaptive cross-terms.

Stability

It is easy to verify from (5.35) and (5.39) that a sufficient condition for mse convergence

is that |α(K)| < 1, which results in the following condition on the step-size µ:

0 < µ <
1

σ2
x(K + 1)

. (5.42)

The upper bound of µ is inversely proportional to K, and as the number of cross-terms

increases, a lower step-size value should be utilized, which may result in slower conver-

gence. An optimal step-size that results in the fastest convergence for each K is obtained

by differentiating α(K) with respect to µ, which yields

µopt =
1

2σ2
x(K + 1)

. (5.43)

By substituting (5.43) into (5.40), we obtain

αopt(K) = 1− 1

2(K + 1)
. (5.44)

Expectedly, we have αopt(K) < αopt(K + 1), which indicates that faster convergence is

achieved by decreasing K.

Steady-State Performance

We proceed with analyzing the steady-state performance of the adaptive algorithm. Let

us first consider the mean convergence of the misalignment vector gk(p). From (5.33), and

by using the whiteness property of xp,k, it is easy to verify that E {gk(∞)} = 0; hence,

E
{
ĥk(∞)

}
= hk , (5.45)
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where hk is defined in (5.30). This indicates that the adaptive cross-terms converge in

the mean to the first element in the corresponding crossband filters. Substituting (5.45)

for ĥk(p) in (5.35) we find the minimum mse obtainable in the kth frequency bin:

εmin
k = σ2

ξ + σ2
x

(‖c̃k‖2 + ‖c̄k‖2) . (5.46)

Now, substituting (5.46) into (5.35), the steady-state mse can be expressed as

εk(∞) = εmin
k + σ2

xE
{‖gk(∞)‖2} . (5.47)

Provided that µ satisfies (5.42), such that the mean-square convergence of the algorithm

is guaranteed, the steady-state solution of (5.39) is given by

E
{‖gk(∞)‖2} =

βk(K)

1− α(K)
. (5.48)

Substituting (5.40) and (5.41) into (5.48), we obtain an explicit expression for

E
{‖gk(∞)‖2}. Accordingly, (5.47) can be written, after some manipulations, as

εk(∞) =
2− µσ2

x

2− 2µσ2
x (K + 1)

εmin
k . (5.49)

Equations (5.46) and (5.49) provide an explicit expression for the steady-state mse in

frequency-bins. Note that εmin
k implicitly depends on K (it is actually a decreasing function

of K), and therefore the influence of the number of estimated cross-terms on the steady-

state mse εk(∞) is not clear from (5.49). However, since a smaller step-size is used for

larger K [see (5.42)], a lower steady-state mse is expected as we increase the number of

estimated cross-terms.

5.4.2 Computational complexity

The adaptation formula given in (5.28) requires 2K + 2 complex multiplications, 2K + 1

complex additions, and one complex substraction to compute the error signal. Note that

each arithmetic operation is not carried out every input sample, but once for every L

input samples, where L denotes the decimation factor of the STFT representation. Thus,

the adaptation process requires 4(K +1) arithmetic operations for every L input samples.

Moreover, computing the desired signal estimate in (5.26) results in an additional 4K +1



110 CHAPTER 5. ADAPTIVE IDENTIFICATION USING CMTF

arithmetic operations. Hence, the proposed adaptive approach requires 8K +5 arithmetic

operations for every L input samples and each frequency bin. When compared to the MTF

approach (K = 0), the proposed approach involves an increase of only 8K arithmetic

operations for every L input samples and every frequency bin.

5.4.3 Discussion

The expressions derived for the analysis of off-line and adaptive schemes (Sections 5.3

and 5.4) are related to the problem of model-order selection, where in our case the model

order is determined by the number of estimated cross-multiplicative terms. Selecting

the optimal model complexity for a given data set is a fundamental problem in many

system identification applications [24–30], and many criteria have been proposed for this

purpose. The Akaike information criterion (AIC) [29] and the minimum description length

(MDL) [30] are among the most popular choices. Generally, the estimation error can be

decomposed into two terms: a bias term, which is monotonically decreasing as a function

of the model order, and a variance term, which is respectively monotonically increasing.

The optimal model order is affected by the level of noise in the data and the length of

the observable data. As the SNR increases or as more data is employable, the optimal

model complexity increases, and correspondingly additional cross-terms can be estimated

to achieve lower mse. At the beginning of the adaptation process, the length of the data

is short, and only a few cross-terms are estimated. As the adaptation process proceeds,

more data can be used, additional cross-terms can be estimated, and lower mse can be

achieved. These points will be demonstrated in the next section.

5.5 Experimental results

In this section, we present two experiments to demonstrate the theoretical results. The

first examines the proposed approach under white Gaussian signals, whereas the sec-

ond experiment is carried out in an acoustic echo cancellation scenario using real speech

signals. The performance of both off-line and adaptive schemes are evaluated, and a

comparison is made with the conventional fullband approach. The evaluation includes

objective quality measures, a subjective study of temporal waveforms, and informal lis-
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tening tests. For the adaptive system identification, we use the normalized LMS (NLMS)

algorithm [10] for updating the cross-terms2, instead of the LMS algorithm that was used

for the analysis. That is, the update formula (5.28) is now modified to

ĥk(p + 1) = ĥk(p) +
µ

‖xk(p)‖2 ep,kx
∗
k(p) , (5.50)

where 0 < µ < 2. In the following experiments, we use a Hamming synthesis window

of length N with 50% overlap (i.e., L = 0.5N), and a corresponding minimum-energy

analysis window that satisfies the completeness condition [72]. The sample rate is 16

kHz.

5.5.1 Performance evaluation for white Gaussian input signals

In the first experiment, we examine the system identifier performance in the STFT domain

for white Gaussian signals. The input signal x(n) and the additive noise signal ξ(n) are

uncorrelated zero-mean white Gaussian processes with variances σ2
x and σ2

ξ , respectively.

The lengths of the signals are 3 s. We model the impulse response as a nonstationary

stochastic process with an exponential decay envelope, i.e., h(n) = u(n)β(n)e−αn, where

u(n) is the unit step function, β(n) is a unit-variance zero-mean white Gaussian noise, and

α is the decay exponent. In the following, we use α = 0.02. To maintain the large analysis-

window support assumption, which the CMTF approximation relies on, the length of the

impulse response is chosen to be 8 times shorter than the length of the analysis window

(N = 128 and Nh = 16). Figure 5.1 shows the mse curves ε(K), obtained by the off-line

scheme using (5.13), as a function of the SNR. The cross-terms are estimated using the

LS criterion [see (5.12)]. The results confirm that as the SNR increases, the number of

cross-terms that should be estimated to achieve the minimal mse increases. We observe

that when the SNR is lower than −20 dB, the conventional MTF approximation (K = 0)

yields the minimal mse. For higher SNR values, the estimation of 5 cross-terms per

frequency-bin (K = 2) enables a substantial improvement of 10 dB in the mse. Similar

results are obtained for longer signals, with the only difference being that the intersection

2The LMS algorithm is used in Section 5.4 in order to make the mean-square analysis mathematically

tractable. Most adaptive filtering applications, however, employ the NLMS algorithm, and it is used here

for performance demonstration.
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Figure 5.1: MSE curves as a function of the SNR using LS estimates of the cross-terms (off-line

scheme), for white Gaussian signals of length 3 s.

Table 5.1: Average Running Time in Terms of CPU for Several K Values, Obtained Using LS

Estimates of the Cross-Terms. The Length of the Input Signal is 3 s.

K Running Time [sec]

0 (MTF) 0.1168

1 0.3388

2 0.4073

3 0.5014

4 0.7442

points of the mse curves move toward lower SNR values [as expected from (5.23)]. The

complexity of the proposed approach is evaluated by computing the central processing

unit (CPU) running time3 of the LS estimation process for each K. The average running

time in terms of CPU seconds is summarized in Table 5.1. We observe, as expected from

(5.25), that the running time of the proposed approach increases as more cross-terms are

estimated. For instance, the process of estimating 5 cross-terms (K = 2) is approximately

4 times slower than that of the MTF approach.

Figure 5.2 shows the transient mse curves εk(p) for frequency bin k = 1 and SNR of

3The simulations were all performed under MATLAB; v.7.2, on a Pentium IV 2.2 GHz PC with 1 GB

of RAM, running Microsoft Windows XP v.2002.
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Figure 5.2: Transient mse curves, obtained by adaptively updating the cross-terms via (5.50),

for white Gaussian signals of length 12 s and SNR= 30 dB.

30 dB, as obtained by adaptively updating the cross-terms using (5.50). The length of the

signals is 12 s, and the results are averaged over 1000 independent runs. Since the step-

size µ should be inversely proportional to K to ensure convergence [see (5.42) and (5.43)],

we choose µ = 0.1/ (K + 1). The results confirm that as more data is employed in the

adaptation process, a lower mse is obtained by estimating additional cross-terms. Clearly,

as K increases, a lower steady-state mse εk(∞) is achieved; however, the algorithm then

suffers from slower convergence. The conventional MTF approach yields faster conver-

gence, but higher steady-state mse. Table 5.2 shows the average running times in terms

of CPU seconds, as obtained by the adaptive scheme. Expectedly, higher running time is

obtained by increasing K (see Section 5.4.2). However, in contrast to the off-line scheme

(Table 5.1), the additional computational cost of estimating more cross-terms is small in

the adaptive scheme. Including 5 cross-terms (K = 2), for instance, decreases the steady-

state mse by approximately 11 dB, with only a small increase of 10% in computational

complexity, when compared to the MTF approach (K = 0).

5.5.2 Acoustic echo cancellation application

In the second experiment, we demonstrate the proposed approach in an acoustic echo

cancellation application [1, 2, 89] using real speech signals. The experimental setup
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Table 5.2: Average Running Time in Terms of CPU for Several K Values as Obtained by

Adaptively Updating the Cross-Terms. The Length of the Input Signal is 12 s.

K Running Time [sec]

0 (MTF) 0.1845

1 0.1936

2 0.2042

3 0.2156

is depicted in Fig. 5.3. We use an ordinary office with a reverberation time T60 of

about 100 ms. The measured acoustic signals are recorded by a DUET conference

speakerphone, Phoenix Audio Technologies, which includes an omnidirectional micro-

phone near the loudspeaker (more features of the DUET product are available at:

http://phnxaudio.com.mytempweb.com/?tabid=62 ). The far-end signal is played through

the speakerphone’s built-in loudspeaker, and received together with the near-end signal

by the speakerphone’s built-in microphone. The small distance between the loudspeaker

and the microphone yields relatively high SNR values, which may justify the estimation

of more cross-terms. Employing the MTF approximation in this case, and ignoring all

the cross-terms may result in insufficient echo reduction. It is worth noting that estima-

tion of crossband filters [65], rather than CMTF, may be even more advantageous, but

estimation of crossband filters results in a significant increase in computational complex-

ity. In this experiment, the signals are sampled at 16 kHz. A far-end speech signal x(n)

is generated by the loudspeaker and received by the microphone as an echo signal d(n)

together with a near-end speech signal and local noise [collectively denoted by ξ(n)]. The

distance between the near-end source and the microphone is 1 m. According to the room

reverberation time, the effective length of the echo path is 100 ms, i.e., Nh = 1600. We

use a synthesis window of length 200 ms (corresponding to N = 3200), which is twice the

length of the echo path. The influence of the window length on the performance is inves-

tigated in the sequel (see Section 5.5.3). A commonly-used quality measure for evaluating

the performance of acoustic echo cancellers (AECs) is the echo-return loss enhancement
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Figure 5.3: Experimental setup. A speakerphone (Phoenix Audio DUET Executive Conference

Speakerphone) is connected to a laptop using its USB interface. Another speakerphone without

its cover shows the placement of the built-in microphone and loudspeaker.

(ERLE), defined in dB by

ERLE(K) = 10 log10

E {y2(n)}
E {e2

K(n)} , (5.51)

where

eK(n) = y(n)− d̂K(n) (5.52)

is the error signal and d̂K(n) is the inverse STFT of the estimated echo signal using 2K+1

cross-terms in each frequency bin.

Figures 5.4(a)–(c) show the far-end signal, near-end signal, and microphone signal,

respectively. Note that a double-talk situation (simultaneously active far-end and near-

end speakers) occurs between 4.65 s and 6.1 s (indicated by two vertical dotted lines).

Since such a situation may cause divergence of the adaptive algorithm, a double-talk

detector (DTD) is usually employed to detect near-end signal and freeze the adaptation

[105, 106]. Since the design of a DTD is beyond the scope of this chapter, we manually

choose the periods where double-talk occurs and freeze the adaptation in these intervals.

Figures 5.4(d)–(g) show the error signal eK(n) obtained by using K = 0, 1, 2, and 4,

respectively, where the cross-terms are adaptively updated by the NLMS algorithm using

a step-size µ = 1/ (K + 1). The performance of a conventional fullband AEC, where the

echo signal is estimated in the time domain [89], is also evaluated [see Fig. 5.4(h)]. The
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Table 5.3: Echo-Return Loss Enhancement (ERLE) for Several K Values and Various Analysis

Window Lengths (N). The Effective Length of the Echo Path is Nh = 1600.

K
ERLE [dB]

N = 4Nh N = 2Nh N = Nh N = 0.75Nh

0 (MTF) 14.21 9.74 9.72 8.59

1 17.32 14.29 11.9 10.58

2 16.89 16.19 14.03 12.72

4 7.37 12.29 14.47 12.79

Fullband 18.5 18.5 18.5 18.5

NLMS algorithm is used for the fullband approach with a step-size value of 0.01 to insure

stability.

Table 5.3 shows the ERLE values computed after convergence of the adaptive algo-

rithms for various window lengths: N = 4Nh, 2Nh, Nh, and 0.75Nh (the influence of

the analysis window length N on the performance will be addressed in Section 5.5.3).

Clearly, the proposed CMTF approach is considerably more advantageous, in terms of

ERLE, than the conventional MTF approach. For example when N = 2Nh, a substantial

increase of 4.5 dB in the ERLE is obtained by estimating only 3 cross-terms (K = 1),

whereas an additional 1.9 dB increase is achieved by including 5 cross-terms (K = 2).

We observe from Fig. 5.4 that at the beginning of the adaptation, the convergence rate

is slower for larger K, which initially results in higher error. The slower convergence is

attributable to the relatively small step-size forced by estimating more cross-terms [see

(5.42)]. However, as the adaptation proceeds, a smaller error is attained as more cross-

terms are estimated. The results indicate that the optimal number of cross-terms that

should be estimated in order to achieve the maximal ERLE is 5 (K = 2). It is worth

noting, however, that a higher ERLE could be achieved for K = 4, if the adaptation

process was longer. Subjective listening tests confirm that the proposed CMTF approach

achieves a perceptual improvement in speech quality over the conventional MTF approach

(audio files are available on-line [107]).

A comparison of the proposed approach with the fullband approach indicates that the
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Figure 5.4: Speech waveforms and error signals eK(n), obtained by adaptively updating the

cross-terms via (5.50). A double-talk situation is indicated by vertical dotted lines. (a) Far-

end signal (b) Near-end signal (c) Microphone signal. (d)–(h) Error signals for K = 0 (MTF

approximation), K = 1, K = 2, K = 4, and the conventional fullband approach, respectively.

The length of the analysis window is twice the length of the echo path (N = 2Nh).

latter achieves the maximal ERLE value (see Table 5.3), and its convergence rate is inferior

only to the MTF approach. However, the high ERLE value is achieved at the expense of a

substantial increase in computational complexity. Specifically for N = 2Nh, running time

measurements indicate that the fullband approach is approximately 33 times slower (233 s)

than the proposed approach (7 s). Moreover, note that the performance improvement

achieved by the fullband approach is not very significant (2.3 dB for N = 2Nh, when

compared to K = 2), so that one can alternatively employ the CMTF approach with

5 cross-terms (K = 2) to achieve computational efficiency. It should be noted that the

relatively slow convergence of the proposed CMTF approach is a consequence of using
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a very long analysis window, which reduces the update rate of the adaptive cross-terms

(assuming that the relative overlap between consecutive windows is retained). Due to the

long echo path impulse response, a relatively long window is necessary to maintain the

large support assumption. In fact, the CMTF approach (for any K) would suffer from slow

convergence and bad tracking capabilities whenever the unknown system impulse response

is long. As a result, applications like relative transfer function (RTF) identification [3], in

which the unknown impulse response is much shorter, might be more suitable for using

the CMTF approximation.

It is worthwhile noting that the relatively small ERLE values obtained by both full-

band and subband approaches, may be attributable to the nonlinearity introduced by the

loudspeaker and its amplifier. Estimating the overall nonlinear system by the LTI model

in (5.1) yields a model mismatch that degrades the system estimate accuracy. Several

techniques for nonlinear acoustic echo cancellation have been proposed (e.g., [37, 108]).

However, combining such techniques with the CMTF approximation is beyond the scope

of this chapter.

5.5.3 Influence of the analysis window length

Next, we investigate the influence of the STFT analysis window length (N) on the CMTF

performance. We repeated the last experiment with various window lengths and com-

puted the ERLE for each K (see Table 5.3). As expected, the performance of the CMTF

approach can be generally improved by using a longer analysis window. This is be-

cause CMTF heavily relies on the assumption of a long analysis window compared to

the length of the system impulse response. Note that the fullband approach outperforms

the proposed approach in terms of steady-state ERLE, even for a long analysis window

(N = 4Nh). We observe that as the window length increases, fewer cross-terms should be

estimated to achieve the maximal ERLE. For instance, when the length of the window

is equal to that of the impulse response (N = Nh), 9 cross-terms should be estimated

(K = 4), whereas when the window length is increased by a factor of 4 (N = 4Nh),

the maximal ERLE is achieved with the estimation of only 3 cross-terms (K = 1). Fur-

ther increasing the window length would ultimately make the MTF approach a preferable

choice, with no cross-terms. This phenomenon is due to the fact that by increasing the
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Table 5.4: Echo-Return Loss Enhancement (ERLE) for Several K Values, in the Presence of

Narrowband Noise under Various SNR Conditions.

K
ERLE [dB]

SNR= −5 dB SNR= 0 dB SNR= 5 dB SNR= 10 dB

0 (MTF) 8.14 9.17 9.56 9.68

1 13.73 14.12 14.25 14.28

2 15.68 16.05 16.16 16.19

4 12.15 12.25 12.28 12.29

Fullband 12.46 15.39 17.09 17.89

analysis window length while retaining the relative overlap between consecutive windows

(i.e., the ratio N/L is fixed), fewer observations in each frequency bin are available, which

increases the variance of the system estimate. Thus, the optimal model order decreases,

and correspondingly fewer cross-terms need to be estimated to achieve higher ERLE.

5.5.4 Performance evaluation under presence of narrowband

noise signal

In the third experiment, we demonstrate the effectiveness of the proposed approach over

the fullband approach in the presence of a narrowband noise signal. The noise signal is

generated using a white Gaussian signal to excite a bandpass filter with bandwidth of

150 Hz and a center frequency of 7.8 kHz. The resulting narrowband noise signal is then

added to the microphone signal y(n), and the experiment described in Section 5.5.2 is

repeated under various SNR conditions. Table 5.4 shows the ERLE obtained for SNR

values of −5, 0, 5, and 10 dB, and for analysis window of length N = 2Nh. Clearly,

as the SNR increases, the performance of the proposed approach, as well as that of the

fullband approach, is generally improved. We observe that the performance degradation

of the proposed CMTF approach, when compared to the noiseless scenario (see Table

5.3), is less substantial than that of the fullband approach. Moreover, when considering

low SNR values, the CMTF approach outperforms the fullband approach. For instance,
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for −5 dB SNR, incorporating 5 cross-terms (K = 2) enables an increase of 3.2 dB in the

ERLE relative to that achieved by the fullband approach. This is attributable to the fact

that the noise is present in only a few frequency bins. By using the proposed approach,

the system estimate is degraded only in these particular frequency bins, and the overall

estimate is less affected by the noise. In the fullband approach, however, the estimation

is carried out in the time domain, so the influence of the noise is much more devastating.

This experiment shows that for narrowband noise, the ERLE and computational efficiency

can be improved by using the proposed CMTF approach, compared to using the fullband

approach.

5.6 Conclusions

We have introduced an CMTF approximation for identifying an LTI system in the STFT

domain. The cross-terms in each frequency bin are estimated either off-line by using the LS

criterion, or adaptively by using the LMS (or NLMS) algorithm. We have derived explicit

relations between the attainable mmse and the power and length of the input signal. We

showed that the number of cross-terms that should be utilized in the system identifier

is larger for stronger and longer input signals. Consequently, for high SNR values and

longer input signals, the proposed CMTF approach outperforms the conventional MTF

approximation. This improvement is due to the fact that data from adjacent frequency-

bins becomes more reliable and may be beneficially utilized for the system identification.

In addition, we have analyzed the transient and steady-state mse performances ob-

tained by adaptively estimating the cross-terms. We showed that the MTF approximation

yields faster convergence, but also results in higher steady-state mse. As the adaptation

process proceeds, more data is employable, and lower mse is achieved by estimating addi-

tional cross-terms. Accordingly, during rapid time variations of the system, fewer cross-

terms are useful. However, when the system time variations become slower, additional

cross-terms can be incorporated into the system identifier and lower mse is attainable.

Experimental results corresponding to an acoustic echo cancellation scenario have

demonstrated the advantage of the proposed approach. It is shown that a substantial

improvement is achieved over the MTF approximation without significantly increasing
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the computational cost. Moreover, compared to the conventional fullband approach, the

proposed approach yields a substantial decrease in computational complexity with only

a slight degradation in performance. Furthermore, for additive narrowband noise, the

CMTF approach outperforms the fullband approach. It should be noted that for reasons

of convergence rate, applications that involve short impulse responses (e.g., identification

of speech source coupling between sensors [109]) are more suitable for using the CMTF

approximation due to the requirement of a large STFT analysis-window support.

Adaptive control of cross-terms is related to filter-length control [110–114]. Filter-

length control algorithms dynamically adjust the number of filter taps and provide a

balance between complexity, convergence rate and steady-state performance. By employ-

ing filter-length control techniques, an algorithm for adaptively controlling the number of

cross-terms may be developed for both faster convergence rate and smaller steady-state

mse. This may further improve the performance in many applications that employ the

MTF approximation.

5.A Derivation of (5.37)

Using the independence assumption of xk(p) and ĥk(p), the first term on the right of

(5.36) can be expressed as

E
{∥∥[

I−µx∗k(p)xT
k (p)

]
gk(p)

∥∥2
}

= E
{‖gk(p)‖2}− 2µE

{
gH

k (p)Ak(p)gk(p)
}

+ µ2E
{
gH

k (p)Bk(p)gk(p)
}

, (5.53)

where

Ak(p) = E
{
x∗k(p)xT

k (p)
}

(5.54)

and

Bk(p) = E
{
x∗k(p)xT

k (p)x∗k(p)xT
k (p)

}
. (5.55)

Using the whiteness property of xp,k, Ak(p) reduces to

Ak(p) = σ2
xI2K+1 , (5.56)
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where I2K+1 is the identity matrix of size 2K + 1× 2K + 1. The (m, `)th term of Bk(p)

in (5.55) can be written as

[Bk(p)]m,`

=
∑

r E
{
xp,k−K+rx

∗
p,k−K+rxp,k−K+`x

∗
p,k−K+m

}
, (5.57)

where the index r sums over integer values for which the subscripts of x are defined.

By using the fourth-order moment factoring theorem for zero-mean complex Gaussian

samples [84, p. 90], (5.57) can be rewritten as

[Bk(p)]m,` =
∑

r

E
{
xp,k−K+rx

∗
p,k−K+r

}

× E
{
xp,k−K+`x

∗
p,k−K+m

}

+
∑

r

E
{
xp,k−K+rx

∗
p,k−K+m

}

× E
{
xp,k−K+`x

∗
p,k−K+r

}
, (5.58)

where by using the whiteness property of xp,k, we obtain

[Bk(p)]m,` = σ4
x

∑
r

δ (`−m) + σ4
x

∑
r

δ (r −m) δ (r − `) . (5.59)

Since r ranges from 0 to 2K + 1, Bk(p) in (5.57) reduces to

Bk(p) = 2σ4
x(K + 1)I2K+1 . (5.60)

Substituting (5.56) and (5.60) into (5.53) yields (5.37).

5.B Adaptive Control of the Cross-MTF Approxima-

tion4

In this appendix, we extend the cross-multiplicative transfer function (CMTF) approach

for improved system identification in the short-time Fourier transform (STFT) domain.

The proposed algorithm adaptively controls the number of cross-terms in the CMTF

approximation to achieve the minimum mean-square error (mmse) at each iteration. A

4This appendix is based on [115].
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small number of cross-terms is initially used to achieve fast convergence, and as the

adaptation process proceeds, the algorithm gradually increases this number to enhance

the steady-state performance. When compared to the conventional multiplicative transfer

function (MTF) approach, the resulting algorithm achieves a substantial improvement in

steady-state performance, without compromising for slower convergence. Experimental

results validate the theoretical derivations and demonstrate the advantage of the proposed

approach to acoustic echo cancellation.

5.B.1 Introduction

Linear systems in the short-time Fourier transform (STFT) domain are often modeled by

multiplicative transfer functions (MTFs) (e.g., [3, 35, 65, 98]). The MTF approximation

relies on the assumption that the support of the STFT analysis window is sufficiently

large compared to the duration of the system impulse response. Recently, we proposed a

cross-MTF (CMTF) approximation for representing linear systems in the STFT domain

by introducing cross-multiplicative terms between distinct subbands [99]. We showed

that compared to the MTF approximation, the CMTF approximation is associated with

slower convergence, but smaller steady-state mean-square error (mse). However, since

this algorithm employs a fixed number of cross-terms during the adaptation process, it

may suffer from either slow convergence in case the number of cross-terms is large, or

relatively high steady-state mse in case the number of cross-terms is small.

In this appendix, we extend the CMTF approach and propose to adaptively control

the number of cross-terms. The proposed algorithm finds the optimal number of cross

terms and achieves the minimum mse (mmse) at each iteration. At the beginning of

the adaptation process, the proposed algorithm is initialized by a small number of cross-

terms to achieve fast convergence, and as the adaptation process proceeds, it gradually

increases this number to improve the steady-state performance. This is done by simul-

taneously updating three system models, each consisting of different (but consecutive)

number of cross-terms, and determining the optimal number using an appropriate deci-

sion rule. When compared to the conventional MTF approach, the resulting algorithm

achieves a substantial improvement in steady-state performance, without degrading its

convergence rate. Experimental results validate the theoretical derivations and demon-
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strate the advantage of the proposed approach for acoustic echo cancellation.

The appendix is organized as follows. In Section 5.B.2, we introduce the CMTF

approximation for system identification in the STFT domain. In Section 5.B.3, we present

an CMTF adaptation procedure using a fixed number of cross-terms. In Section 5.B.4,

we adaptively control the number of cross-terms. Finally, in Section 5.B.5, we present

experimental results which verify the theoretical derivations.

5.B.2 Cross-MTF approximation

Let an input x(n) and output y(n) of an unknown linear time-invariant (LTI) system be

related by

y(n) = h(n) ∗ x(n) + ξ(n) , d(n) + ξ(n) , (5.61)

where h(n) represents the impulse response of the system, ξ(n) is an additive noise signal,

d(n) is the signal component in the system output, and ∗ denotes convolution. Applying

the STFT to y(n), we have in the time-frequency domain

yp,k = dp,k + ξp,k , (5.62)

where p is the frame index and k represents the frequency-bin index (0 ≤ k ≤ N − 1).

To perfectly represent an LTI system in the STFT domain, crossband filters between

subbands are generally required [16,65]. The widely-used MTF approximation [98] avoids

these crossband filters by assuming that the STFT analysis window is long and smooth

relative to the impulse response h(n), so that the transfer function is approximated as

multiplicative in the STFT domain:

dp,k ≈ hk xp,k , (5.63)

where hk ,
∑Nh−1

m=0 h(m) exp (−j2πmk/N) and Nh is the length of h(n). In case of

finite length input signals, the MTF approximation is insufficient, since a longer analysis

window comes at the expense of fewer observations that become available in each frequency

bin [98].

An CMTF approximation for modeling an LTI system in the STFT domain is obtained

by including cross-multiplicative terms between distinct subbands. Let hk,k′ denote a
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cross-term from frequency bin k′ to frequency bin k. Then an CMTF approximation of

dp,k by 2K + 1 cross-terms around frequency bin k is given by

dp,k ≈
k+K∑

k′=k−K

hk,k′modN xp,k′modN . (5.64)

Note that for K = 0, (5.64) reduces to the MTF approximation (5.63).

5.B.3 Conventional CMTF adaptation

In this section, we present an LMS-based adaptive algorithm for estimating the cross-

terms in each frequency bin. Let d̂p,k be an estimate of dp,k with 2K + 1 cross-terms:

d̂p,k =
k+K∑

k′=k−K

xp,k′ĥk,k′(p) , (5.65)

where ĥk,k′(p) is an adaptive cross-term that represents an estimate of hk,k′ at frame index

p (recall that due to periodicity of the frequency bins, the summation index k′ is related

to frequency bin k′ mod N). Let ĥk(p) = [ ĥk,k−K(p) · · · ĥk,k+K(p) ]T denote 2K + 1

adaptive cross-terms at the kth frequency bin, and let xk(p) = [ xp,k−K · · · xp,k+K ]T

be the input data vector corresponding to ĥk(p). Then (5.65) can be rewritten as

d̂p,k = xT
k (p)ĥk(p) . (5.66)

The 2K + 1 cross-terms are updated using the LMS algorithm by

ĥk(p + 1) = ĥk(p) + µep,kx
∗
k(p) (5.67)

where ep,k = yp,k− d̂p,k is the error signal in the kth frequency bin, yp,k is defined in (5.62),

and µ is a step-size. Let

εk(p) = E{|ep,k|2} (5.68)

denote the transient mse in the kth frequency bin. Then, assuming that xp,k and ξp,k

are uncorrelated zero-mean white Gaussian signals, the mse can be expressed recursively

as [99]

εk(p + 1) = α(K) εk(p) + βk(K) , (5.69)
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where α(K) and βk(K) depend on the step-size µ and the number of cross-terms K.

Accordingly, it can be shown [99] that the optimal step-size that results in the fastest

convergence for each K is given by

µopt =
1

2σ2
x(K + 1)

, (5.70)

where σ2
x is the variance of xp,k. Equation (5.70) indicates that as the number of cross-

terms increases (K increases), a smaller step-size has to be utilized. Consequently, the

MTF approximation (K = 0) is associated with faster convergence, but suffers from

higher steady-state mse εk(∞). Estimation of additional cross-terms results in a slower

convergence, but improves the steady-state mse. Since the number of cross-terms is fixed

during the adaptation process, this algorithm may suffer from either slow convergence

(typical to large K) or relatively high steady-state mse (typical to small K). To improve

both the convergence rate and the steady-state mse, the number of cross-terms at each

iteration should be adaptively controlled, as discussed in the following section.

5.B.4 Adaptive control of cross-terms

In this section, we adaptively control the number of cross-terms to achieve both faster

convergence and smaller steady-state mse, compared to using a fixed number of cross-

terms. The strategy of controlling the number of cross-terms is related to filter-length

control (e.g., [114, 116]). However, existing length-control algorithms operate in the time

domain, focusing on linear FIR adaptive filters. Here, we extend the approach presented

in [116] to construct an adaptive control procedure for CMTF adaptation implemented

in the STFT domain.

Proposed algorithm description

The main objective of the proposed algorithm is to find the optimal number of cross-terms

that achieves the mmse at each iteration. Let

Kopt(p) = arg min
K

εk(p) . (5.71)

Then, 2Kopt(p) + 1 denotes the optimal number of cross-terms at iteration p. It was

shown in the previous section that as more data is employable in the adaptation process
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(i.e., the frame index p increases), we expect to attain a lower mse by increasing the

number of cross-terms. Therefore, the proposed algorithm should initially select a small

number of cross-terms (usually K = 0) to achieve initial fast convergence, and then, as

the adaptation process proceeds, it should gradually increase this number to achieve the

desired steady-state performance. This is done by simultaneously updating three system

models, each consists of different number of cross-terms. Specifically, let ĥ1k(p), ĥ2k(p)

and ĥ3k(p) denote three vectors of 2K1(p) + 1, 2K2(p) + 1 and 2K3(p) + 1 adaptive cross-

terms, respectively. At the beginning of the adaptation (p = 0), the number of cross-terms

in each vector is initialized to K1(0) = K0−1, K2(0) = K0 and K3(0) = K0 +1, where K0

is a constant integer. Then, these vectors are updated simultaneously at each iteration

using the normalized LMS (NLMS) algorithm

ĥik(p + 1) = ĥik(p) +
µi(p)

‖xik(p) ‖2 ei
p,kx

∗
ik(p) (5.72)

where i = 1, 2, 3 , xik(p) = [ xp,k−Ki(p) · · · xp,k+Ki(p) ]T , ei
p,k = yp,k − xT

ik(p)ĥik(p) is

the resulting error signal, and µi(p) is the relative step-size. Since the step-size should

be inversely proportional to the number of cross-terms [see (5.70)], we choose µi(p) =

M/ (Ki(p) + 1), with M being a constant parameter. The second adaptive vector ĥ2k(p)

is the vector of interest as its coefficients are used for estimating the desired signal dp,k,

i.e.,

d̂p,k = xT
2k(p)ĥ2k(p) . (5.73)

Therefore, the dimension of ĥ2k(p), 2K2(p) + 1, should represent the optimal number of

cross-terms in each iteration. For this purpose, we define the following averages

εik(p) =
1

P

p∑
q=p−P+1

|ei
q,k|2 , i = 1, 2, 3 (5.74)

for the mse estimate at the pth iteration, where P is a constant parameter. These averages

are computed every P frames, and the value of K2(p) is then determined by the following

decision rule:

K2 (p + 1) =





K2(p) + 1 ; if ε1k(p) > ε2k(p) > ε3k(p)

K2(p) ; if ε1k(p) > ε2k(p) ≤ ε3k(p)

K2(p)− 1 ; otherwise

. (5.75)
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Accordingly, K1(p + 1) and K3(p + 1) are updated by

K1(p + 1) = K2 (p + 1)− 1 , (5.76)

K3(p + 1) = K2 (p + 1) + 1 ,

and the adaptation proceeds by updating the resized vectors ĥik(p) using (5.72). Note that

the parameter P should be sufficiently small to enable tracking during variations in the

optimal number of cross-terms, and sufficiently large to achieve an efficient approximation

of the mse by (5.74).

The decision rule in (5.75) can be explained as follows. When the optimum number

of cross-terms is equal or larger than K3(p), then ε1k(p) > ε2k(p) > ε3k(p) and all values

are increased by one. In this case, the vectors are reinitialized by ĥ1k(p + 1) = ĥ2k(p),

ĥ2k(p + 1) = ĥ3k(p), and ĥ3k(p + 1) =
[
0 ĥT

3k(p) 0
]T

. When K2(p) is the optimum

number, then ε1k(p) > ε2k(p) ≤ ε3k(p) and the values remain unchanged. Finally, when the

optimum number is equal or smaller than K1(p), we have ε1k(p) ≤ ε2k(p) < ε3k(p) and all

values are decreased by one. In this case, we reinitialize the vectors by ĥ3k(p+1) = ĥ2k(p),

ĥ2k(p + 1) = ĥ1k(p), and ĥ1k(p + 1) is obtained by eliminating the first and last elements

of ĥ1k(p). The decision rule is aimed at reaching the minimal mse for each frequency

bin separately. That is, distinctive frequency bins may have different values of K2(p) at

each frame index p. Clearly, this decision rule is unsuitable for applications where the

error signal to be minimized is in the time domain. In such cases, the optimal number

of cross-terms is the one that minimizes the time-domain mse E{|e(n)|2} [contrary to

(5.71)]. Therefore, we use the following averages

εi(n) =
1

P̃

n∑

m=n−P̃+1

|ei(m)|2 , i = 1, 2, 3 (5.77)

for estimating the time-domain mse, where ei(n) is the inverse STFT of ei
p,k, P̃ ,

(P − 1) L + N , and L is the translation factor of the STFT. Then, as in (5.74), these

averages are computed every P frames (corresponding to PL time-domain iterations),

and K2(n) is determined similarly to (5.75) by substituting εi(n) for εik(p) and n for p.

Note that now all frequency bins have the same number of cross-terms [2K2(p)+1] at each

frame. The two proposed decision rules, for both time and STFT domains adaptation,

will be further demonstrated in the next section.
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Computational complexity

Updating 2K +1 cross-terms using the NLMS adaptation formula (5.72), requires 8K +6

arithmetic operations for every L input samples [99]. Therefore, since three vectors of

cross-terms are updated simultaneously in each frame, the adaptation process of the

proposed approach requires 8 [K1(p) + K2(p) + K3(p)] + 6 arithmetic operations. Using

(5.76) and computing the desired signal estimate (5.66), the overall complexity of the

proposed approach is given by 28K2(p)+7 arithmetic operation for every L input samples

and each frequency bin. The computations required for updating K2(p) [see (5.74)-(5.76)]

are relatively negligible, since they are carried out only once every P iterations. When

compared to the conventional MTF approach (K = 0), the proposed approach involves

an increase of 28K2(p) + 1 arithmetic operations for every L input samples and every

frequency bin.

5.B.5 Experimental results

In this section, we present experimental results which verify the theoretical analysis and

demonstrate the effectiveness of the proposed approach. In the first experiment, we

examine the proposed approach performance in the STFT domain for white Gaussian

signals. That is, the input signal x(n) and the additive noise signal ξ(n) are uncorrelated

zero-mean white Gaussian processes with variances σ2
x = 1 and σ2

ξ = 0.001, respectively.

We model the impulse response as a stochastic process with an exponential decay envelope,

i.e., h(n) = u(n)β(n)e−0.02n, where u(n) is the unit step function and β(n) is a unit-

variance zero-mean white Gaussian noise. The impulse response length is set to Nh = 16,

and a Hamming synthesis window of length N = 128 with 50% overlap is employed.

Figure 5.5 shows the transient mse curves εk(p) of both the CMTF approach with fixed

number of cross-terms, and the proposed approach with variable number of cross-terms.

The cross-terms in the first approach are updated by the NLMS adaptation formula (5.72)

using M = 0.1. For the proposed approach, we use K0 = 0, P = 30 and M = 0.1. Results

are averaged out over 2000 independent runs. The results confirm that when the number

of cross-terms is fixed during the adaptation process, a lower steady-state mse is achieved

with increasing K, but at the expense of a slower convergence. Contrarily, the proposed
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Figure 5.5: Transient mse curves for white Gaussian signals, obtained by adaptively updating

a fixed number of cross-terms (K = 0, 1, 2 and 3), and by using the proposed approach. K2(p)

and Kopt(p) are compared at the bottom.

algorithm achieves the lowest steady-state mse with a convergence rate comparable to

that of the conventional MTF approach (K = 0). In particular, a decrease of 13 dB in

the mse is obtained by the proposed approach, when compared to the MTF approach.

The bottom of Fig. 5.5 compares K2(p), which determines the number of cross-terms

selected by the proposed algorithm at iteration p, to the optimal number of cross-terms

Kopt(p) [see (5.71)]. Clearly, the number of estimated cross-terms increases as more data

is available in the adaptation process. The proposed algorithm well predicts the optimal

value Kopt(p), which enables to achieve the minimal mse at each iteration.

In the second experiment, we demonstrate the proposed approach in an acoustic echo

cancellation application using real speech signals. We use an ordinary office with a re-

verberation time T60 of about 100 ms. In this experiment, the signals are sampled at

16 kHz. A far-end speech signal x(n) is generated by a loudspeaker and received by

a microphone as an echo signal d(n) together with a near-end speech signal and local

noise [collectively denoted by ξ(n)]. The distance between the near-end source and the

microphone is 1 m. The effective length of the echo path is 100 ms (Nh = 1600). The

STFT is implemented with a Hamming synthesis window of length N = 3200 and 50%

overlap. The acoustic echo canceller (AEC) performance is evaluated by the echo-return
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loss enhancement (ERLE), defined in dB by

ERLE = 10 log10

E{y2(n)}
E{e2(n)} , (5.78)

where e(n) is the inverse STFT of ep,k. Figures 5.6(a)–(b) show the far-end and micro-

phone signals, respectively, where a double-talk situation (simultaneously active far-end

and near-end speakers) occurs between 3.4 s and 4.4 s (indicated by two vertical dotted

lines). Figures 5.6(c)–(d) show the error signal e(n) obtained by the CMTF approach

with a fixed number of cross-terms (K = 0 and K = 2, respectively), and Fig. 5.6(e)

shows the error signal obtained by the proposed approach. Other simulation parameters

are K0 = 0, P = 5 and M = 1. In this case, the time-domain decision rule, based on the

mse estimate in (5.77), is employed. The ERLE values of the corresponding error signals

were computed after convergence of the algorithms, and are given by 12.8 dB (K = 0),

16.5 dB (K = 2), and 18.6 dB (proposed). Clearly, the proposed algorithm achieves both

fast convergence as the MTF approach and high ERLE as the CMTF approach, while

adaptively controlling the number of cross-terms.

5.B.6 Conclusions

We have introduced a new algorithm for system identification in the STFT domain, which

relies on the recently proposed CMTF approximation. Instead of using a fixed number

of cross-terms, the proposed algorithm adaptively controls the number of cross-terms in

each iteration, and enables to achieve faster convergence without compromising for higher

steady-state mse.
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Figure 5.6: Speech waveforms and error signals. A double-talk situation is indicated by vertical

dotted lines. (a) Far-end signal (b) Microphone signal. (c)–(d) Error signals obtained by using

the CMTF approach with fixed number of cross-terms: K = 0 and K = 2, respectively. (e)

Error signal obtained by the proposed algorithm.



Chapter 6

Nonlinear Systems in the STFT

Domain – Representation and

Identification1

Identification of linear systems in the short-time Fourier transform (STFT) domain has

been studied extensively, and many efficient algorithms have been proposed for that pur-

pose. These algorithms, however, provide poor performance when estimating real-world

systems that exhibit certain nonlinearities. In this chapter, we introduce a novel ap-

proach for improved nonlinear system identification in the STFT domain. We first derive

an explicit representation of discrete-time Volterra filters in the STFT domain. Based on

this representation, an approximate nonlinear STFT model, which consists of a parallel

combination of linear and nonlinear components, is developed. The linear component is

represented by crossband filters between the subbands, while the nonlinear component is

modeled by multiplicative cross-terms. We show that a significant reduction in computa-

tional cost as well as a substantial improvement in estimation accuracy can be achieved

over the time-domain Volterra model, particularly when long-memory nonlinear systems

are considered. Experimental results validate the theoretical derivations and demonstrate

the effectiveness of the proposed approach. In Chapter 7, we analyze the performance of

the proposed approach in estimating quadratically nonlinear systems, and derive impor-

tant relations between the noise level, nonlinearity strength, and model parameters.

1This chapter is based on [117].
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6.1 Introduction

Identification of linear systems has been studied extensively and is of major importance

in diverse fields of signal processing [24, 118]. However, in many real-world applications,

the considered systems exhibit certain nonlinearities that cannot be sufficiently estimated

by conventional linear models. Examples of such applications include acoustic echo can-

cellation [36–38], channel equalization [39, 40], biological system modeling [41], image

processing [42], and loudspeaker linearization [43]. Volterra filters [44–46] are widely

used for modeling nonlinear physical systems, such as loudspeaker-enclosure-microphone

(LEM) systems in nonlinear acoustic echo cancellation applications [37, 47, 48], and dig-

ital communication channels [39, 49], just to mention a few. An important property of

Volterra filters, which makes them useful in nonlinear estimation problems, is the linear

relation between the system output and the filter coefficients. Many approaches, which

attempt to estimate the Volterra kernels in the time domain, employ conventional linear

estimation methods in batch (e.g., [45,50]) or adaptive forms (e.g., [37,51])2. A common

difficulty associated with time-domain methods is their high computational cost, which

is attributable to the large number of parameters of the Volterra model. This problem

becomes even more crucial when estimating systems with relatively large memory length,

as in acoustic echo cancellation applications. Another major drawback of the Volterra

model is its severe ill-conditioning [52], which leads to high estimation-error variance and

to slow convergence of the adaptive Volterra filter. To overcome these problems, several

approximations for the time-domain Volterra filter have been proposed, including orthog-

onalized power filters [53], Hammerstein models [54], parallel-cascade structures [55], and

multi-memory decomposition [56].

Alternatively, frequency-domain methods have been introduced for Volterra system

identification, aiming at estimating the so-called Volterra transfer functions [59–61]. Sta-

tistical approaches based on higher order statistics (HOS) of the input signal use cumulants

and polyspectra information [59]. These approaches have relatively low computational

cost, but often assume a Gaussian input signal, which limits their applicability. In [60]

2For a brief review on existing methods for Volterra-based nonlinear system identification see Chap-

ter 2.3.
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and [61], a discrete frequency-domain model is defined, which approximates the Volterra

filter in the frequency domain using multiplicative terms. Although this approach assumes

no particular statistics for the input signal, it requires a long duration of the input sig-

nal to validate the multiplicative approximation and to achieve satisfactory performance.

When the data is of limited size (or when the nonlinear system is not time-invariant), this

long duration assumption is very restrictive.

In this chapter, we introduce a novel approach for improved nonlinear system identi-

fication in the short-time Fourier transform (STFT) domain, which is based on a time-

frequency representation of the Volterra filter. A typical nonlinear system identification

scheme in the STFT domain is illustrated in Fig. 6.1. Similarly to STFT-based linear

identification techniques [21, 22, 65], representing and identifying nonlinear systems in

the STFT domain is motivated by a reduction in computational cost compared to time-

domain methods, due to processing in distinct subbands. Together with a reduction in

the spectral dynamic range of the input signal, the reduced complexity may also lead to a

faster convergence of nonlinear adaptive algorithms. Consequently, a proper model in the

STFT domain may facilitate a practical alternative for conventional nonlinear models,

especially in estimating nonlinear systems with relatively long memory, which cannot be

practically estimated by existing methods. We show that a homogeneous time-domain

Volterra filter [44] with a certain kernel can be perfectly represented in the STFT do-

main, at each frequency bin, by a sum of Volterra-like expansions with smaller-sized

kernels. This representation, however, is impractical for identifying nonlinear systems

due to the extremely large complexity of the model. We develop an approximate nonlin-

ear model, which simplifies the STFT representation of Volterra filters and significantly

reduces the model complexity. The resulting model consists of a parallel combination of

linear and nonlinear components. The linear component is represented by crossband filters

between the subbands [16, 65], while the nonlinear component is modeled by multiplica-

tive cross-terms, extending the so-called cross-multiplicative transfer function (CMTF)

approximation [99]. It is shown that the proposed STFT model generalizes the conven-

tional discrete frequency-domain model [60], and forms a much reacher representation for

nonlinear systems. Concerning system identification, we employ the proposed model and

introduce an off-line scheme for estimating the model parameters using a least-squares
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(LS) criterion. The proposed approach is more advantageous in terms of computational

complexity than the time-domain Volterra approach. When estimating long-memory sys-

tems, a substantial improvement in estimation accuracy over the Volterra model can be

achieved, especially for high signal-to-noise ratio (SNR) conditions. Experimental results

with white Gaussian signals and real speech signals demonstrate the advantages of the

proposed approach.

The chapter is organized as follows. In Section 6.2, we derive an explicit representa-

tion of discrete-time Volterra filters in the STFT domain. In Section 6.3, we introduce

a simplified model for nonlinear systems in the STFT domain. In Section 6.4, we con-

sider off-line estimation of the proposed-model parameters and compare its complexity to

that of the conventional time-domain approach. Finally, in Section 6.5, we present some

experimental results.

In Chapter 7, we analyze the performance of the proposed approach in estimating

quadratically nonlinear systems in the STFT domain. We derive explicit expressions for

the obtainable mean-square error (mse) in each frequency bin, and reveal important rela-

tions between the noise level, the strength of the nonlinearity, and the model parameters.

We investigate the influence of nonlinear undermodeling (i.e., ignoring the nonlinearity

and employing a purely linear model) and the number of crossband filters of the linear

component on the mse performance.

6.2 Representation of Volterra Filters in the STFT

Domain

In this section, we represent discrete-time Volterra filters in the STFT domain. We first

consider the quadratic case, and subsequently generalize the results to higher orders of

nonlinearity. We show that a time-domain Volterra kernel can be perfectly represented in

the STFT domain by a sum of smaller-sized kernels in each frequency bin. Throughout

this work, unless explicitly noted, the summation indices range from −∞ to ∞.
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Figure 6.1: Nonlinear system identification in the STFT domain. The unknown time-domain

nonlinear system φ(·) is estimated using a given model in the STFT domain.

6.2.1 Quadratically Nonlinear Systems

Consider a quadratically nonlinear system with an input x(n) and an output d(n). One

of the most popular representations of such system is a second-order Volterra filter that

relates x(n) and d(n) as follows:

d(n) =

N1−1∑
m=0

h1(m)x(n−m)

+

N2−1∑
m=0

N2−1∑

`=0

h2(m, `)x(n−m)x(n− `)

, d1(n) + d2(n) , (6.1)

where h1(m) and h2(m, `) are the linear and quadratic Volterra kernels, respectively,

and d1(n) and d2(n) denote the corresponding output signals of the linear and quadratic

homogeneous components. The memory length N1 of the linear kernel is assumed to

be different in general from the memory length N2 of the quadratic kernel. To find a

representation of d(n) in the STFT domain, let us first briefly review some definitions of

the STFT representation of digital signals (for further details, see e.g., [71]).

The STFT representation of a signal x(n) is given by

xp,k =
∑
m

x(m)ψ̃∗p,k(m) , (6.2)
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where

ψ̃p,k(n) , ψ̃(n− pL)ej 2π
N

k(n−pL) (6.3)

denotes a translated and modulated window function, ψ̃(n) is a real-valued analy-

sis window of length N , p is the frame index, k represents the frequency-bin index

(0 ≤ k ≤ N − 1), L is the translation factor (or the decimation factor, in filter-bank

interpretation) and ∗ denotes complex conjugation. The inverse STFT, i.e., reconstruc-

tion of x(n) from its STFT representation xp,k, is given by

x(n) =
∑

p

N−1∑

k=0

xp,kψp,k(n) , (6.4)

where

ψp,k(n) , ψ(n− pL)ej 2π
N

k(n−pL) , (6.5)

and ψ(n) denotes a synthesis window of length N . Throughout this chapter, we assume

that ψ̃(n) and ψ(n) are real functions. Substituting (6.2) into (6.4), we obtain the so-called

completeness condition:

∑
p

ψ(n− pL)ψ̃(n− pL) =
1

N
for all n . (6.6)

Given analysis and synthesis windows that satisfy (6.6), a signal x(n) ∈ `2(Z) is guaran-

teed to be perfectly reconstructed from its STFT coefficients xp,k. However, for L ≤ N

and for a given synthesis window ψ(n), there might be an infinite number of solutions to

(6.6); therefore, the choice of the analysis window is generally not unique [72,73].

Using the linearity of the STFT, d(n) in (6.1) can be written in the time-frequency

domain as

dp,k = d1;p,k + d2;p,k , (6.7)

where d1;p,k and d2;p,k are the STFT representations of d1(n) and d2(n), respectively. It

is well known that in order to perfectly represent a linear system in the STFT domain,

crossband filters between subbands are generally required [16, 65]. Therefore, the output

of the linear component can be expressed in the STFT domain as

d1;p,k =
N−1∑

k′=0

N̄1−1∑

p′=0

xp−p′,k′hp′,k,k′ , (6.8)
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where hp,k,k′ denotes a crossband filter of length N̄1 = d(N1 + N − 1) /Le + dN/Le − 1

from frequency bin k′ to frequency bin k. These filters are used for canceling the aliasing

effects caused by the subsampling factor L. The crossband filter hp,k,k′ is related to the

linear kernel h1(n) by [65]

hp,k,k′ = {h1(n) ∗ φk,k′(n)}|n=pL (6.9)

where the discrete-time Fourier transform (DTFT) of φk,k′(n) with respect to the time

index n is given by

Φk,k′(ω) =
∑

n

φk,k′(n)e−jnω = Ψ̃∗
(

ω − 2π

N
k

)
Ψ

(
ω − 2π

N
k′

)
, (6.10)

where Ψ̃(ω) and Ψ(ω) are the DTFT of ψ̃(n) and ψ(n), respectively. Note that the en-

ergy of the crossband filter from frequency bin k′ to frequency bin k generally decreases as

|k − k′| increases, since the overlap between Ψ̃ (ω − (2π/N) k) and Ψ (ω − (2π/N) k′) be-

comes smaller. Recently, we have investigated the influence of crossband filters on a linear

system identifier implemented in the STFT domain [65]. We showed that increasing the

number of crossband filters not necessarily implies a lower steady-state mse in subbands.

In fact, the inclusion of more crossband filters in the identification process is preferable

only when high SNR or long data are considered. As will be shown later, the same applies

also when an additional nonlinear component is incorporated into the model.

The representation of the quadratic component’s output d2(n) in the STFT domain

can be derived in a similar manner to that of the linear component. Specifically, applying

the STFT to d2(n) we may obtain after some manipulations (see Appendix 6.A)

d2;p,k =
N−1∑

k′,k′′=0

∑

p′,p′′
xp′,k′xp′′,k′′cp−p′,p−p′′,k,k′,k′′

=
N−1∑

k′,k′′=0

∑

p′,p′′
xp−p′,k′xp−p′′,k′′cp′,p′′,k,k′,k′′ . (6.11)

where cp−p′,p−p′′,k,k′,k′′ may be interpreted as a response of the quadratic system to a pair of

impulses {δp−p′,k−k′ , δp−p′′,k−k′′} in the time-frequency domain. Equation (6.11) indicates

that for a given frequency-bin index k, the temporal signal d2;p,k consists of all possible

interactions between pairs of input frequencies. The contribution of each frequency pair

{k′, k′′| k′, k′′ ∈ {0, . . . , N − 1}} to the output signal at frequency bin k is given as a
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Volterra-like expansion with cp′,p′′,k,k′,k′′ being its quadratic kernel. The kernel cp′,p′′,k,k′,k′′

in the time-frequency domain is related to the quadratic kernel h2(n,m) in the time

domain by (see Appendix 6.A)

cp′,p′′,k,k′,k′′ = {h2(n,m) ∗ φk,k′,k′′(n,m)}|n=p′L, m=p′′L (6.12)

where ∗ denotes a 2D convolution and

φk,k′,k′′(n, m) ,
∑

`

ψ̃(`)e−j 2π
N

k`ψ(n + `)ej 2π
N

k′(n+`)ψ(m + `)ej 2π
N

k′′(m+`) . (6.13)

Equation (6.13) implies that for fixed k, k′ and k′′, the quadratic kernel cp′,p′′,k,k′,k′′ is

noncausal with dN/Le − 1 noncausal coefficients in each variable (p′ and p′′). Note that

crossband filters are also noncausal with the same number of noncausal coefficients [65].

Hence, for system identification, an artificial delay of (dN/Le − 1) L can be applied to the

system output signal d(n) in order to consider a noncausal response. It can also be seen

from (6.13) that the memory length of each kernel is given by

N̄2 =

⌈
N2 + N − 1

L

⌉
+

⌈
N

L

⌉
− 1 , (6.14)

which is approximately L times lower than the memory length of the time-domain

kernel h2(m, `). The support of cp′,p′′,k,k′,k′′ is therefore given by D × D where

D = [1− dN/Le , . . . , d(N2 + N − 1) /Le − 1].

To give further insight into the basic properties of the quadratic STFT kernels

cp′,p′′,k,k′,k′′ , we apply the 2D DTFT to φk,k′,k′′(n,m) with respect to the time indices

n and m, and obtain

Φk,k′,k′′ (ω, η) = Ψ̃∗
(

ω + η − 2π

N
k

)
Ψ

(
ω − 2π

N
k′

)
Ψ

(
ω − 2π

N
k′′

)
. (6.15)

By taking Ψ (ω) and Ψ̃ (ω) to be ideal low-pass filters with bandwidths π/N (i.e.,

Ψ (ω) = 0 and Ψ̃ (ω) = 0 for ω /∈ [−π/2N, π/2N ] ), a perfect STFT representation

of the quadratic time-domain kernel h2(n, m) can be achieved by utilizing only ker-

nels of the form cp′,p′′,k,k′,(k−k′)mod N , since in this case the product of Ψ(ω − (2π/N) k′),

Ψ(ω − (2π/N) k′) and Ψ̃∗ (ω + η − (2π/N) k) is identically zero for k′′ 6= (k − k′) mod N .

Practically, the analysis and synthesis windows are not ideal and their bandwidths are

greater than π/N , so φk,k′,(k−k′)mod N(n,m), and consequently cp′,p′′,k,k′,(k−k′)mod N , are not
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zero. Nonetheless, one can observe from (6.15) that the energy of φk,k′,k′′(n,m) decreases

as |k′′ − (k − k′) mod N | increases, since the overlap between the translated window func-

tions becomes smaller. As a result, not all kernels in the STFT domain should be consid-

ered in order to capture most of the energy of the STFT representation of h2(n,m).

This is illustrated in Fig. 6.2, which shows the energy of φk,k′,k′′(n,m), defined as

Ek,k′ (k
′′) ,

∑
n,m |φk,k′,k′′(n,m)|2, for k = 1, k′ = 0 and k′′ ∈ {(k − k′ + i) mod N}10

i=−10,

as obtained by using rectangular, triangular and Hann synthesis windows of length

N = 256. A corresponding minimum-energy analysis window that satisfies the com-

pleteness condition [72] for L = 128 (50% overlap) is also employed. The results confirm

that the energy of φk,k′,k′′(n,m), for fixed k and k′, is concentrated around the index

k′′ = (k − k′) mod N .

As expected from (6.15), the number of useful quadratic kernels in each frequency

bin is mainly determined by the spectral characteristics of the analysis and synthesis

windows. That is, windows with a narrow mainlobe (e.g., a rectangular window) yield

the sharpest decay, but suffer from wider energy distribution over k′′ due to relatively

high sidelobes energy. Smoother windows (e.g., Hann window), on the other hand, enable

better energy concentration. For instance, utilizing a Hann window reduces the energy

of φk,k′,k′′(n,m) for k′′ = (k − k′ ± 8) mod N by approximately 30 dB, when compared to

using a rectangular window. These results will be used in the next section for deriving a

useful model for nonlinear systems in the STFT domain.

6.2.2 High-Order Nonlinear Systems

Let us now consider a generalized qth-order nonlinear system with an input x(n) and

an output d(n). A time-domain qth-order Volterra filter representation of this system is

given by

d(n) =

q∑

`=1

d`(n) (6.16)

where d`(n) represents the output of the `th-order homogeneous Volterra filter, which is

related to the input x(n) by

d`(n) =

N`−1∑
m1=0

· · ·
N`−1∑
m

`
=0

h`(m1, . . . m`
)
∏̀
i=1

x(n−mi) (6.17)
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Figure 6.2: Energy of φk,k′,k′′(n,m) [defined in (6.13)] for k = 1 and k′ = 0, as obtained for

different synthesis windows of length N = 256.

where h`(m1, . . .m`
) is the `th-order Volterra kernel, and N` (1 ≤ ` ≤ q) represents its

memory length.

Applying the STFT to d`(n) and following a similar derivation to that made for the

quadratic case [see (6.11)-(6.13), and Appendix 6.A], we obtain after some manipulations

d`;p,k =
N−1∑

k1,...k`=0

∑
p1,...p

`

cp1,...p
`
,k,k1,...k

`

∏̀
i=1

xp−pi,ki
. (6.18)

Equation (6.18) implies that the output of an `th-order homogeneous Volterra filter in

the STFT domain, at a given frequency-bin index k, consists of all possible combinations

of input frequencies taken ` at a time. The contribution of each `-fold frequency indices

{k1, . . . k`} to the kth frequency bin is expressed in terms of an `th-order homogeneous

Volterra expansion with the kernel cp1,...p
`
,k,k1,...k

`
. Similarly to the quadratic case, it can

be shown that the STFT kernel cp1,...p
`
,k,k1,...k

`
in the time-frequency domain is related to

the kernel h`(m1, . . . m`
) in the time domain by

cp1,...p
`
,k,k1,...k

`
=

{
h`(m1, . . .m`

) ∗ φk,k1,...k
`
(m1, . . . m`

)
}∣∣

mi=piL; i=1,...`.
(6.19)

where ∗ denotes an `-D convolution and

φk,k1,...k
`
(m1, . . . m`

) ,
∑

n

ψ̃(n)e−j 2π
N

kn
∏̀
i=1

ψ(mi + n)ej 2π
N

ki(mi+n) . (6.20)
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Equations (6.19)-(6.20) imply that for fixed indices {ki}`
i=1, the kernel cp1,...p

`
,k,k1,...k

`
is

noncausal with dN/Le − 1 noncausal coefficients in each variable {pi}`
i=1, and its overall

memory length is given by

N̄` =

⌈
N` + N − 1

L

⌉
+

⌈
N

L

⌉
− 1 . (6.21)

Note that for ` = 1 and ` = 2, (6.18)-(6.20) reduce to the STFT representation of the

linear kernel (6.8) and the quadratic kernel (6.11), respectively. Furthermore, applying

the `-D DTFT to φk,k1,...k
`
(m1, . . .m`

) with respect to the time indices m1, . . . m`
, we

obtain

Φk,k1,...k
`
(ω1, . . . ω`) = Ψ̃∗

(∑̀
i=1

ωi − 2π

N
k

) ∏̀
m=1

Ψ

(
ωm − 2π

N
km

)
. (6.22)

Then, had both Ψ̃(ω) and Ψ(ω) been ideal low-pass filters with bandwidth

2π/ (d(` + 1) /2eN), the overlap between the translated window functions in (6.22)

would be identically zero for k` 6=
(
k −∑`−1

i=1 ki

)
mod N , and thus only kernels of the

form cp1,...p
`
,k,k1,...k

`
where k` =

(
k −∑`−1

i=1 ki

)
mod N would contribute to the output at

frequency-bin index k. Practically, the energy is distributed over all kernels and particu-

larly concentrated around the index k` =
(
k −∑`−1

i=1 ki

)
mod N , as was demonstrated in

Fig. 6.2 for the quadratic case (` = 2).

6.3 An Approximate Model for Nonlinear Systems

in the STFT Domain

Representation of Volterra filters in the STFT domain involves a large number of para-

meters and high error variance, particularly when estimating the system from short and

noisy data. In this section, we introduce an approximate model for improved nonlinear

system identification in the STFT domain, which simplifies the STFT representation of

Volterra filters and reduces the model complexity.

We start with an STFT representation of a second-order Volterra filter. Recall that

modeling the linear kernel requires N crossband filters in each frequency bin [see (6.8)],

where the length of each filter is approximately N1/L. For system identification, however,

only a few crossband filters need to be considered [65], which leads to a computationally
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efficient representation of the linear component. The quadratic Volterra kernel represen-

tation, on the other hand, consists of N2 kernels in each frequency bin [see (6.11)], where

the size of each kernel in the STFT domain is approximately N2/L× N2/L. A perfect

representation of the quadratic kernel is then achieved by employing (NN2/L)2 parame-

ters in each frequency bin. Even though it may be reduced by considering the symmetric

properties of the kernels, the complexity of such a model remains extremely large.

To reduce the complexity of the quadratic model in the STFT domain, let us assume

that the analysis and synthesis filters are selective enough with bandwidths of nearly π/N .

In this case, according to Fig. 6.2, most of the energy of a quadratic kernel cp′,p′′,k,k′,k′′ , for

fixed k and k′, is concentrated in a small region around the index k′′ = (k − k′) mod N ,

such that (6.11) can be efficiently approximated by

d2;p,k ≈
N−1∑

k′,k′′=0
(k′+k′′)mod N=k

∑

p′,p′′
xp−p′,k′xp−p′′,k′′cp′,p′′,k,k′,k′′ . (6.23)

A further simplification can be made by extending the so-called cross-multiplicative trans-

fer function (CMTF) approximation, which was first introduced in [99,115] for the repre-

sentation of linear systems in the STFT domain. According to this model, a linear system

is represented in the STFT domain by cross-multiplicative terms, rather than crossband

filters, between distinct subbands. Following a similar reasoning, a kernel cp′,p′′,k,k′,k′′ in

(6.23) may be approximated as purely multiplicative in the STFT domain, so that (6.23)

degenerates to

d2;p,k ≈
N−1∑

k′,k′′=0
(k′+k′′)mod N=k

xp,k′xp,k′′ck′,k′′ . (6.24)

We refer to ck′,k′′ as a quadratic cross-term. The constraint (k′ + k′′) mod N = k on the

summation indices in (6.24) indicates that only frequency indices {k′, k′′}, whose sum is

k or k + N3, contribute to the output at frequency bin k. This concept is well illustrated

in Fig. 6.3, which shows the (k′, k′′) two-dimensional plane. For calculating d2;p,k at

frequency bin k, only points on the lines k′ + k′′ = k and k′ + k′′ = k + N need to

3Since k and k′ range from 0 to N −1, the contribution of the difference interaction of two frequencies

to the kth frequency bin corresponds to the sum interaction of the same two frequencies to the (k +N)th

frequency bin.
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be considered. Moreover, the quadratic cross-terms ck′,k′′ have unique values only at

the upper triangle ACH. Therefore, the intersection between this triangle and the lines

k′ + k′′ = k and k′ + k′′ = k + N bounds the range of the summation indices in (6.24),

such that d2;p,k can be compactly rewritten as

d2;p,k ≈
∑

k′∈F
xp,k′xp,(k−k′)mod Nck′,(k−k′)mod N , (6.25)

where F = {0, 1, . . . bk/2c , k + 1, . . . , k + 1 + b(N − k − 2) /2c} ⊂ [0, N − 1]. Conse-

quently, the number of cross-terms at the kth frequency bin has been reduced by a factor

of two to bk/2c+ b(N − k − 2) /2c+ 2. Note that a further reduction in the model com-

plexity can be achieved if the signals are assumed real-valued, since in this case ck′,k′′ must

satisfy ck′,k′′ = c∗N−k′,N−k′′ , and thus, only points in the grey area contribute to the model

output (in this case, it is sufficient to consider only the first bN/2c+ 1 output frequency

bins).

It is worthwhile noting the aliasing effects in the model output signal. Aliasing exists

in the output as a consequence of sum and difference interactions that produce frequencies

higher than one-half of the Nyquist frequency. The input frequencies causing these aliasing

effects correspond to the points in the triangles BDO and FGO. To avoid aliasing, one

must require that the value of xp,k′xp,k′′ck′,k′′ is zero for all indices k′ and k′′ inside these

triangles.

Finally, using (6.8) and (6.25) for representing the linear and quadratic components

of the system, respectively, we obtain

dp,k =
N−1∑

k′=0

N̄1−1∑

p′=0

xp−p′,k′hp′,k,k′

+
∑

k′∈F
xp,k′xp,(k−k′)mod Nck′,(k−k′)mod N . (6.26)

Equation (6.26) represents an explicit model for quadratically nonlinear systems in the

STFT domain. A block diagram of the proposed model is illustrated in Fig. 6.4. Analo-

gously to the time-domain Volterra model, an important property of the proposed model

is the fact that its output depends linearly on the coefficients, which means that con-

ventional linear estimation algorithms can be applied for estimating its parameters (see

Section 6.4).
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Figure 6.3: Two-dimensional (k′, k′′) plane. Only points on the line k′ + k′′ = k (corresponding

to sum interactions) and the line k′ + k′′ = k + N (corresponding to difference interactions)

contribute to the output at the kth frequency bin.

The proposed STFT-domain model generalizes the conventional discrete frequency-

domain Volterra model [60], where the linear and quadratic components of the system are

modeled in parallel using multiplicative terms:

D(k) = H1(k)X(k) +
N−1∑

k′,k′′=0
(k′+k′′)mod N=k

H2(k
′, k′′)X(k′)X(k′′) , (6.27)

where X(k) and D(k) are the Nth-length discrete Fourier transforms (DFT’s) of the

input x(n) and the output d(n), respectively, and H1(k) and H2(k
′, k′′) are the linear and

quadratic Volterra transfer functions, respectively. A major limitation of this model is

its underlying assumption that the observation frame (N) is sufficiently large compared

with the memory length of the linear kernel, which enables to approximate the linear

convolution as multiplicative in the frequency domain. Similarly, under this large-frame

assumption, the linear component in the proposed model (6.26) can be approximated as a

multiplicative transfer function (MTF) [98, 119]. Accordingly, the STFT model in (6.26)

reduces to

dp,k = hkxp,k +
∑

k′∈F
xp,k′xp,(k−k′)mod Nck′,(k−k′)mod N , (6.28)
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Figure 6.4: Block diagram of the proposed model for quadratically nonlinear systems in the

STFT domain. The upper branch represents the linear component of the system, which is

modeled by the crossband filters hp,k,k′ . The quadratic component is modeled at the lower

branch by using the quadratic cross-terms ck,k′ .

which is in one-to-one correspondence with the frequency-domain model (6.27). There-

fore, the frequency-domain model can be regarded as a special case of the proposed model

for relatively large observation frames. In practice, a large observation frame may be very

restrictive, especially when long and time-varying impulse responses are considered (as

in acoustic echo cancellation applications [89]). A long frame restricts the capability to

identify and track time variations in the system, since the system is assumed constant dur-

ing the observation frame. Additionally, as indicated in [98], increasing the frame length

(while retaining the relative overlap between consecutive frames), reduces the number of

available observations in each frequency bin, which increases the variance of the system

estimate. Attempting to identify the system using the models (6.27) or (6.28) yields

a model mismatch that degrades the accuracy of the linear-component estimate. The

crossband filters representation, on the other hand, outperforms the MTF approach and

achieves a substantially lower mse value, even when relatively long frames are consid-

ered [65]. Clearly, the proposed model forms a much reacher representation than that
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offered by the frequency-domain model, and may correspondingly be useful for a larger

variety of applications.

In this context, it should be emphasized that the quadratic-component representation

provided by the proposed time-frequency model (6.26) (and certainly by the frequency-

domain model) may not exactly represent a second-order Volterra filter in the time do-

main, due to the approximations made in (6.23) and (6.24). Nevertheless, the proposed

STFT model forms a new class of nonlinear models that may represent certain nonlinear

systems more efficiently than the conventional time-domain Volterra model. In fact, as

will be shown in Section 6.5, the proposed model may be more advantageous than the

latter in representing nonlinear systems with relatively long memory due to its computa-

tional efficiency.

For completeness of discussion, let us extend the STFT model to the general case of a

qth-order nonlinear system. Following a similar derivation to that made for the quadratic

case [see (6.23)-(6.24)], the output of a qth-order nonlinear system is modeled in the STFT

domain as

dp,k = d1;p,k +

q∑

`=2

d`;p,k , (6.29)

where the linear component d1;p,k is given by (6.8), and the `th-order homogeneous com-

ponent d`;p,k is given by

d`;p,k =
N−1∑

k1,...k`
=0

(P`
i=1

ki)mod N=k

ck1,...k`

∏̀
i=1

xp,ki
. (6.30)

Clearly, only `-fold frequencies {ki}`
i=1, whose sum is k or k + N , contribute to the

output d`;p,k at frequency bin k. Consequently, the number of cross-terms ck1,...k`−1,k`
(` =

2, . . . , q) involved in representing a qth-order nonlinear system is given by
∑q

`=2 N `−1 =

(N q −N) / (N − 1). Note that this number can be further reduced by exploiting the

symmetry property of the cross-terms, as was done for the quadratic case.

6.4 Quadratically Nonlinear System Identification

In this section, we consider the problem of identifying quadratically nonlinear systems us-

ing the proposed STFT model, and formulate an LS optimization criterion for estimating
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the model parameters in each frequency bin. The conventional time-domain Volterra filter

identification is also described, and a comparison between the STFT- and time-domain

models is carried out in terms of computational complexity. Without loss of general-

ity, we consider here only the quadratic model due its relatively simpler structure. The

quadratic model is appropriate for representing the nonlinear behavior of many real world

systems [75]. An extension to higher nonlinearity orders is straightforward.

Let an input x(n) and output y(n) of an unknown (quadratically) nonlinear system

be related by

y(n) = {φx} (n) + ξ(n) = d(n) + ξ(n) , (6.31)

where φ(·) denotes a discrete-time nonlinear time-invariant system, ξ(n) is a corrupting

additive noise signal, and d(n) is the clean output signal. Note that the ”noise” signal

ξ(n) may sometimes include a useful signal, e.g., the local speaker signal in acoustic echo

cancellation. The problem of system identification can be formulated as follows: Given

an input signal x(n) and noisy observation y(n), construct a model for describing the

input-output relationship, and select its parameters so that the model output ŷ(n) best

estimates (or predicts) the measured output signal. We denote by Nx the time-domain

observable data length, and by P ≈ Nx/L the number of samples in a time-trajectory of

the STFT representation (i.e., length of xp,k for a given k).

6.4.1 Identification in the STFT domain

A system identifier operating in the STFT domain is illustrated in Fig. 6.1. In the

time-frequency domain, equation (6.31) may be written as

yp,k = dp,k + ξp,k . (6.32)

To derive an estimator ŷp,k for the system output in the STFT domain, we employ the

quadratic STFT model proposed in the previous section [see (6.26)]. Utilizing only 2K

crossband filters around each frequency bin for the estimation of the linear component,
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the resulting estimate ŷp,k can be written as

ŷp,k =
k+K∑

k′=k−K

N̄1−1∑

p′=0

xp−p′,k′mod Nhp′,k,k′mod N

+
∑

k′∈F
xp,k′xp,(k−k′) mod Nck′,(k−k′)mod N . (6.33)

The influence of the number of estimated crossband filters (2K+1) on the system identifier

performance is investigated in Chapter 7. We implicitly assume here that an artificial

delay of (dN/Le − 1) L samples has been introduced into the system output signal y(n)

so that the crossband filters can be considered causal.

Let hk be the 2K + 1 filters at frequency bin k

hk =
[

hT
k,(k−K)modN hT

k,(k−K+1)modN · · · · · · hT
k,(k+K)modN

]T

, (6.34)

where hk,k′ =
[

h0,k,k′ h1,k,k′ · · · hN̄1−1,k,k′

]T

is the crossband filter from frequency bin

k′ to frequency bin k. Let Xk denote an P ×M Toeplitz matrix whose (m, `)th term is

given by (Xk)m,` = xm−`,k, and let ∆k be a concatenation of {Xk′}(k+K)modN
k′=(k−K)modN along the

column dimension

∆k =
[

X(k−K)modN X(k−K+1)modN · · · · · · X(k+K)modN

]
. (6.35)

For notational simplicity, let us assume that k and N are both even, such that according

to (6.25), the number of quadratic cross-terms in each frequency bin is N/2 + 1. Then,

let

ck =
[

c0,k · · · c k
2
, k
2

ck+1,N−1 · · · cN+k
2

, N+k
2

]T

(6.36)

denote the quadratic cross-terms at the kth frequency bin, and let

Λk =
[

x0,k · · · x k
2
, k
2

xk+1,N−1 · · · xN+k
2

, N+k
2

]
(6.37)

be an P × (N/2 + 1) matrix, where xk,k′ =
[

x0,kx0,k′ x1,kx1,k′ · · · xP−1,kxP−1,k′

]T

is

a term-by-term multiplication of the time-trajectories of xp,k at frequency bins k and k′,

respectively. Then, the output signal estimate (6.33) can be written in a vector form as

ŷk = ∆khk + Λkck

, Rkθk , (6.38)
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where ŷk =
[

ŷ0,k ŷ1,k · · · ŷP−1,k

]T

, Rk = [∆k Λk], and θk =
[
hT

k cT
k

]T
is the model

parameter vector. The dimension of θk is given by

dθk
, dim θk = (2K + 1) N̄1 + N/2 + 1 . (6.39)

Denoting the observable data vector by yk =
[

y0,k y1,k · · · yP−1,k

]T

, and using the

above notations, the LS estimate of the model parameters at the kth frequency bin is

given by

θ̂k = arg min
θk

‖yk −Rkθk‖2

=
(
RH

k Rk

)−1
RH

k yk , (6.40)

where we assume that RH
k Rk is not singular. Note that both θ̂k and ŷk depend on the

parameter K, but for notational simplicity K has been omitted. Substituting (6.40)

into (6.38), we obtain an estimate of the system output in the STFT domain at the kth

frequency bin. Repeating this estimation process for each frequency bin and returning to

the time-domain using the inverse STFT (6.4), we obtain the system output estimator

ŷs(n). The subscript s is to distinguish the subband-approach estimate from the fullband-

approach estimate ŷf(n) [derived in Section 6.4.2].

Next, we evaluate the computational complexity of the proposed approach. Com-

puting the parameter vector estimate θ̂k requires a solution of the LS normal equations
(
RH

k Rk

)
θ̂k = RH

k yk for each frequency bin. This results in Pd2
θk

+ d3
θk

/3 arithmetic

operations when using the Cholesky decomposition [85], where dθk
is defined in (6.39).

Computation of the desired signal estimate (6.38) requires additional 2Pdθk
arithmetic

operations. Assuming P is sufficiently large, the complexity associated with the proposed

model is

Os ∼ O
{

NP
[
(2K + 1) N̄1 + N/2 + 1

]2
}

. (6.41)

Expectedly, we observe that the computational complexity increases as K increases. How-

ever, analogously to linear system identification [65], incorporating crossband filters into

the model may yield lower mse for stronger and longer input signals, as demonstrated in

Section 6.5.
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6.4.2 Identification in the time domain

For time-domain system identification, we utilize the second-order Volterra model, de-

scribed in (6.1). Accordingly, an estimator for the system output can be expressed as

ŷf(n) =

N1−1∑
m=0

h1(m)x(n−m)

+

N2−1∑
m=0

N2−1∑

`=m

h2(m, `)x(n−m)x(n− `) , (6.42)

where for the quadratic kernel, the triangular Volterra representation is used [44,45].

Let h1 =
[

h1 (0) h1 (1) · · · h1 (N1 − 1)
]T

denote the linear kernel, and let

x1(n) =
[

x (n) x (n− 1) · · · x (n−N1 + 1)
]T

. The quadratic kernel can be written

in a vector notation as

h2 =
[

h2(0, 0) h2(0, 1) · · · h2(0, N2 − 1)

h2(1, 1) h2(1, 2) · · · h2(1, N2 − 1)

· · · h2(N2 − 1, N2 − 1)
]T

.

(6.43)

where similarly we define

x2(n) =
[

x2 (n) x (n) x (n− 1) · · · x (n) x (n−N2 + 1)

x (n− 1) x (n− 1) · · · x (n− 1) x (n−N2 + 1)

· · · x2 (n−N2 + 1)
]T

.

(6.44)

Then, the system output estimate (6.42) can be written in a vector form as

ŷf(n) = xT (n)θ , (6.45)

where x (n) =
[
xT

1 (n) xT
2 (n)

]
and θ ,

[
hT

1 hT
2

]T
is the model parameter vector. Note

that the dimension of θ, which determines the model complexity, is

dθ , dim θ = N1 +
N2 (N2 + 1)

2
. (6.46)

Let y =
[

y (0) y (1) · · · y (Nx − 1)
]T

, and let X be an Nx × dθ matrix defined as

XT =
[

x (0) x (1) · · · x (Nx − 1)
]
. Then, the LS estimate of θ is given by

θ̂ = arg min
θ
‖y −Xθ‖2

=
(
XHX

)−1
XHy . (6.47)
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Substituting (6.47) into (6.45), we obtain an estimate of the system output in the time

domain ŷf(n) using a second-order Volterra model.

As in the subband approach, forming the normal equations, solving them using the

Cholesky decomposition and calculating the desired signal estimate, require Nxd
2
θ+d3

θ/3+

2Nxdθ arithmetic operations. For sufficiently large Nx, the computational complexity of

the fullband approach can be expressed as

Of ∼ O

(
Nx

[
N1 +

N2 (N2 + 1)

2

]2
)

. (6.48)

It is worth noting that the complexity of the fullband approach can be generally reduced

by using efficient algorithms that exploit the special structure of the corresponding matrix

in the LS normal equations [120,121].

6.4.3 Comparison and Discussion

Let r = L/N denote the relative overlap between consecutive analysis windows (this

overlap determines the redundancy of the STFT representation). Then, rewriting the

subband approach complexity (6.41) in terms of the fullband parameters (by using the

relations P ≈ Nx/L and N̄1 ≈ N1/L), the ratio between the fullband and subband

complexities can be written as

Of

Os

∼ r
(2N1 + N2

2 )
2

[
2N1

(2K+1)
rN

+ N
]2 . (6.49)

Expectedly, we observe that the computational gain achieved by the proposed subband

approach is mainly determined by the STFT analysis window length N , which repre-

sents the trade-off between the linear- and nonlinear-component complexities. Specifi-

cally, using a longer analysis window yields shorter crossband filters (∼ N1/N), which

reduces the computational cost of the linear component, but at the same time increases

the nonlinear-component complexity by increasing the number of quadratic cross-terms

(∼ N). Nonetheless, according to (6.49), the complexity of the proposed subband ap-

proach would typically be lower than that of the conventional fullband approach. For

instance, for N = 256, r = 0.5 (i.e., L = 128), N1 = 1024, N2 = 80 and K = 2 the

proposed approach complexity is reduced by approximately 300, when compared to the
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fullband-approach complexity. The computational efficiency obtained by the proposed

approach becomes even more significant when systems with relatively large second-order

memory length are considered. This is because these systems necessitate an extremely

large memory length N2 for the quadratic kernel, when using the time-domain Volterra

model, such that N2
2 >> N and consequently Of >> Os.

An example of a long-memory system is an LEM system in nonlinear acoustic echo

cancellation applications [36–38]. The nonlinear behavior of this system is mainly in-

troduced by the loudspeakers and their amplifiers, especially when small loudspeakers

are driven at high volume. When parallel models are considered for modeling the LEM

system, the memory length of the nonlinear component will also be determined by the

acoustic enclosure, which typically consists of several thousands taps [89]. Consequently,

attempting to estimate the LEM system with the time-domain Volterra model involves

high computational cost, which makes it impractical in real applications. To reduce the

model complexity, the Volterra filters can be truncated in time [48], but then the system

estimate is less accurate. Other time-domain approximations for Volterra filters employed

for acoustic echo cancellation, such as the Hammerstein model (i.e., a static nonlinearity

followed by a dynamic linear block, as in [36, 38]), suggest a less general structure than

the Volterra filter. On the other hand, the proposed STFT model offers both structural

generality and computational efficiency, which facilitate a practical alternative for the

time-domain Volterra approach, especially in representing systems with long memory.

6.5 Experimental Results

In this section, we present experimental results that demonstrate the effectiveness of the

proposed subband approach in estimating and modeling quadratically nonlinear systems.

A comparison to the conventional time-domain Volterra approach is carried out in terms

of mse performance for both synthetic white Gaussian signals and real speech signals. The

evaluation includes objective quality measures, a subjective study of temporal waveforms,

and informal listening tests. For the STFT, we use half overlapping Hamming analysis

windows of N = 256 samples length (i.e., L = 0.5N). The inverse STFT is implemented

with a minimum-energy synthesis window that satisfies the completeness condition [72].
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6.5.1 Performance Evaluation for White Gaussian Input Signals

In the first experiment, we examine the performances of the Volterra and proposed models

under the assumption of white Gaussian signals. The system to be identified is formed as

a parallel combination of linear and quadratic components as follows:

y(n) =

N∗
1−1∑

m=0

g1(m)x(n−m) + {Lx} (n) + ξ(n) , (6.50)

where g1(n) is the true linear kernel and {Lx} (n) denotes the output of the quadratic

component. The input signal x(n) and the additive noise signal ξ(n) are uncorrelated

zero-mean white Gaussian processes with variances σ2
x and σ2

ξ , respectively. We model

the linear kernel as a nonstationary stochastic process with an exponential decay envelope,

i.e., g1(n) = u(n)β(n)e−αn, where u(n) is the unit step function, β(n) is a unit-variance

zero-mean white Gaussian noise, and α is the decay exponent. In the following, we use

N∗
1 = 768, α = 0.009, and an observable data length of Nx = 24000 samples. For

evaluating the quality of the system estimate, the normalized mse is defined as

εγ =
E

{|d (n)− ŷγ (n)|2}

E
{|d (n)|2} , (6.51)

where d(n) is the clean output signal [i.e., d(n) = y(n)− ξ(n)], γ ∈ {s, f}, and ŷs(n) and

ŷf(n) are the system output estimates obtained by the proposed subband approach and

the fullband Volterra approach, respectively (see Section 6.4).

In the first experiment, we assume that the output signal of the true-system’s quadratic

component {Lx} (n) is generated according to the quadratic model proposed in (6.25).

That is, denoting by S−1 the inverse STFT operator, {Lx} (n) can be expressed as

{Lx} (n) = S−1
∑

k′∈F
xp,k′xp,(k−k′)mod Ngk′,(k−k′)mod N , (6.52)

where {gk′,(k−k′)mod N

∣∣ k′ ∈ F} are the true quadratic cross-terms. These terms are mod-

eled here as a unit-variance zero-mean white Gaussian process. For both models, a mem-

ory length of N1 = 768 is employed for the linear kernel, where the memory length N2 of

the quadratic kernel in the Volterra model is set to 30. Figure 6.5 shows the resulting mse

curves as a function of the SNR [the SNR is defined as the power ratio between the clean

output signal d(n) and the additive noise signal ξ(n)], as obtained for a nonlinear-to-linear
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ratio (NLR) of 0 dB [Fig. 6.5(a)] and −20 dB [Fig. 6.5(b)]. The NLR represents the

power ratio between the output signals of the quadratic and linear components of the true

system. For the proposed model, several values of K are employed in order to determine

the influence of the number of estimated crossband filters on the mse performance, and

the optimal value that achieves the minimal mse (mmse) is indicated above the mse curve.

Note that a transition in the value of K is indicated by a variation in the width of the

curve. Figure 6.5(a) implies that for relatively low SNR values, a lower mse is achieved

by the conventional Volterra model. For instance, for an SNR of −20 dB, employing the

Volterra model reduces the mse by approximately 10 dB, when compared to that achieved

by the proposed model. However, for higher SNR conditions, the proposed model is con-

siderably more advantageous. For an SNR of 20 dB, for instance, the proposed model

enables a decrease of 17 dB in the mse using K = 4 (i.e., by incorporating 9 crossband

filters into the model). Table 6.1 specifies the mse values obtained by each value of K for

various SNR conditions. We observe that for high SNR values a significant improvement

over the Volterra model can also be attained by using only the band-to-band filters (i.e.,

K = 0), which further reduces the computational cost of the proposed model. Clearly,

as the SNR increases, a larger number of crossband filters should be utilized to attain

the mmse, which is similar to what has been shown in the identification of purely linear

systems [65]. An analytical proof of this result for the nonlinear case is given in Chapter

7. Note that similar results are obtained for a larger NLR value [Fig. 6.5(b)], with the

only difference is that the two curves intersect at a higher SNR value.

Next, we compare the Volterra and proposed models for a quadratically nonlinear

system with a relatively large memory length. We assume that the quadratic component

of the true system {Lx} (n) is given by

{Lx} (n) =

N∗
1−1∑

m=0

g1(m)x2(n−m) , (6.53)

where g1(n) is similar to that used in the previous experiment. A system represented by

(6.50) and (6.53) can be viewed as a memoryless polynomial of the form x(n) + x2(n)

followed by the linear kernel g1(n). Such a representation has been employed in acoustic

echo cancellation applications, where memoryless nonlinearities occur in the power ampli-

fier of the loudspeaker [38,53]. Note that the memory length of the quadratic component
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Figure 6.5: MSE curves as a function of the SNR for white Gaussian signals, as obtained by

the proposed STFT model (6.33) and the conventional time-domain Volterra model (6.42). The

optimal value of K is indicated above the corresponding mse curve. The true system is formed

as a combination of linear and quadratic components, where the latter is modeled according to

(6.52). (a) Nonlinear-to-linear ratio (NLR) of 0 dB (b) NLR of −20 dB.

is now equal to that of the linear component, and therefore, large values of N2 should be

used in the Volterra model in order to achieve satisfactory results. Figure 6.6 shows the

resulting mse curves as a function of the SNR, where for the Volterra model, a relatively

small memory length (N2 = 40) and a large one (N2 = 80) are used. Clearly, as the SNR

increases, the proposed model outperforms the Volterra model (even for long kernels) and

yields the mmse. For instance, for an SNR of 25 dB, an improvement of 16 dB can be

achieved by using the proposed model rather than the Volterra model with N2 = 80.

We observe that as the SNR increases, the mse performance of the Volterra model can

be generally improved by using a longer memory for the quadratic kernel [at the expense

of a considerable increase in computational complexity, as indicated by (6.48)]. This

phenomenon is related to the problem of model-order selection, a fundamental problem

in many system identification applications [24–30], where in our case the model order

is determined by the memory length of the quadratic Volterra kernel. Generally, the

optimal model order is affected by the level of noise in the data and the length of the

observable data. As the SNR increases or as more data is employable, the optimal model

complexity increases, and correspondingly longer quadratic kernels can be utilized to
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Table 6.1: MSE Obtained by the Proposed Model for Several K Values and by the Volterra

Model, Under Various SNR Conditions. The Nonlinear-to-Linear Ratio (NLR) is 0 dB.

K
MSE [dB]

SNR= −10 dB SNR= 20 dB SNR= 35 dB

0 8.08 -15.12 -16.05

1 8.75 -16.91 -18.8

2 9.31 -18.17 -21.55

3 9.82 -19.67 -28.67

4 10.04 -19.97 -34.97

Volterra 0.42 -3.25 -3.58

achieve lower mse. The same reasoning is also relevant to explaining why the number

of estimated crossband filter in the proposed subband model increases for larger SNRs.

The experimental results show that a Volterra model in the time domain is not sufficient

for identification of nonlinear systems with relatively long memory. The advantage of the

proposed model is demonstrated in estimation accuracy and computational efficiency.

6.5.2 Acoustic Echo Cancellation Scenario

In the second experiment, we demonstrate the application of the proposed approach to

acoustic echo cancellation using real speech signals. We use an ordinary office with a

reverberation time T60 of about 100 ms. A far-end speech signal x(n) is fed into a loud-

speaker at high volume, thus introducing non-negligible nonlinear distortion. The signal

x(n) propagates through the enclosure and received by a microphone as an echo signal

together with a local noise ξ(n). The resulting noisy signal is denoted by y(n). In this ex-

periment, the signals are sampled at 16 kHz. Note that the acoustic echo canceller (AEC)

performance is evaluated in the absence of near-end speech, since a double-talk detector

(DTD) is usually employed for detecting the near-end signal and freezing the estimation

process [105, 106]. A commonly-used quality measure for evaluating the performance of
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Figure 6.6: MSE curves as a function of the SNR for white Gaussian signals, as obtained by

the proposed STFT model (6.33) and the conventional time-domain Volterra model (6.42). The

true system is formed as a memoryless polynomial of the form x(n) + x2(n) followed by a linear

block.

AECs is the echo-return loss enhancement (ERLE), defined in dB by

ERLEγ = 10 log10

E {y2(n)}
E

{
e2

γ(n)
} , (6.54)

where

eγ(n) = y(n)− ŷγ (n) (6.55)

is the error signal (or residual echo signal) and ŷγ (n) is defined in (6.51).

Figures 6.7(a) and (b) show the far-end signal and the microphone signal, respectively.

Figures 6.7(c)–(e) show the error signals as obtained by using a purely linear model in

the time domain, a Volterra model with N2 = 90, and the proposed model with K = 1,

respectively. For all models, a length of N1 = 768 is employed for the linear kernel. The

ERLE values of the corresponding error signals were computed by (6.54), and are given

by 14.56 dB (linear), 19.14 dB (Volterra), and 29.54 dB (proposed). Clearly, the proposed

approach achieves a significant improvement over a time domain approach. This may be

attributable to the long memory of the system’s nonlinear components which necessitate

long kernels for sufficient modeling of the acoustic path. Furthermore, a purely linear

model does not provide a sufficient echo attenuation due to nonlinear undermodeling
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Figure 6.7: Speech waveforms and residual echo signals, obtained by the time-domain Volterra

approach and the proposed subband approach. (a) Far-end signal (b) Microphone signal. (c)–(e)

Error signals obtained by a purely linear model in the time domain, the Volterra model with

N2 = 90, and the proposed model with K = 1, respectively. For all models, a length of N1 = 768

is assumed in the linear kernel.

[64, 122–124]. Subjective listening tests confirm that the proposed approach achieves a

perceptual improvement in speech quality over the conventional Volterra approach (audio

files are available on-line [107]).

6.6 Conclusions

Motivated by the common drawbacks of conventional time- and frequency-domain meth-

ods, we have introduced a novel approach for identifying nonlinear systems in the STFT

domain. We have derived an explicit nonlinear model, based on an efficient approximation
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of Volterra-filters representation in the time-frequency domain. The proposed model con-

sists of a parallel combination of a linear component, which is represented by crossband

filters between subbands, and a nonlinear component, modeled by multiplicative cross-

terms. We showed that the conventional discrete frequency-domain model is a special case

of the proposed model for relatively long observation frames. Furthermore, we showed

that a significant reduction in computational cost can be achieved over the time-domain

Volterra model by the proposed approach. Experimental results have demonstrated the

advantage of the proposed STFT model in estimating nonlinear systems with relatively

large memory length. The time-domain Volterra model fails to estimate such systems due

to its high complexity. The proposed model, on the other hand, achieves a significant

improvement in mse performance, particularly for high SNR conditions. Overall, the re-

sults have met the expectations originally put into STFT-based estimation techniques.

The proposed approach in the STFT domain offers both structural generality and com-

putational efficiency, and consequently facilitates a practical alternative for conventional

methods.

A detailed mean-square analysis of the proposed model is presented in Chapter 7,

showing important relations between the noise level, nonlinearity strength and the model

parameters. The problem of employing either a linear or a nonlinear model for the es-

timation process, as well as determining the optimal number of crossband filters is also

considered in Chapter 7.

Since practically many real-world systems are time-varying, the approach proposed in

this chapter can be made adaptive in order to track these variations. Future research will

concentrate on constructing a fully adaptive scheme, which exploits the attractive prop-

erties of the proposed model to achieve fast convergence and sufficient tracking capability

of a nonlinear adaptive algorithm.

6.A Derivation of (6.11)

Using (6.2) and (6.1), the STFT of d2(n) can be written as

d2;p,k =
∑

n,m,`

h2(m, `)x(n−m)x(n− `) ψ̃∗p,k(n) (6.56)
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Substituting (6.4) into (6.56), we obtain

d2;p,k =
∑

n,m,`

h2(m, `)
N−1∑

k′=0

∑

p′
xp′,k′ψp′,k′(n−m)

×
N−1∑

k′′=0

∑

p′′
xp′′,k′′ψp′′,k′′(n− `)ψ̃∗p,k(n)

=
N−1∑

k′,k′′=0

∑

p′,p′′
xp′,k′xp′′,k′′cp,p′,p′′,k,k′,k′′ (6.57)

where

cp,p′,p′′,k,k′,k′′ =
∑

n,m,`

h2(m, `)ψp′,k′(n−m)ψp′′,k′′(n− `)ψ̃∗p,k(n) . (6.58)

Substituting (6.3) and (6.5) into (6.58), we obtain

cp,p′,p′′,k,k′,k′′ =
∑

n,m,`

h2(m, `)ψ(n−m− p′L)ej 2π
N

k′(n−m−p′L)

× ψ(n− `− p′′L)ej 2π
N

k′′(n−`−p′′L)ψ̃(n− pL)e−j 2π
N

k(n−pL)

=
∑

n,m,`

h2(m, `)ψ ((p− p′) L + n−m) ej 2π
N

k′((p−p′)L+n−m)

× ψ ((p− p′′) L + n− `) ej 2π
N

k′′((p−p′′)L+n−`)ψ̃(n)e−j 2π
N

kn

= {h2(n,m) ∗ φk,k′,k′′(n,m)}|n=(p−p′)L, m=(p−p′′)L , cp−p′,p−p′′,k,k′,k′′(6.59)

where ∗ denotes a 2D convolution with respect to the time indices n and m, and

φk,k′,k′′(n, m) ,
∑

`

ψ̃(`)e−j 2π
N

k`ψ(n + `)ej 2π
N

k′(n+`)ψ(m + `)ej 2π
N

k′′(m+`) . (6.60)

¿From (6.59), cp,p′,p′′,k,k′,k′′ depends on (p − p′) and (p − p′′) rather than on p, p′ and p′′

separately. Substituting (6.59) into (6.57), we obtain (6.11).

6.B Nonlinear acoustic echo cancellation based on an

MTF approximation4

In this appendix, a new nonlinear model for improved acoustic echo cancellation in the

short-time Fourier transform domain is introduced. The model consists of a parallel com-

bination of linear and quadratic components. The linear component is represented by

4This appendix is based on [119].
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multiplicative terms, while the quadratic component is modeled by multiplicative cross-

terms. We show that for low signal-to-noise ratio (SNR) conditions, a lower mean-square

error is achieved by allowing for nonlinear undermodeling and employing only the lin-

ear multiplicative transfer function (MTF) model. However, as the SNR increases, the

performance can be generally improved by the proposed nonlinear model. A significant

reduction in computational cost as well as an improvement in estimation accuracy is

achieved over the time-domain Volterra approach. Experimental results demonstrate the

advantage of the proposed model for nonlinear acoustic echo cancellation.

6.B.1 Introduction

Loudspeaker-enclosure-microphone (LEM) system modeling in the short-time Fourier

transform (STFT) domain is of major importance in many acoustic echo cancellation

applications, especially when long echo paths are considered [21]. The multiplicative

transfer function (MTF) approximation [98], which relies on the assumption of a large

analysis window length, is widely-used in such applications due to computational effi-

ciency (e.g., [22, 99]). However, in many cases, particularly when small loudspeakers are

driven at high volumes, the LEM system often exhibits certain nonlinearities that cannot

be sufficiently estimated by the linear MTF model. Volterra filters used for modeling the

nonlinear LEM system [37,48] often suffer from extremely high computational cost due to

a large number of parameters. This problem becomes even more crucial when estimating

systems with relatively large memory length, which is often the case in acoustic echo

cancellation applications.

In this appendix, we extend the MTF approximation and introduce a new nonlin-

ear model for improved acoustic echo cancellation in the STFT domain. The proposed

model consists of a parallel combination of linear and quadratic components. The linear

component is represented by the MTF approximation, while the quadratic component is

modeled by multiplicative cross-terms. The quadratic-component model has been intro-

duced in Section 6.3, and is based on a time-frequency representation of a homogeneous

second-order Volterra filter. We consider an off-line echo cancellation scheme based on a

least-squares (LS) criterion, and analyze the obtainable mean-square error (mse) in each

frequency bin. We mainly concentrate on the error arises due to nonlinear undermodeling ;



164 CHAPTER 6. IDENTIFICATION OF NONLINEAR SYSTEMS

that is, when the linear MTF model is utilized for estimating the nonlinear LEM system.

We show that for low signal-to-noise ratio (SNR) conditions, a lower mse is achieved

by using the MTF model and allowing for nonlinear undermodeling. However, as the

SNR increases, the acoustic echo canceller (AEC) performance can be generally improved

by employing the proposed nonlinear model. When compared to the conventional time-

domain Volterra approach, a significant reduction in computational complexity is achieved

by the proposed approach, especially when long-memory systems are considered. Experi-

mental results demonstrate the advantage of the proposed approach for nonlinear acoustic

echo cancellation.

The appendix is organized as follows. In Section 6.B.2, we introduce a new nonlinear

STFT model that is based on the MTF approximation. In Section 6.B.3, we present an

off-line echo cancellation scheme for estimating the model parameters. In Section 6.B.4,

we derive expressions for the obtainable mse, and investigate the influence of nonlinear un-

dermodeling on the AEC performance. Finally, in Section 6.B.5, we present experimental

results which support the theoretical derivations.

6.B.2 Modeling the LEM system

A typical acoustic echo cancellation scheme in the STFT domain is illustrated in Fig.

3.11. The far-end signal x(n) is emitted by a loudspeaker, then propagates through the

enclosure and received in the microphone as an echo signal d(n). Together with a near-end

speech signal and local noise [collectively denoted by ξ(n)], the microphone signal can be

written as y(n) = d(n)+ξ(n). Applying the STFT to y(n), we have in the time-frequency

domain

yp,k = dp,k + ξp,k (6.61)

where p is the frame index and k represents the frequency-bin index (0 ≤ k ≤ N − 1). To

produce an echo estimate d̂p,k in the time-frequency domain, a proper STFT model for the

LEM system is needed. The widely-used MTF approximation [98] assumes a relatively

large analysis-window length to approximate the system as multiplicative in the STFT

domain, i.e.,

d̂p,k = hk xp,k . (6.62)



6.B. NONLINEAR ACOUSTIC ECHO CANCELLATION 165

The effectiveness of the MTF approximation in estimating linear systems has been demon-

strated in [99]. However, in many acoustic echo cancellation applications, particularly

when small loudspeakers are driven at high volumes, the LEM system often exhibits cer-

tain nonlinearities that cannot be sufficiently estimated by the conventional MTF model.

For improved nonlinear echo cancellation, we may extend the MTF approximation by

incorporating a nonlinear component into the model. To do so, we employ the nonlinear

model defined in Section 6.3, which is based on the time-frequency representation of

homogeneous Volterra filters. Since the nonlinearity of loudspeakers can be assumed to be

limited up to the second order [48], we consider here only the quadratic case. Accordingly,

the output of the proposed nonlinear AEC is given as a parallel combination of linear and

quadratic components in the time-frequency domain as follows:

d̂p,k =hk xp,k

+ γ
∑

k′∈F
xp,k′xp,(k−k′)mod Nck′,(k−k′)mod N (6.63)

where γ ∈ {0, 1}, ck′,(k−k′)mod N is referred to as a quadratic cross-term, and F =

{0, 1, . . . bk/2c , k + 1, . . . , k + 1 + b(N − k − 2) /2c}. The conventional MTF approxi-

mation is used in (6.63) for representing the linear component of the system. The cross-

terms {ck′,(k−k′)mod N

∣∣ k′ ∈ F}, on the other hand, are used for modeling the quadratic

component of the system using a sum over all possible interactions between pairs of input

frequencies xp,k′ and xp,k′′ , such that only frequency indices {k′, k′′}, whose sum is k or

k + N , contribute to the output at frequency bin k. Note that γ controls the nonlinear

undermodeling as it determines whether a linear or a nonlinear model is considered. By

setting γ = 0, the nonlinearity is ignored and the linear MTF model is fitted to the data,

which may degrade the system estimate accuracy. The influence of the parameter γ on

the mean-square performance is investigated in Section 6.B.4.

6.B.3 Off-line cancellation scheme

In this section, we introduce an LS-based off-line algorithm for echo cancellation using

the proposed nonlinear STFT model. We denote by P the number of samples in a time-

trajectory of xp,k. Let xk =
[

x0,k x1,k · · · xP−1,k

]T

denote a time-trajectory of xpk

at frequency bin k, and let the vectors dk, ξk and yk be defined similarly. For notational
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simplicity, let us assume that k and N are both even, such that according to (6.63), the

number of quadratic cross-terms in each frequency bin is N/2 + 1. Then, let

ck = [ c0,k · · · c k
2
, k
2

ck+1,N−1 · · · cN+k
2

, N+k
2

]T (6.64)

denote the quadratic cross-terms at the kth frequency bin, and let Λk =

[ x0,k · · · x k
2
, k
2

xk+1,N−1 · · · xN+k
2

, N+k
2

] be an P × (N/2 + 1) matrix, where xk,k′ =

xk ¯ xk′ , and ¯ denotes a term-by-term multiplication. Then, the AEC output signal

(6.63) can be written in a vector form as

d̂γk (θk) = xkhk + γΛkck , Rγkθk (6.65)

where Rγk = [xk γΛk], and θk =
[
hk cT

k

]T
is the model parameters vector. The subscript

γ in d̂γk (θk) indicates the dependence of the echo estimate on the model structure, which

can be either linear or nonlinear. Finally, using the above notations, the LS estimate of

the model parameters at the kth frequency bin is given by

θ̂γk = arg min
θk

‖yk −Rγkθk‖2 = R†
γkyk (6.66)

where R†
γk = (RH

γkRγk)
−1RH

γk is the Moore-Penrose pseudo inverse matrix of Rγk. Sub-

stituting (6.66) into (6.65), we obtain the best estimate of the echo signal in the STFT

domain d̂γk(θ̂γk) in the LS sense, for a given γ value.

6.B.4 MSE analysis

In this section, we derive expressions for the mse obtainable in the kth frequency bin,

and investigate the influence of nonlinear undermodeling (controlled by γ) on the AEC

performance. For a tractable analysis, we assume that xp,k and ξp,k are zero-mean white

Gaussian signals with variances σ2
x and σ2

ξ , respectively, and that they are statistically

independent.

Relations between MSE and SNR

The (normalized) mse is defined by

εγk =
1

E
{‖dk‖2}E

{∥∥∥dk − d̂γk(θ̂γk)
∥∥∥

2
}

(6.67)
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where E{·} denotes expectation. Recall that ε0k denotes the mse obtained by using only

the linear MTF model, and ε1k is the mse achieved by incorporating also a quadratic

component into the model [see (6.63)]. Substituting (6.65) and (6.66) into (6.67), the mse

can be expressed as

εγk = 1 +
ε1 − ε2

E
{‖dk‖2} (6.68)

where ε1 = E{ξH
k RγkR

†
γkξk} and ε2 = E{dH

k RγkR
†
γkdk}. Using the whiteness assumption

for ξp,k and the property that aHb = tr(abH)∗ for any two vectors a and b, ε1 can be

expressed as

ε1 = tr
(
E

{
ξkξ

H
k

}
E{RγkR

†
γk}

)∗

= σ2
ξE

{
tr

(
RH

γkRγk

(
RH

γkRγk

)−1
)∗}

= σ2
ξ [1 + γ (N/2 + 1)] . (6.69)

For evaluating ε2, let us assume that xp,k is ergodic and that the data length P is suffi-

ciently large. From (6.65), the inverse of RH
γkRγk can be expressed as

(
RH

γkRγk

)−1
=


 xH

k xk γxH
k Λk

γΛkx
H
k γΛH

k Λk



−1

(6.70)

where from the ergodicity, the `th term of ΛH
k xk may be approximated as

(
ΛH

k xk

)
`
≈

PE{x∗m,`k
x∗m,(k−`k) mod Nxm,k} where `k = ` if ` ≤ k/2, and `k = ` + k/2 otherwise.

Since odd-order moments of a zero-mean complex Gaussian process are zero [10], we get
(
ΛH

k xk

)
`
≈ 0, and (6.70) reduces to

(
RH

γkRγk

)−1 ≈



(
xH

k xk

)−1
01×N/2+1

0N/2+1×1 γ
(
ΛH

k Λk

)−1


 (6.71)

where 0N×1 is a zero vector of size N × 1. Substituting (6.71) into the expression for ε2,

we obtain

ε2 = ε12 + γε22 (6.72)

where ε12 = E{dH
k xkx

†
kdk} and ε22 = E{dH

k ΛkΛ
†
kdk}. Finally, denoting the SNR by

η = σ2
d/σ

2
ξ , where σ2

d = E{|dp,k|2}, and substituting (6.69) and (6.72) into (6.68), we

obtain

εγk =
αγk

η
+ βγk (6.73)
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where αγk = 1/P + γ[N/2 + 1]/P and βγk = 1 − ε12/(Pσ2
d) − γε22/(Pσ2

d). We observe

from (6.73) that the mse εγk, for fixed values of γ and k, is a monotonically decreasing

function of η. Note that ε22 can be rewritten as

ε22 = E
{
dH

k (ΛkΛ
†
k)

HΛkΛ
†
kdk

}

= E

{∥∥∥ΛkΛ
†
kdk

∥∥∥
2
}
≥ 0 . (6.74)

Then, following the nonnegativity of ε22, it can be verified that α1k > α0k and β1k ≤
β0k, which implies that ε1k > ε0k for low SNR (η << 1), and ε1k ≤ ε0k for high SNR

(η >> 1). Accordingly, for low SNR conditions, a lower mse is achieved by allowing

for nonlinear undermodeling and employing the conventional linear MTF model in the

estimation process. On the other hand, as the SNR increases, the mse performance can be

generally improved by incorporating also the nonlinear component into the AEC (γ = 1).

These points will be further demonstrated in Section 6.B.5.

Computational complexity

Forming the normal equations (RH
γkRγk)θ̂γk = RH

γkyk in (6.66), solving them using the

Cholesky decomposition and calculating the desired signal estimate (6.65) for each fre-

quency bin, require NP [1 + γ(N/2 + 1)]2 arithmetic operations, where P is assumed

sufficiently large, and the computations required for the forward and inverse STFTs and

neglected. The computational cost of the proposed approach is therefore (N/2 + 1)2

times larger than that of the conventional MTF approach (γ = 0). It should be noted

here that a time-domain off-line estimation process with a second-order Volterra filter

requires PL [N1 + N2 (N2 + 1) /2]2 arithmetic operations [see (6.48)], where N1 and N2

are the memory length of the linear and quadratic Volterra kernels, respectively, and L

is the translation factor of the STFT. For typical values of N = 256, L = 128 (i.e., 50%

overlap between consecutive windows), N1 = 1024 and N2 = 60, the complexity of the

proposed approach is reduced by approximately 250, when compared to the complexity

of the time-domain Volterra approach.
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6.B.5 Experimental results

In this section, we present experimental results that demonstrate the effectiveness of the

proposed approach. In the first experiment, we examine the proposed AEC performance

for white Gaussian signals, and demonstrate the influence of nonlinear undermodeling

by fitting both linear and nonlinear models to the data. The input signal x(n) and the

additive noise signal ξ(n) are uncorrelated zero-mean white Gaussian processes. The LEM

system is assumed to be represented by a second-order Volterra filter, which relates the

input x(n) and output y(n) as follows:

y(n) =

N1−1∑
m=0

h1(m)x(n−m) (6.75)

+

N2−1∑
m=0

N2−1∑

`=0

h2(m, `)x(n−m)x(n− `) + ξ(n)

where h1(m) and h2(m, `) are the linear and quadratic Volterra kernels, respectively, and

N1 and N2 are their corresponding memory lengths. The quadratic kernel is modeled as

a unit variance zero-mean white Gaussian process, whereas the linear kernel is modeled

as a stochastic process with an exponential decay envelope, i.e., h(n) = u(n)β(n)e−0.009n

[where u(n) is the unit step function and β(n) is a unit-variance zero-mean white Gaussian

process]. The memory lengths are set to N1 = 50 and N2 = 40. To maintain the large

analysis-window support assumption, a Hamming analysis window of length N = 8N1

with 50% overlap is employed. The AEC performance is evaluated by the time-domain

mse, defined by

εγ =
1

E
{|d (n)|2}E

{∣∣∣d (n)− d̂γ (n)
∣∣∣
2
}

(6.76)

where d(n) is the clean output signal [i.e., d(n) = y(n) − ξ(n)], and d̂γ(n) is the inverse

STFT of the AEC output signal d̂p,k [see (6.63)], as obtained for a given γ value. Fig-

ure 6.8 shows the resulting mse curves ε0 and ε1 as a function of the SNR, as obtained for

nonlinear-to-linear ratios (NLRs) of 10 dB and −10 dB. The NLR represents the power ra-

tio between the output signals of the quadratic and linear components of the true system.

The results confirm that for relatively low SNR values, a lower mse is achieved by using

the linear MTF model (γ = 0) and allowing for nonlinear undermodeling. For instance,

Fig. 6.8(a) shows that for a −20 dB SNR, employing only a linear model reduces the
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Figure 6.8: MSE curves as a function of the SNR for white Gaussian signals, as obtained by

the MTF approach (ε0) and the proposed approach (ε1). (a) Nonlinear-to-linear ratio (NLR) of

10 dB (b) NLR of −10 dB.

mse by approximately 18 dB, compared to that achieved by the nonlinear model (γ = 1).

However, for high SNR values, the proposed model is considerably more advantageous,

as it enables a substantial decrease of 20 dB in the mse for an SNR of 20 dB. A compar-

ison of Figs. 6.8(a) and (b) indicates that as the NLR decreases, the two curves intersect

at a higher NLR value. This implies that when the nonlinearity of the LEM system be-

comes weaker (i.e., the NLR decreases), higher SNR values should be considered to justify

the estimation of the nonlinear component. Moreover, one can observe that the relative

improvement achieved by the proposed model at high SNR values becomes larger when

increasing the NLR. Specifically for an SNR of 30 dB, the proposed model improves the

mse of the linear MTF model by 13 dB for a −10 dB NLR [Fig. 6.8(b)]; whereas a larger

improvement of 21 dB is achieved for a 10 dB NLR [Fig. 6.8(a)].

In the second experiment, we demonstrate the proposed approach in a real acoustic
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echo cancellation scenario using speech signals. We use an ordinary office with a rever-

beration time T60 of about 100 ms. The far-end speech signal is fed into a loudspeaker

at high volume (thus introducing non-negligible nonlinear distortion), and received in a

microphone, which is located 10 cm away from the loudspeaker. The effective length of

the echo path is 100 ms, and the signals are sampled at 16 kHz. In this experiment, we

compare the performance of the subband models (both linear and nonlinear) to that of

the fullband (second-order) Volterra model, where the parameters of the latter are also es-

timated off-line. The performance is evaluated in the absence of near-end speech, since in

such case a double-talk detector (DTD) is often employed to freeze the estimation process.

We use an analysis window length of N = 1024 for the linear MTF model in order to val-

idate the large window support assumption. For the proposed model, on the other hand,

a smaller length of N = 256 is employed in order to maintain a reasonable computational

complexity (see Section 6.B.4). In addition, for the Volterra model, the memory lengths

of the linear and quadratic kernels are set to 768 and 60, respectively. Figures 6.9(a)–(b)

show the far-end signal and the microphone signal, respectively. Figures 6.9(c)–(e) show

the residual echo signal e(n) [= y(n)− d̂(n)] obtained by the time-domain Volterra model,

the MTF model and the proposed model, respectively. The values of the resulting echo-

return loss enhancement (ERLE), defined as E{y2(n)}/E{e2(n)}, were also computed,

and are given by 18.1 dB (Volterra), 12.6 dB (MTF), and 20.5 dB (proposed). Clearly,

the linear MTF model does not provide a sufficient echo attenuation, mainly due to the

significant nonlinearity of the echo path. The proposed model, on the other hand, achieves

an improvement of 2.4 dB in the ERLE with a lower computational complexity, compared

to using the time-domain Volterra model.

6.B.6 Conclusions

Based on the MTF approximation, we have introduced a new nonlinear model for im-

proved acoustic echo cancellation in the STFT domain. The proposed model achieves a

significant improvement in mse performance over the linear MTF model. Compared to

the Volterra approach, the proposed approach provides better estimation accuracy, with a

substantially lower computational cost. Future research will concentrate on constructing

an adaptive AEC by exploiting the attractive properties of the proposed model.
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Figure 6.9: Temporal waveforms. (a) Far-end signal (b) Microphone signal. (c)–(e) Error signals

obtained by a time-domain Volterra model, linear MTF model, and the proposed nonlinear

model, respectively.



Chapter 7

Nonlinear Systems in the STFT

Domain – Estimation Error Analysis1

Identification of nonlinear systems is of major importance in many real-world applica-

tions. In Chapter 6, we introduced a nonlinear model in the short-time Fourier transform

(STFT) domain for system identification. The model consists of a parallel combination of

a linear component, represented by crossband filters between subbands, and a nonlinear

component, which is modeled by multiplicative cross-terms. The advantage of the pro-

posed model over the Volterra approach is demonstrated in Chapter 6. In this chapter,

we analyze the performance of the proposed model in estimating quadratically nonlinear

systems in the STFT domain. We derive analytical relations between the noise level, non-

linearity strength, and the obtainable mean-square error (mse) in subbands. We mainly

concentrate on two types of undermodeling errors. The first is caused by employing a

purely linear model in the estimation process (i.e., nonlinear undermodeling), and the

second is a consequence of restricting the number of estimated crossband filters in the

linear component. We show that for low signal-to-noise ratio (SNR) conditions, a lower

mse is achieved by allowing for nonlinear undermodeling and utilizing a purely linear

model. However, as the SNR increases, the performance can be generally improved by

incorporating a nonlinear component into the model. The stronger the nonlinearity of

the system, the larger the improvement achieved by using the complete nonlinear model.

We further show that as the SNR increases, a larger number of crossband filters should

1This chapter is based on [122].
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be estimated to attain a lower mse, whether a linear or nonlinear model is employed.

Experimental results support the theoretical derivations.

7.1 Introduction

Nonlinear system identification has recently attracted great interest in many applications,

including acoustic echo cancellation [36–38], channel equalization [39, 40], biological sys-

tem modeling [41] and image processing [42]. Volterra filters [44–46] have been applied

for representing a wide range of real-world systems due to their structural generality and

versatile modeling capabilities (e.g., [48, 49]). Traditionally, Volterra-based approaches

have been carried out in the time or frequency domains. Time-domain approaches em-

ploy conventional linear estimation methods in batch or adaptive forms in order to esti-

mate the Volterra kernels. These approaches, however, often suffer from extremely high

computational cost due to the large number of parameters of the Volterra model, es-

pecially for long-memory systems [45, 50]. The high complexity of the model together

with its severe ill-conditioning, lead to a slow convergence of the adaptive Volterra fil-

ter [37, 48]. To ease the computational burden, frequency-domain methods have been

introduced [59–61]. A discrete frequency-domain model, which approximates the Volterra

filter using multiplicative terms, is defined in [60,61]. A major limitation of this model is

its underlying assumption that the observation data length is relatively large. When the

data is of limited size (or when the nonlinear system is not time-invariant), this long du-

ration assumption is very restrictive. Other frequency-domain approaches use cumulants

and polyspectra information to estimate the Volterra transfer functions [59]. Although

computationally efficient, these approaches often assume a Gaussian input signal, which

limits their applicability.

The aforementioned drawbacks of the conventional time- and frequency-domain meth-

ods motivate the use of subband (multirate) techniques [11] for improved nonlinear system

identification. Such techniques have been successfully applied for identifying linear sys-

tems with relatively long impulse responses [13,16–18,65,98,99]. Computational efficiency

as well as improved convergence rate can then be achieved due to processing in distinct

subbands. In Chapter 6 we have proposed nonlinear system identification in the short-time
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Fourier transform (STFT) domain, based on a time-frequency representation of Volterra

filters. We introduced approximate nonlinear STFT models, which consist of a parallel

combination of linear and nonlinear components. The linear component is represented by

crossband filters between the subbands [16,65], while the nonlinear component is modeled

by multiplicative cross-terms. We showed that a significant reduction in computational

cost as well as a substantial improvement in estimation accuracy can be achieved over

time-domain Volterra filters, particularly for long-memory nonlinear systems.

In this chapter, we analyze the performance of the proposed model in estimating

quadratically nonlinear systems in the STFT domain. We consider an off-line scheme

based on a least-squares (LS) criterion, and derive explicit expressions for the obtainable

mean-square error (mse) in each frequency bin. We mainly concentrate on the error that

arises due to undermodeling; that is, when the proposed model does not admit an exact

description of the true system. Two types of undermodeling errors are considered. The

first is attributable to employing a purely linear model for nonlinear system estimation,

which is generally referred to as nonlinear undermodeling. This undermodeling has been

examined recently in time and frequency domains [64,123,124]. The quantification of this

error is of major importance since in many cases a purely linear model is fitted to the data,

even though the system is nonlinear (e.g., employing a linear adaptive filter in acoustic

echo cancellation applications [89]). The second undermodeling considered in this chapter

is a consequence of restricting the number of crossband filters in the linear component of

the model, such that not all the filters are estimated in each frequency bin. The influence

of this undermodeling has been recently investigated for linear system identification in

the STFT domain [65]. It was shown that the inclusion of more crossband filters in the

identification process is preferable only when high signal-to-noise ratio (SNR) or long data

are considered.

The analysis in this chapter reveals important relations between the undermodeling

errors, the noise level and the nonlinear-to-linear ratio (NLR), which represents the power

ratio of nonlinear to linear components of the system. Specifically, we show that the

inclusion of a nonlinear component in the model is not always preferable. The choice

of the model structure (either linear or nonlinear) depends on the noise level and the

observable data length. The data length is restricted to enable tracking capability during
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time variations in the system. We show that for low SNR conditions and rapidly time-

varying systems (which restricts the length of the data), a lower mse can be achieved

by allowing for nonlinear undermodeling and employing a purely linear model in the

estimation process. On the other hand, as the SNR increases or as the time variations

in the system become slower (which enables to use longer data), the performance can

be generally improved by incorporating a nonlinear component into the model. This

improvement in performance becomes larger when increasing the NLR. Moreover, we

show that as the nonlinearity becomes weaker (i.e., the NLR decreases), higher SNR

should be considered to justify the inclusion of the nonlinear component in the model.

Concerning undermodeling in the linear component, we show that similarly to linear

system identification [65], the number of crossband filters that should be estimated to

attain the minimal mse (mmse) increases as the SNR increases, whether a linear or a

nonlinear model is employed. For every noise level there exists an optimal number of

useful crossband filters, so increasing the number of estimated crossband filters does not

necessarily imply a lower mse. Experimental results demonstrate the theoretical results

derived in this chapter.

The chapter is organized as follows. In Section 7.2, we consider the identification of

quadratically nonlinear systems in the STFT domain and formulate an LS optimization

criterion for estimating the parameters of the nonlinear STFT model. In Section 7.3, we

derive explicit expressions for the mse in subbands using either a linear or a nonlinear

model. In Section 7.4, we analyze the error expressions and investigate the influence

of nonlinear undermodeling and the number of estimated crossband filters on the mse

performance. Finally, in Section 7.5, we present some experimental results to support the

theoretical derivations.

7.2 Nonlinear system identification in the STFT do-

main

In this section, we consider an off-line scheme for the identification of quadratically non-

linear systems in the STFT domain using an LS optimization criterion for each frequency
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bin. We assume that the system to be identified can be represented by a nonlinear STFT

model proposed in Chapter 6. Throughout this chapter, scalar variables are written with

lowercase letters and vectors are indicated with lowercase boldface letters. Capital bold-

face letters are used for matrices and norms are always `2 norms.

Consider the STFT-based system identification scheme as illustrated in Fig. 6.1.

The input signal x(n) passes through an unknown quadratic time-invariant system φ(·),
yielding the clean output signal d(n). Together with a corrupting noise signal ξ(n), the

system output signal is given by

y(n) = {φx} (n) + ξ(n) = d(n) + ξ(n) . (7.1)

The STFT of y(n) is given by [71]

yp,k =
∑

n

y(n) ψ̃∗p,k(n)

= dp,k + ξp,k , (7.2)

where ψ̃p,k(n) = ψ̃(n− pL) ej 2π
N

k(n−pL) denotes a translated and modulated window func-

tion, ψ̃(n) is a real-valued analysis window of length N , p is the frame index, k represents

the frequency-bin index (0 ≤ k ≤ N−1), L is the translation factor and ∗ denotes complex

conjugation. According to the model proposed in Chapter 6, the true system is formed as

a parallel combination of linear and quadratic components in the time-frequency domain

as follows:

dp,k =
N−1∑

k′=0

M−1∑

p′=0

xp−p′,k′hp′,k,k′

+
∑

k′∈F
xp,k′xp,(k−k′)mod Nck′,(k−k′)mod N , (7.3)

where hp,k,k′ denotes the true crossband filter of length M from frequency bin

k′ to frequency bin k, ck′,(k−k′)mod N is the true quadratic cross-term, and F =

{0, 1, . . . bk/2c , k + 1, . . . , k + 1 + b(N − k − 2) /2c}. The crossband filters are required

to perfectly represent the linear component of the system in the STFT domain, and

are used for canceling the aliasing effects caused by the subsampling factor L [16, 65].

The cross-terms {ck′,(k−k′)mod N

∣∣ k′ ∈ F}, on the other hand, are used for modeling the

quadratic component of the system using a sum over all possible interactions between
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pairs of input frequencies xp,k′ and xp,k′′ , where k′′ = (k − k′) mod N . That is, only fre-

quency indices {k′, k′′}, whose sum is k or k + N , contribute to the output at frequency

bin k. The range of the summation index k′ in the quadratic component is bounded to

k′ ∈ F ⊆ [0, N − 1] since the quadratic cross-terms have unique values only in this range.

In Chapter 6, we showed that the nonlinear model in (7.3) is more advantageous than

the time-domain Volterra model in representing nonlinear systems with relatively long

memory (such as in nonlinear acoustic echo cancellation applications). In particular, for

relatively high SNR conditions, a substantial improvement of approximately 15 − 20 dB

in the mse is achieved by the proposed model relative to that obtained by the Volterra

model.

Let hk be the N crossband filters of the true system at frequency bin k

hk =
[

hT
k,0 hT

k,1 · · · hT
k,N−1

]T

, (7.4)

where hk,k′ =
[

h0,k,k′ h1,k,k′ · · · hM−1,k,k′

]T

is the crossband filter from frequency bin

k′ to frequency bin k. Let Xk denote an P ×M Toeplitz matrix whose (m, `)th term is

given by

(Xk)m,` = xm−`,k , (7.5)

where P is the observable data length in the STFT domain (i.e., the length of a time-

trajectory of yp,k at frequency bin k), and let ∆ be a concatenation of {Xk}N−1
k=0 along the

column dimension

∆ =
[

X0 X1 · · · · · · XN−1

]
. (7.6)

For notational simplicity, let us assume that k and N are both even, such that according

to (7.3), the number of quadratic cross-terms in each frequency bin is N/2 + 1. Let

ck =
[

c0,k · · · c k
2
, k
2

ck+1,N−1 · · · cN+k
2

, N+k
2

]T

(7.7)

denote the quadratic cross-terms at the kth frequency bin, and let

Λk =
[

x0,k · · · x k
2
, k
2

xk+1,N−1 · · · xN+k
2

, N+k
2

]
(7.8)

be an P × (N/2 + 1) matrix, where xk,k′ =
[

x0,kx0,k′ x1,kx1,k′ · · · xP−1,kxP−1,k′

]T

is

a term-by-term multiplication of the time-trajectories of xp,k at frequency bins k and k′,
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respectively. Then, (7.2)-(7.3) can be written in a vector form as

yk = dk + ξk (7.9a)

dk = ∆hk + Λkck , (7.9b)

where yk =
[

y0,k y1,k · · · yP−1,k

]T

is the observable data vector, and dk and ξk are

defined similarly.

Given an input signal x(n) and noisy observation y(n), the goal in system identification

in the STFT domain is to construct a model for describing the input-output relationship,

and to select its parameters so that the model output ŷp,k best estimates (or predicts) the

measured output signal in the STFT domain. To do so, we employ the model in (7.3)

for the estimation process, but with the use of only 2K + 1 crossband filters. The value

of K controls the undermodeling in the linear component of the model by restricting the

number of crossband filters. Denoting by h̄p,k,k′ and c̄k′,(k−k′)mod N the crossband filters

and quadratic cross-terms of the model, the resulting estimate ŷp,k can be written as

ŷp,k =
k+K∑

k′=k−K

M−1∑

p′=0

xp−p′,k′mod N h̄p′,k,k′mod N

+ γ
∑

k′∈F
xp,k′xp,(k−k′)mod N c̄k′,(k−k′)mod N , (7.10)

where the parameter γ ∈ {0, 1} controls the nonlinear undermodeling by determining

whether the nonlinear component is included in the model. By setting γ = 0, the nonlin-

earity is ignored and a purely linear model is fitted to the data, which may degrade the

system estimate accuracy. The error caused by nonlinear undermodeling has been studied

recently [64,123,124], assuming a certain model for nonlinearity (in the time or frequency

domains). In this chapter, this error is evaluated in the STFT domain by controlling the

value of γ. The influence of the parameters K and γ on the mean-square performance is

investigated in Section 7.4.

Let h̄k be the 2K + 1 filters of the model at frequency bin k

h̄k =
[

h̄T
k,(k−K)modN h̄T

k,(k−K+1)modN · · · h̄T
k,(k+K)modN

]T

, (7.11)

where h̄k,k′ is the crossband filter from frequency bin k′ to frequency bin k, and let ∆k

be a concatenation of {Xk′}(k+K)modN
k′=(k−K)modN along the column dimension, i.e.,

∆k =
[

X(k−K)modN X(k−K+1)modN · · · X(k+K)modN

]
. (7.12)
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Denoting the vector of the model’s cross-terms by c̄k, similarly to (7.7), the output signal

estimate (7.10) can be written in a vector form as

ŷγk (θk) = ∆kh̄k + γΛkc̄k

, Rγkθk , (7.13)

where Λk was defined in (7.8), θk =
[
h̄T

k c̄T
k

]T
is the model parameters vector, ŷγk (θk) =[

ŷ0,k ŷ1,k · · · ŷP−1,k

]T

is the resulting estimate associated with the parameter vector

θk, and Rγk is defined by

Rγk = [∆k γΛk] . (7.14)

The subscript γ in ŷγk (θk) indicates the dependence of the output signal estimate on

the model structure, which can be either linear or nonlinear. Finally, using the above

notations, the LS estimate of the model parameters at the kth frequency bin is given by

θ̂γk = arg min
θk

‖yk −Rγkθk‖2

=
(
RH

γkRγk

)−1
RH

γkyk , (7.15)

where we assume that RH
γkRγk is not singular. Note that both θ̂γk and ŷγk (θk) depend

also on the parameter K, but for notational simplicity K has been omitted. Substituting

the optimal estimate (7.15) into (7.13), we obtain the best estimate of the system output

signal in the STFT domain ŷγk

(
θ̂γk

)
in the LS sense, for given γ and k values. Our

objective is to analyze the mse attainable in each frequency bin, and investigate the

influence of the parameters K and γ on the mse performance.

7.3 MSE analysis

In this section, we derive explicit expressions for the mse obtainable in the kth frequency

bin using either a linear (γ = 0) or a nonlinear (γ = 1) model. To make the follow-

ing analysis mathematically tractable we assume that xp,k and ξp,k are zero-mean white

Gaussian signals with variances σ2
x and σ2

ξ , respectively. We also assume that xp,k is statis-

tically independent of ξp,k. The Gaussian assumption of the corresponding STFT signals is

often justified by a version of the central limit theorem for correlated signals [82, Theorem

4.4.2], and it underlies the design of many speech-enhancement systems [31,32].
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The (normalized) mse is defined by2

εγk(K) =
1

Ed

E

{∥∥∥dk − ŷγk

(
θ̂γk

)∥∥∥
2
}

, (7.16)

where Ed , E
{‖dk‖2}. Recall that ε0k(K) denotes the mse obtained by using only a

linear model, and ε1k(K) is the mse achieved by incorporating also a quadratic component

into the model [see (7.10)]. Substituting (7.13) and (7.15) into (7.16), the mse can be

expressed as

εγk(K) =
1

Ed

E

{∥∥∥Rγk

(
RH

γkRγk

)−1
RH

γkξk

∥∥∥
2
}

+
1

Ed

E

{∥∥∥
[
IP −Rγk

(
RH

γkRγk

)−1
RH

γk

]
dk

∥∥∥
2
}

. (7.17)

where IP is the identity matrix of size P × P . Equation (7.17) can be rewritten as

εγk(K) = 1 +
ε1 − ε2

Ed

, (7.18)

where

ε1 = E
{

ξH
k Rγk

(
RH

γkRγk

)−1
RH

γkξk

}
(7.19)

and

ε2 = E
{
dH

k Rγk

(
RH

γkRγk

)−1
RH

γkdk

}
. (7.20)

To proceed with the mean-square analysis, we derive simplified expressions for ε1 and ε2.

Recall that for any two vectors a and b we have aHb = tr(abH)∗, where the operator

tr(·) denotes the trace of a matrix. Then ε1 can be expressed as

ε1 = tr
(
E

{
ξkξ

H
k

}
E

{
Rγk

(
RH

γkRγk

)−1
RH

γk

})∗
. (7.21)

The whiteness assumption for ξp,k yields E
{
ξkξ

H
k

}
= σ2

ξIP . Then, using the property

that tr(AB) = tr(BA) for any two matrices A and B, we have

ε1 = σ2
ξE

{
tr

(
RH

γkRγk

(
RH

γkRγk

)−1
)∗}

= σ2
ξE

{
tr

(
I(2K+1)M+γ(N/2+1)

)∗}

= σ2
ξ

[
(2K + 1) M + γ

(
N

2
+ 1

)]
. (7.22)

2To avoid the well-known overfitting problem [24], the mse defined in (7.16) measures the fit of the

optimal estimate ŷγk

(
θ̂γk

)
to the clean output signal dk, rather than to the measured (noisy) signal

yk. Consequently, the growing model variability caused by increasing the number of model parameters

is compensated, and a more reliable measure for the model estimation quality is achieved.



182 CHAPTER 7. ERROR ANALYSIS FOR NONLINEAR SYSTEMS

To evaluate ε2, let us assume that xp,k is ergodic and that the observable data length P

is sufficiently large. From (7.14), the inverse of RH
γkRγk in (7.20) can be expressed as

(
RH

γkRγk

)−1
=


 ∆H

k ∆k γ∆H
k Λk

γΛH
k ∆k γΛH

k Λk



−1

, (7.23)

where the ergodicity of xp,k implies that the (m, `)th term of ∆H
k Λk may be approximated

by

(
∆H

k Λk

)
m,`

=
∑

n

x∗
n−m mod M,(k−K+bm

M c)mod N
xn,`k

xn,(k−`k)mod N

≈ PE
{

x∗
n−m mod M,(k−K+bm

M c)mod N
xn,`k

xn,(k−`k)mod N

}
, (7.24)

where `k = ` if ` ≤ k/2, and `k = ` + k/2 otherwise. Since odd-order moments of a

zero-mean complex Gaussian process are zero [10], we get
(
∆H

k Λk

)
m,`

≈ 0, and (7.23)

reduces to

(
RH

γkRγk

)−1 ≈



(
∆H

k ∆k

)−1
0(2K+1)M×N/2+1

0N/2+1×(2K+1)M γ
(
ΛH

k Λk

)−1


 , (7.25)

where 0N×M is a zero matrix of size N ×M . Substituting (7.25) and (7.14) into (7.20),

we obtain

ε2 = ε12 + γε22 (7.26)

where

ε12 = E
{
dH

k ∆k

(
∆H

k ∆k

)−1
∆H

k dk

}
(7.27)

ε22 = E
{
dH

k Λk

(
ΛH

k Λk

)−1
ΛH

k dk

}
. (7.28)

We proceed with evaluating ε12 and ε22. Using the ergodicity and whiteness properties of

xp,k, the (m, `)th term of ∆H
k ∆k can be approximated by (see Appendix 7.A.1)

(
∆H

k ∆k

)
m,`

≈ Pσ2
xδm−` , (7.29)

where δn denotes the Kronecker delta function. Substituting (7.29), and the definition of

dk from (7.9b) into (7.27), we obtain

ε12 =
1

Pσ2
x

[
hH

k Ω1hk + 2 Re
{
hH

k Ω2ck

}
+ cH

k Ω3ck

]
, (7.30)
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where Ω1 , E
{
∆H∆k∆

H
k ∆

}
, Ω2 , E

{
∆H∆k∆

H
k Λk

}
, Ω3 , E

{
ΛH

k ∆k∆
H
k Λk

}
, and

the operator Re{·} takes the real part of its argument. An explicit expression for Ω1 was

derived in [65] using the Gaussian fourth-order moment-factoring theorem [10], and its

(m, `)th term is given by [65, eq. (41)]

(Ω1)m,` = σ4
xPδm−` [M (2K + 1) + Pδm∈L0 ] , (7.31)

where L0 = { [(k −K + n1)modN ] M + n2 | n1 ∈ {0, . . . , 2K} , n2 ∈ {0, . . . , M − 1}}.
In addition, the (m, `)th term of Ω2 can be written as

(Ω2)m,` =
∑
n,r,q

E
{

x∗
r−m mod M,bm

M cx
∗
q−n mod M,(k−K+b n

M c)mod N

× xr−n mod M,(k−K+b n
M c)mod Nxq,`k

xq,(k−`k)mod N

}

= 0 , (7.32)

where `k is defined in (7.24), and the last equation is due to the definition of odd-order

moments of Gaussian process. Furthermore, using the Gaussian sixth-order moment-

factoring theorem [10], the (m, `)th term of Ω3 can be expressed as (see Appendix 7.A.2)

(Ω3)m,` = σ6
xPδm−`

[
M (2K + 1)

(
1 + δmk∈{ k

2
, k+N

2 }
)

+
4∑

i=1

δmk∈Li

]
, (7.33)

where mk is defined similarly to `k in (7.24), and L1 = B ∩ Ak, L2 = B ∩ A0,

L3 = C ∩Ak, and L4 = C ∩A0, with Ak , { [(k −K + n1)modN ] M | n1 ∈ {0, . . . , 2K}},
B , {k/2, (k + N) /2}, and C , {[0, k/2] ∪ [k + 1, (k + N) /2]}. Substituting (7.31),

(7.32) and (7.33) into (7.30), we obtain

ε12 = σ2
xM (2K + 1) ‖hk‖2 + σ2

xP

2K∑
m=0

∥∥hk,(k−K+m)modN

∥∥2

+ σ4
xM (2K + 1)

(
‖ck‖2 +

∣∣∣c k
2
, k
2

∣∣∣
2

+
∣∣∣c k+N

2
, k+N

2

∣∣∣
2
)

+ σ4
x

4∑
i=1

∑
m∈Li

∣∣cm,(k−m) mod N

∣∣2 . (7.34)

An expression for ε22 is obtained by substituting dk from (7.9b) into (7.28):

ε22 = hH
k Θ1hk + 2 Re

{
hH

k Θ2ck

}
+ cH

k Θ3ck , (7.35)
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where Θ1 , E
{
∆HΛk

(
ΛH

k Λk

)−1
ΛH

k ∆
}

, Θ2 , E
{
∆HΛk

}
and Θ3 , E

{
ΛH

k Λk

}
.

Finding an explicit expression for Θ1 is not straightforward. Nonetheless, using the

ergodicity of xp,k and the Gaussian sixth-order moment-factoring theorem, we obtain

after some mathematical manipulations (see Appendix 7.B.1)

(Θ1)m,` = σ2
xδm−`

[
1 +

N

2
+ δm∈{ k

2
, N+k

2 }M+δm∈{0,...,N−1}M

]
. (7.36)

The (m, `)th term of Θ2 consists of a third-order moment of xp,k, and as such is equal to

zero. The (m, `)th term of Θ3 can be expressed as (see Appendix 7.B.2)

(Θ3)m,` = σ4
xPδm−`

[
1 + δm∈{ k

2
, N
2 }

]
. (7.37)

Substituting (7.36) and (7.37) into (7.35), we obtain

ε22 = σ2
x

[(
1 +

N

2

)
‖hk‖2 +

∣∣∣h0,k, k
2

∣∣∣
2

+
∣∣∣h0,k, k+N

2

∣∣∣
2

+
N−1∑

k′=0

|h0,k,k′ |2
]

+ σ4
xP

(
‖ck‖2 +

∣∣∣c k
2
, k
2

∣∣∣
2

+
∣∣∣c k+N

2
, k+N

2

∣∣∣
2
)

. (7.38)

Finally, substituting (7.34) and (7.38) into (7.26), we obtain an explicit expression for ε2,

which together with ε1 from (7.22) is substituted into (7.18) to yield

εγk(K) = 1 +
σ2

ξ

Ed

[
M (2K + 1) + γ

(
N

2
+ 1

)]

− σ2
x

Ed

‖hk‖2

[
M (2K + 1) + γ

(
N

2
+ 1

)]

− σ4
x

Ed

(
‖ck‖2 +

∣∣∣c k
2
, k
2

∣∣∣
2

+
∣∣∣c k+N

2
, k+N

2

∣∣∣
2
)

[M (2K + 1) + γP ]

− 1

Ed

σ2
xP

2K∑
m=0

∥∥hk,(k−K+m)modN

∥∥2 − σ4
x

Ed

4∑
i=1

∑
m∈Li

∣∣cm,(k−m)mod N

∣∣2

− γ

Ed

σ2
x

[∣∣∣h0,k, k
2

∣∣∣
2

+
∣∣∣h0,k, k+N

2

∣∣∣
2

+
N−1∑

k′=0

|h0,k,k′|2
]

. (7.39)

Equation (7.39) provides an explicit expression for the mse obtained in the kth frequency

bin as a function of γ, using LS estimates of 2K+1 crossband filters and N/2+1 quadratic

cross-terms. Next, we analyze this error expression in order to provide important insights

into the system identifier performance.
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7.4 Discussion

In this section, we investigate the influence of nonlinear undermodeling (controlled by γ)

and the number of crossband filters (controlled by K) on the mse performance, and derive

explicit relations in terms of the SNR and the NLR.

Let σ2
d = E

{|dp,k|2
}

denote the power of the system output signal in the STFT

domain. Using (7.3) and the whiteness property of xp,k, σ2
d can be written as

σ2
d = σ2

dL
+ σ2

dQ
(7.40)

where σ2
dL

= σ2
x ‖hk‖2 and σ2

dQ
= σ4

x

(
‖ck‖2 +

∣∣ck/2,k/2

∣∣2 +
∣∣c(k+N)/2,(k+N)/2

∣∣2
)

are the pow-

ers of the output signals of the linear and quadratic components, respectively. Note that

the separable notation in (7.40) is possible since the linear and quadratic components of a

system represented by (7.3) are orthogonal to each other for Gaussian inputs (analogously

to the first- and second-order Volterra operators [44]). Since σ2
d is independent of p, we

can express Ed from (7.16) as Ed =
∑P−1

p=0 E
{|dp,k|2

}
= Pσ2

d . Then, denoting the SNR

by η = σ2
d/σ

2
ξ and the NLR by ϕ = σ2

dQ
/σ2

dL
, (7.39) can be rewritten as3

εγk(K) =
αγk(K)

η
+ βγk(K) (7.41)

where

αγk(K) , (2K + 1) M

P
+ γ

N/2 + 1

P
(7.42a)

βγk(K) , 1− (2K + 1) M

P
− ‖hk‖−2

[
h1(K) +

σ2
xc(K)

P

]
1

1 + ϕ

− γ

[
1 + N/2 + ‖hk‖−2 h2

P
+ ϕ

]
1

1 + ϕ
(7.42b)

and h1 (K) ,
∑2K

m=0

∥∥hk,(k−K+m)modN

∥∥2
, h2 ,

∣∣∣h0,k, k
2

∣∣∣
2

+
∣∣∣h0,k, k+N

2

∣∣∣
2

+
∑N−1

k′=0 |h0,k,k′|2 and

c (K) ,
∑4

i=1

∑
m∈Li

∣∣cm,(k−m)mod N

∣∣2. Note that both η and ϕ depend on the powers

of the linear and quadratic components, and as such they may have mutual influence

on each other. However, to properly analyze the error, we will assume in the following

3In general, η and ϕ depend on the frequency-bin index k since the input-signal energy (or the true-

system energy) may often not be uniformly distributed in frequency (e.g., speech signals [125]). However,

for notational simplicity k has been omitted.
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that variations in the SNR value η does not influence the value of ϕ. We observe from

(7.41) that the mse εγk(K), for fixed values of γ, k and K, is a monotonically decreasing

function of η, which expectedly indicates that a better estimation of the model parameters

is enabled by increasing the SNR. Moreover, substituting γ = 0, ϕ = 0 and c(K) = 0 into

(7.41)-(7.42b), the mse degenerates to that derived in [65]:

εk,linear(K) =
(2K + 1) M

P
· 1

η

+ 1− (2K + 1) M

P
− h1(K)

‖hk‖2 , (7.43)

which represents the mse achieved by estimating a linear system with a purely linear

model.

7.4.1 Influence of nonlinear undermodeling

¿From (7.42a) and (7.42b), it can be verified that α1k(K) > α0k(K) and β1k(K) < β0k(K),

which implies that ε1k(K) > ε0k(K) for low SNR (η << 1), and ε1k(K) ≤ ε0k(K) for

high SNR (η >> 1). As a result, since ε1k(K) and ε0k(K) are monotonically decreasing

functions of η, they must intersect at a certain SNR value, denoted by η̄. Accordingly,

for SNR values lower than η̄, we get ε0k(K) < ε1k(K), and correspondingly a lower mse is

achieved by allowing for nonlinear undermodeling (i.e., employing only a linear model).

On the other hand, as the SNR increases, the mse performance can be generally improved

by incorporating also the nonlinear component into the model (γ = 1).

The SNR intersection point η̄ is obtained by requiring that ε1k(K) = ε0k(K), which

yields

η̄ =
1 + ϕ

1 + 2 ‖hk‖−2 h2 (N + 2)−1 + 2P (N + 2)−1 ϕ
. (7.44)

Equation (7.44) implies that η̄ is a monotonically decreasing function of the observable

data length in the STFT domain (P ). Therefore, for a fixed SNR value, as more data

is available in the identification process, a lower mse is achieved by estimating also the

parameters of the nonlinear component. Recall that the system is assumed time invariant

during P frames (its estimate is updated every P frames), in case the time variations in the

system are relatively fast, we should decrease P and correspondingly allow for nonlinear

undermodeling to achieve lower mse. Another interesting point that can be concluded
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from (7.44) is that η̄ is a monotonically decreasing function of ϕ (assuming P > N/2 + 1,

which holds in our case due to the ergodicity assumption made in the previous section).

Consequently, as the nonlinearity becomes weaker (i.e., ϕ decreases), higher SNR values

should be considered to justify the estimation of the nonlinear component.

Equations (7.41)-(7.42b) also provide an insight into the mutual influence of ϕ and

γ on the mse performance. Specifically for high SNR conditions, it can be verified that

when a purely linear model is employed (γ = 0), the mse increases with increasing ϕ

[since β0k(K) increases]. On the other hand, including a nonlinear component into the

model (γ = 1) decreases the mse for high SNR values, and improves the accuracy of the

system estimate. This improvement in performance becomes larger as ϕ increases, as the

last term in β1k(K) increases with increasing ϕ. This stems from the fact that the error

induced by the undermodeling in the linear component (i.e., by not considering all of the

crossband filters) is less substantial as the nonlinearity strength increases, such that the

true system can be more accurately estimated by the full model. To summarize the above

discussion, Fig. 7.1 shows typical mse curves of ε1k(K) and ε0k(K) as a function of the

SNR, obtained for a high NLR ϕ1 [Fig. 7.1(a)] and a lower one 0.2ϕ1 [Fig. 7.1(b)], where

|∆ε (η)| denotes the nonlinear undermodeling error. Note that as the NLR ϕ increases,

the intersection point η̄ decreases, while the undermodeling error |∆ε (η)| increases (for

high SNR conditions).

7.4.2 Influence of the number of crossband filters

The number of estimated crossband filters in the linear component also influences the

system identifier performance. It was shown in [65] that when a linear model is employed

for estimating a purely linear system, the mse in subbands not necessarily decreases by

increasing the number of crossband filters. The inclusion of more crossband filters in the

identification process is preferable only when high SNR or long data are considered. The

same applies also in our case, when the system to be identified is nonlinear. This can

easily be verified from (7.41)-(7.42b), which indicate that εγk(K + 1) > εγk(K) for low

SNR (η << 1), and εγk(K + 1) ≤ εγk(K) for high SNR (η >> 1). Therefore, for every

noise level there exists an optimal number of crossband filters, which increases as the SNR

increases. In the limit, for a sufficiently large SNR value and infinitly long data, we would
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Figure 7.1: Illustration of typical mse curves as a function of the SNR, showing the relation

between ε0k(K) (solid) and ε1k(K) (dashed) for (a) high NLR ϕ1 and (b) low NLR 0.2ϕ1.

|∆ε (η)| denotes the nonlinear undermodeling error.

prefer to employ a nonlinear model and to estimate all the crossband filters. This can be

shown from (7.41)-(7.42b) by taking η and P to infinity, obtaining

lim
η,P→∞

εγk(K) =
1− h1(K) ‖hk‖−2

1 + ϕ
+

(1− γ) ϕ

1 + ϕ
. (7.45)

Equation (7.45) represents the bias error of the model, which can be decomposed into

two terms. The first term is attributable to the undermodeling caused by restricting the

number of crossband filters. It reduces to zero when K = N/2 [since then h1(K) = ‖hk‖2],

and is monotonically decreasing as a function of ϕ. On the other hand, the second term is

due to nonlinear undermodeling, and vanishes when γ = 1. This term is a monotonically

decreasing function of ϕ. Clearly, the asymptotic error in (7.45) reduces to zero when

employing a nonlinear model and estimating all the crossband filters.

It is worthwhile noting that the results in this section are closely related to model-

structure selection and model-order selection, which are fundamental problems in many

system identification applications [24–30]. In our case, the model structure may be either

linear (γ = 0) or nonlinear (γ = 1), where a richer and larger structure is provided by

the latter. The larger the model structure, the better the model fits to the data, at the

expense of an increased variance of parametric estimates [24]. Generally, the structure to

be chosen is affected by the level of noise in the data and the length of the observable
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data. As the SNR increases or as more data is employable, a richer structure can be used,

and correspondingly a better estimation can be achieved by incorporating a nonlinear

model rather than a linear one. Once a model structure has been chosen, its optimal

order (i.e., the number of estimated parameters) should be selected, where in our case

the model order is determined by the number of crossband filters. Accordingly, as the

SNR increases, whether a linear or a nonlinear model is employed, more crossband filters

should be utilized to achieve a lower mse. These points will be further demonstrated in

the next section.

7.5 Experimental results

In this section, we present experimental results which support the theoretical derivations.

The influence of nonlinear undermodeling on the mse performance is demonstrated by

fitting both linear and nonlinear models to the observable data and comparing the re-

sulting mse values. The comparison is evaluated for several SNR and NLR values, and

under the assumption of white Gaussian signals. We use a Hamming analysis window of

length N = 256 with 50% overlap (i.e., L = 0.5N), and a corresponding minimum-energy

synthesis window that satisfies the completeness condition [72].

Consider a quadratically nonlinear system of the following form:

y(n) =

Nh−1∑
m=0

h(m)x(n−m) + {Lx} (n) + ξ(n) , (7.46)

where h(n) is the impulse response of the linear component, and {Lx} (n) denotes the

output of the quadratic component. The latter is generated according to the quadratic

model (7.3), i.e.,

{Lx} (n) = S−1
∑

k′∈F
xp,k′xp,(k−k′)mod Nck′,(k−k′)mod N , (7.47)

where S−1 denotes the inverse STFT operator and {ck′,(k−k′)mod N

∣∣ k′ ∈ F} are the true

quadratic cross-terms of the system. These terms are modeled here as a unit-variance

zero-mean white Gaussian process. In addition, we model the linear impulse response

as a nonstationary stochastic process with an exponential decay envelope, i.e., h(n) =

u(n)β(n)e−αn, where u(n) is the unit step function, β(n) is a unit-variance zero-mean



190 CHAPTER 7. ERROR ANALYSIS FOR NONLINEAR SYSTEMS

white Gaussian noise, and α is the decay exponent. In the following, the length of the

impulse response is Nh = 768, α = 0.009, and the data contains Nx = 24000 samples.

The input signal x(n) and the additive noise signal ξ(n) are uncorrelated zero-mean white

Gaussian processes with variances σ2
x and σ2

ξ , respectively.

For evaluating the quality of the system estimate, we define the time-domain mse as

εγ(K) =
E

{|d (n)− ŷγ (K; n)|2}

E
{|d (n)|2} , (7.48)

where d(n) is the clean output signal [i.e., d(n) = y(n)−ξ(n)], and ŷγ (K; n) is the inverse

STFT of the model output signal ŷp,k [see (7.10)], as obtained for a given γ value, and by

estimating 2K + 1 crossband filters. Initially, a fixed value of K = 0 is assumed (i.e., the

crossband filters are ignored and only the band-to-band filters of the model
{
h̄p,k,k

}N−1

k=0

are estimated). Figure 7.2 shows the resulting mse curves ε0(0) and ε1(0) as a function

of the SNR, as obtained for an NLR of 0 dB [Fig. 7.2(a)] and −20 dB [Fig. 7.2(b)]. The

results confirm that for relatively low SNR values, a lower mse is achieved by estimating

the system using a purely linear model (γ = 0) and allowing for nonlinear undermodeling.

For instance, Fig. 7.2(a) shows that for a −20 dB SNR, employing only a linear model

reduces the mse by approximately 11 dB, when compared to that achieved by using a

nonlinear model (γ = 1). On the other hand, when considering high SNR values, the

performance can be generally improved by incorporating a nonlinear component into the

model, as expected from (7.41)-(7.42b). For an SNR of 20 dB, for instance, a nonlinear

model enables a decrease of 13 dB in the mse. Furthermore, a comparison of Figs.

7.2(a) and (b) indicates that the SNR intersection point between the corresponding mse

curves increases as we decrease the NLR [as expected from (7.44)]. Clearly, for high SNR

conditions, as the NLR increases, the mse associated with the linear model increases,

while the relative improvement achieved by the nonlinear model becomes larger. This

was accurately described by the theoretical error analysis in Section 7.4 [see Fig. 7.1]. It

should be noted that similar results are obtained for other (fixed) values of K.

Next, in order to determine the influence of the number of estimated crossband filters

on the mse performance, we employ several values of K and seek for the optimal one that

achieves the mmse for every SNR value. Figure 7.3 shows the resulting mse curves ε0(K)

and ε1(K) as a function of the SNR, as obtained for an NLR of 0 dB [Fig. 7.3(a)] and
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Figure 7.2: MSE curves as a function of the SNR for white Gaussian signals, as obtained by the

STFT model (7.10) using a purely linear model [ε0(0); solid] and a nonlinear one [ε1(0); dashed].

For both models, a fixed value of K = 0 is assumed for the linear component (i.e., only the

band-to-band filters are estimated). The true system is formed as a combination of linear and

quadratic components, where the latter is modeled according to (7.47). (a) Nonlinear-to-linear

ratio (NLR) of 0 dB (b) NLR of −20 dB.

−20 dB [Fig. 7.3(b)]. The optimal value of K is indicated above the corresponding mse

curves. Expectedly, Fig. 7.3 confirms that as the SNR increases, the optimal K increases,

and consequently a larger number of crossband filters should be estimated to attain the

mmse, both for the linear [ε0(K)] and nonlinear [ε1(K)] models. Clearly, for high SNR

conditions, the nonlinear model is considerably more advantageous. Specifically for a

30 dB SNR, Fig. 7.3(a) shows that a substantial decrease of 25 dB is achieved by the

nonlinear model, relative to that obtained by the linear one. The mse values obtained by

each value of K for a 0 dB NLR and for various SNR conditions are specified in Table 7.1.

One can observe that for an SNR value of 35 dB, for instance, a significant improvement

of approximately 11 dB over a linear model with K = 4 is achieved by a nonlinear model

with only K = 0, which substantially reduces the complexity of the model. Note that

similar results are obtained for a smaller NLR value [Fig. 7.3(b)], with the only difference

is that the two curves intersect at a higher SNR value. Decreasing the NLR expectedly

improves the mse achieved by the linear model at high SNR values, and correspondingly

decreases the nonlinear undermodeling error.
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Figure 7.3: MSE curves as a function of the SNR for white Gaussian signals, as obtained by

the STFT model (7.10) using a purely linear model [ε0(K); solid] and a nonlinear one [ε1(K);

dashed]. The optimal value of K is indicated above the corresponding mse curves (light and

dark fonts, respectively). The true system is formed as a combination of linear and quadratic

components, where the latter is modeled according to (7.47). (a) Nonlinear-to-linear ratio (NLR)

of 0 dB (b) NLR of −20 dB.

7.6 Conclusions

We have provided an explicit estimation-error analysis for quadratically nonlinear system

identification in the STFT domain. We assumed that the system to be identified can be

represented by the nonlinear STFT model proposed in Chapter 6. The proposed model

consists of a parallel combination of a linear component, which is represented by crossband

filters between subbands, and a quadratic component, modeled by multiplicative cross-

terms. We showed that the inclusion of the quadratic component in the model is preferable

only for high SNR conditions and slowly time-varying systems (which enables to use

longer observable data). A significant improvement in mse performance is then achieved

compared to using a purely linear model. This improvement in performance becomes

larger as the nonlinearity becomes stronger. On the other hand, as the SNR decreases or

as the time variations in the system become faster, a lower mse is attained by allowing

for nonlinear undermodeling and employing only the linear component in the estimation

process. Furthermore, we showed that increasing the number of crossband filters in the
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Table 7.1: MSE Obtained by a Linear Model [ε0(K)] and a Nonlinear Model [ε1(K)] for Several

K Values, and Under Various SNR Conditions. The Nonlinear-to-Linear Ratio (NLR) is 0 dB.

K
ε0(K) [dB] ε1(K) [dB]

SNR= −10 dB SNR= 35 dB SNR= −10 dB SNR= 35 dB

0 -0.42 -3.17 8.08 -16.06

1 2.41 -3.82 8.75 18.78

2 3.98 -4.29 9.35 -21.54

3 5.36 -4.91 9.89 -28.59

4 6.36 -5.51 10.03 -34.96

linear component does not necessarily imply a lower mse. For every noise level, whether

a linear or a nonlinear model is employed, there exists an optimal number of crossband

filters, which increases as the SNR increases. Experimental results have supported the

theoretical derivations.

The reduced complexity of the proposed model (see Chapter 6), compared to the

time-domain Volterra model, may lead to a faster convergence of a nonlinear adaptive

algorithm implemented in the STFT domain. The insights provided in this chapter may

further enhance the performance of such algorithm. Specifically, by adaptively controlling

the model structure (employing either a linear or a nonlinear model) and the model order

(determining the number of crossband filters), the adaptive algorithm may result in a

faster convergence without compromising for higher steady-state mse. Constructing an

adaptive-control algorithm for improved nonlinear system identification is a topic for

future research.
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7.A Evaluation of ε12

7.A.1 Derivation of (7.29)

Using the ergodicity property of xp,k, the (m, `)th term of ∆H
k ∆k can be approximated

by

(
∆H

k ∆k

)
m,`

=
∑

n

xn−`modM,(k−K+b `
M c)modNx∗

n−mmodM,(k−K+bm
M c)modN

≈ PE
{

xn−`modM,(k−K+b `
M c)modNx∗

n−mmodM,(k−K+bm
M c)modN

}
. (7.49)

Then, the whiteness property of xp,k implies

(
∆H

k ∆k

)
m,`

≈ Pσ2
xδ`modM−mmodM

× δ(k−K+b `
M c)modN−(k−K+bm

M c)modN . (7.50)

where δn denotes the Kronecker delta function. Consequently,
(
∆H

k ∆k

)
m,`

is nonzero

only if `modM = mmodM and
(
k −K +

⌊
`

M

⌋)
modN =

(
k −K +

⌊
m
M

⌋)
modN . Those

conditions can be rewritten as

` = m + rM for r = 0,±1,±2, . . . (7.51)

and

k −K +
⌊

`
M

⌋
= k −K +

⌊
m
M

⌋
+ qN for q = 0,±1,±2, . . . . (7.52)

Substituting (7.51) into (7.52), we obtain

r = qN ; q = 0,±1,±2, . . . . (7.53)

However, recall that 0 ≤ `,m ≤ (2K + 1)M − 1 ≤ NM − 1, then it can be verified from

(7.51) that

max {|r|} = N − 1 . (7.54)

From (7.53) and (7.54) we conclude that r = 0, so (7.51) reduces to m = ` and we obtain

(7.29).
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7.A.2 Derivation of (7.33)

The (m, `)th term of Ω3 from (7.30) can be written as

(Ω3)m,` =
∑
n,r,q

E
{

x∗r,mk
xr−n mod M,(k−K+b n

M c)mod Nx∗r,(k−mk)mod Nxq,`k

× x∗
q−n mod M,(k−K+b n

M c)mod N
xq,(k−`k)mod N

}
, (7.55)

where mk = m if m ≤ k/2, and mk = m + k/2 otherwise, and `k is defined similarly.

By using the sixth-order moment factoring theorem for zero-mean complex Gaussian

samples [10, p. 68], (7.55) reduces to products of different combinations of second-order

moments, as follows

(Ω3)m,` =
∑
n,r,q

E
{

x∗r,mk
xr−n mod M,(k−K+b n

M c)mod N

}
E

{
x∗r,(k−mk)mod Nxq,`k

}

× E
{

x∗
q−n mod M,(k−K+b n

M c)mod N
xq,(k−`k)mod N

}

+
∑
n,r,q

E
{

x∗r,mk
xr−n mod M,(k−K+b n

M c)mod N

}
E

{
x∗r,(k−mk)mod Nxq,(k−`k)mod N

}

× E
{

x∗
q−n mod M,(k−K+b n

M c)mod N
xq,`k

}

+
∑
n,r,q

E
{
x∗r,mk

xq,`k

}
E

{
x∗r,(k−mk)mod Nxr−n mod M,(k−K+b n

M c)mod N

}

× E
{

x∗
q−n mod M,(k−K+b n

M c)mod N
xq,(k−`k)mod N

}

+
∑
n,r,q

E
{
x∗r,mk

xq,`k

}
E

{
x∗r,(k−mk)mod Nxq,(k−`k)mod N

}

× E
{

x∗
q−n mod M,(k−K+b n

M c)mod N
xr−n mod M,(k−K+b n

M c)mod N

}

+
∑
n,r,q

E
{
x∗r,mk

xq,(k−`k)mod N

}
E

{
x∗r,(k−mk)mod Nxr−n mod M,(k−K+b n

M c)mod N

}

× E
{

x∗
q−n mod M,(k−K+b n

M c)mod N
xq,`k

}

+
∑
n,r,q

E
{
x∗r,mk

xq,(k−`k) mod N

}
E

{
x∗r,(k−mk)mod Nxq,`k

}

× E
{

x∗
q−n mod M,(k−K+b n

M c)mod N
xr−n mod M,(k−K+b n

M c)mod N

}
. (7.56)

Using the whiteness property of xp,k, we can write (7.56) as

(Ω3)m,` =
6∑

i=1

ωi (7.57)
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where

ω1 = σ6
x

∑
n,r,q

δn mod Mδmk−(k−K+b n
M c)mod Nδr−qδ`k−(k−mk)mod N

× δ(k−`k)mod N−(k−K+b n
M c)mod N (7.58a)

ω2 = σ6
x

∑
n,r,q

δn mod Mδmk−(k−K+b n
M c)mod Nδr−qδ(k−`k)mod N−(k−mk)mod N

× δ`k−(k−K+b n
M c)mod N (7.58b)

ω3 = σ6
x

∑
n,r,q

δr−qδmk−`k
δn mod Mδ(k−mk)mod N−(k−K+b n

M c)mod N

× δ(k−`k)mod N−(k−K+b n
M c)mod N (7.58c)

ω4 = σ6
x

∑
n,r,q

δr−qδmk−`k
δ(k−mk)mod N−(k−`k) mod N (7.58d)

ω5 = σ6
x

∑
n,r,q

δr−qδmk−(k−`k)mod Nδn mod Mδ(k−mk)mod N−(k−K+b n
M c)mod N

× δ`k−(k−K+b n
M c)mod N (7.58e)

ω6 = σ6
x

∑
n,r,q

δr−qδmk−(k−`k)mod Nδ`k−(k−mk) mod N . (7.58f)

Each term ωi in (7.58) consists of delta-functions products, which impose certain condi-

tions on both the matrix indices m and `, and the summation indices n, r and q. Note

that since the dependence of each term on r and q is only via δr−q, and since r and q range

from 0 to P − 1, the double summation over r and q may be replaced by a multiplication

of each term by P . Moreover, it is easy to verify from the conditions imposed on m and

` that the condition m = ` must be satisfied for each ωi, which implies that the matrix

Ω3 is diagonal. Nonetheless, due to the conditions imposed on the index n, not all the

diagonal elements are nonzero. Specifically for ω1, n should satisfy n mod M = 0 [recall

that n ranges from 0 to (2K + 1)M − 1], and m satisfies the following

mk =
(
k −K +

⌊ n

M

⌋)
mod N (7.59a)

mk = (k − `k) mod N (7.59b)

`k = (k −mk) mod N . (7.59c)

Using the definitions of mk and `k, it can be shown that the last two conditions reduce to

mk = `k ∈ {k/2, (k + N) /2}. Also, since n ∈ {0, 1, . . . , (2K + 1)M − 1}, (7.59a) implies

that mk ∈ Ak where

Ak , { [(k −K + n1)modN ] M | n1 ∈ {0, . . . , 2K}} . (7.60)
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Then, from the above discussion, ω1 from (7.58a) may be written as

ω1 = σ6
xPδm−`δmk∈L1 (7.61)

where

L1 =

{
k

2
,
k + N

2

}
∩ Ak . (7.62)

Following a similar analysis, it can be verified that

ωi = σ6
xPδm−`δmk∈Li ; for i = 2, 3, 5 (7.63)

where

L2 =

{[
0,

k

2

]
∪

[
k + 1,

k + N

2

]}
∩ Ak (7.64)

L3 =

{[
0,

k

2

]
∪

[
k + 1,

k + N

2

]}
∩ A0 (7.65)

and

L5 =

{
k

2
,
k + N

2

}
∩ A0 . (7.66)

Finally, since ω4 and ω6 do not depend on n, the summation over n in (7.58d) and (7.58f)

can be replaced by a multiplication by (2K + 1)M , obtaining

ω4 = σ6
xP (2K + 1) Mδm−` (7.67)

ω6 = σ6
xP (2K + 1) Mδm−`δm∈{ k

2
, N
2 } . (7.68)

Substituting (7.61)-(7.68) into (7.57) yields (7.33).

7.B Evaluation of ε22

7.B.1 Derivation of (7.36)

Using the ergodicity property of xp,k, the (m, `)th term of ΛH
k Λk can be approximated by

(
ΛH

k Λk

)
m,`

=
∑

n

x∗n,mk
xn,`k

x∗n,(k−mk)mod Nxn,(k−`k)mod N

≈ PE
{
x∗n,mk

xn,`k
x∗n,(k−mk)mod Nxn,(k−`k)mod N

}
. (7.69)
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By using the fourth-order moment factoring theorem for zero-mean complex Gaussian

samples [10, p. 68], (7.69) can be rewritten as

(
ΛH

k Λk

)
m,`

= PE
{
x∗n,mk

xn,`k

}
E

{
x∗n,(k−mk)mod Nxn,(k−`k)mod N

}

+ PE
{
x∗n,mk

xn,(k−`k)mod N

}
E

{
x∗n,(k−mk)mod Nxn,`k

}
, (7.70)

which reduces to

(
ΛH

k Λk

)
m,`

= Pσ4
xδmk−`k

δ(k−mk)mod N−(k−`k)mod N

+ Pσ4
xδmk−(k−`k)mod Nδ`k−(k−mk)mod N , (7.71)

due to the whiteness property of xp,k. The first term in (7.71) is nonzero only if mk = `k,

and the second term is nonzeros only if mk = (k − `k) mod N and `k = (k −mk) mod N .

Recall that mk = m if m ≤ k/2, and mk = m + k/2 otherwise (`k is defined similarly),

then (7.71) reduces to

(
ΛH

k Λk

)
m,`

= Pσ4
xδm−`

[
1 + δm∈{ k

2
, N
2 }

]
. (7.72)

Let ĨN/2+1 denote an (N/2 + 1)×(N/2 + 1) diagonal matrix whose (m,m)th term satisfies

(
ĨN/2+1

)
m,m

=





0.5, m ∈ {
k
2
, N

2

}

1, otherwise
. (7.73)

Then, substituting (7.72) into Θ1 from (7.35), we obtain

(Θ1)m,` =
1

Pσ4
x

∑
n,r,q

E
{

(∆∗)rm

(
ΛkĨN/2+1

)
rn

(Λ∗
k)qn (∆)q`

}

=
1

Pσ4
x

∑
n,r,q

E

{
x∗

r−m mod M,bm
M c

[
xr,nk

xr,(k−nk)mod N − 1

2
xr, k

2
δ

(
n− k

2

)

− 1

2
xr, N+k

2
δ

(
n− N

2

)]
x∗q,nk

x∗q,(k−nk)mod Nxq−` mod M,b `
M c

}
, (7.74)

which can be expressed as

(Θ1)m,` = θ1 − 1

2

[
θ2

(
k

2

)
+ θ2

(
N + k

2

)]
(7.75)

where

θ1 =
1

Pσ4
x

∑
n,r,q

E
{

x∗
r−m mod M,bm

M cxr,nk
x∗q,nk

xr,(k−nk)mod N

× x∗q,(k−nk)mod Nxq−` mod M,b `
M c

}
(7.76)
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and

θ2 (k) =
1

Pσ4
x

∑
r,q

E
{

x∗
r−m mod M,bm

M cxr,kx
∗
q,kxr,kx

∗
q,k

× xq−` mod M,b `
M c

}
. (7.77)

Equations (7.76) and (7.77) may be evaluated by using the Gaussian sixth-order moment

factoring theorem, as applied in (7.33) for deriving the (m, `)th term of Ω3 (see Appendix

7.A.2). Then, following a similar analysis to that given in Appendix 7.A.2, we obtain

explicit expressions for both θ1 and θ2 (k):

θ1 = σ2
xδm−`

[
3δm∈{ k

2
, k+N

2 }M + δm∈{0,...,N−1}M +
N

2
+ 3

]
(7.78)

and

θ2 (k) = σ2
xδm−` [4δm−kM + 2] . (7.79)

Substituting (7.78) and (7.79) into (7.75) yields (7.36).

7.B.2 Derivation of (7.37)

The (m, `)th term of Θ3 from (7.35) can be written as

(Θ3)m,` =
∑

n

E
{
x∗n,mk

xn,`k
x∗n,(k−mk)mod Nxn,(k−`k)mod N

}
. (7.80)

The forth-order moment in (7.80) was already derived in Appendix 7.B.1, and is given by

[see (7.69)-(7.71)]

E
{
x∗n,mk

xn,`k
x∗n,(k−mk)mod Nxn,(k−`k)mod N

}

= σ4
xδmk−`k

δ(k−mk)mod N−(k−`k)mod N

+ σ4
xδmk−(k−`k)mod Nδ`k−(k−mk)mod N

= σ4
xδm−`

[
1 + δm∈{ k

2
, N
2 }

]
, (7.81)

where the last equation follows from (7.72). Since (7.81) does not depend on n, and n

ranges from 0 to P − 1, the summation in (7.80) can be replaced by multiplication by P ,

which yields (7.37).
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Chapter 8

Adaptive Nonlinear System

Identification in the STFT Domain1

In this chapter, we introduce an adaptive algorithm for the estimation of quadratically

nonlinear systems in the short-time Fourier transform (STFT) domain. Based on the

recently-proposed nonlinear STFT model, the adaptive scheme consists of a parallel com-

bination of a linear component, represented by crossband filters between subbands, and

a quadratic component, which is modeled by multiplicative cross-terms. We adaptively

update the model parameters using the least-mean-square (LMS) algorithm, and derive

explicit expressions for the transient and steady-state mse in frequency bins for white

Gaussian inputs. We mainly concentrate on the influence of nonlinear undermodeling

(i.e., employing a purely linear model in the estimation process) and the number of es-

timated crossband filters on the transient and steady-state performances. We show that

incorporating the nonlinear component into the model may not necessarily imply a lower

steady-state mse in subbands. In fact, the estimation of the nonlinear component im-

proves the mse performance only when the power ratio of nonlinear to linear components

of the system is relatively high. As the nonlinearity becomes weaker, the steady-state mse

associated with the linear model decreases, while the relative improvement achieved by

the nonlinear model becomes smaller. We further show that as the number of crossband

filters increases, a lower steady-state mse is achieved, whether a linear or a nonlinear

model is employed; however, the algorithm then suffers from a slower convergence. The

1This chapter is based on [126].
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proposed algorithm results in reduced computational complexity compared to the time-

domain Volterra model. Experimental results support the theoretical derivations.

8.1 Introduction

Identification of nonlinear systems has recently attracted great interest in many applica-

tions, including acoustic echo cancellation [36–38], channel equalization [39,40], biological

system modeling [41] and image processing [42]. A popular approach for modeling non-

linear systems is using Volterra filters [44–46], which are attractive due to their structural

generality and versatile modeling capabilities (e.g., [48, 49]). An important property of

Volterra filters is the linear relation between the system output and the filter coeffi-

cients, which enables to employ algorithms from linear estimation theory for estimating

the Volterra model parameters. Adaptation algorithms used for this purpose often em-

ploy the least-mean-square (LMS) algorithm [10] due to its robustness and simplicity

(e.g., [37, 46, 48]). However, the LMS algorithm suffers from slow convergence when the

input signal to the adaptive filter is correlated, which is extremely problematic when ap-

plied to Volterra filters [46]. Another major drawback of the adaptive Volterra filter is

the high computational cost caused by the large number of model parameters, especially

for long-memory systems [45,50]. To speed-up convergence, the affine projection (AP) al-

gorithm and the recursive least-squares (RLS) algorithm were employed for updating the

adaptive Volterra filters [45, 47]. These approaches, however, substantially increase the

computational complexity of the estimation process. Alternatively, several time-domain

approximations, which suggest a less general structure than the Volterra filter, have been

proposed, including orthogonalized power filters [53], Hammerstein models [54], parallel-

cascade structures [55], and multi-memory decomposition [56]. Other adaptive algorithms,

which operate in the frequency domain, have been proposed to ease the computational

burden [61,77]. These approaches are based on the discrete frequency-domain model [60],

which approximates the Volterra filter using multiplicative terms. Nonetheless, a major

limitation of this model is its underlying assumption that the observation frame is suffi-

ciently large compared with the memory length of the system. This assumption may be

very restrictive, especially when long and time-varying impulse responses are considered
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(as in acoustic echo cancellation applications [89]).

The drawbacks of the conventional time- and frequency-domain methods have mo-

tivated the use of subband (multirate) techniques [11] for improved nonlinear sys-

tem identification (see Chapters 6 and 7). As in subband linear system identifica-

tion [13,16–18,65,98,99], such techniques may achieve computational efficiency as well as

improved convergence rate due to processing in distinct subbands. In Chapter 6, a novel

approach for improved nonlinear system identification in the short-time Fourier trans-

form (STFT) domain have been introduced. Based on a time-frequency representation of

Volterra filters, an approximate nonlinear STFT model, which consists of a parallel com-

bination of linear and nonlinear components, was developed. According to this model,

the linear component is represented by crossband filters between the subbands [16, 65],

while the nonlinear component is modeled by multiplicative cross-terms. The parameters

of the proposed model were estimated off-line using a least-squares (LS) criterion, and it

was shown that a significant reduction in computational cost as well as a substantial im-

provement in estimation accuracy can be achieved over the time-domain Volterra model,

particularly when long-memory nonlinear systems are considered. The performance of

this off-line scheme has been analyzed in Chapter 7 for the quadratic case. A detailed

mean-square analysis was presented, and the problem of employing either a linear or a

nonlinear model for the estimation process, as well as determining the optimal number of

crossband filters was considered.

In this chapter, we introduce an adaptive algorithm for the estimation of quadrati-

cally nonlinear systems in the STFT domain. The quadratic model proposed in Chapter

6 is employed, and its parameters are adaptively updated using the LMS algorithm. We

derive explicit expressions for the transient and steady-state mean-square error (mse) in

frequency bins for white Gaussian processes, using different step-sizes for the linear and

quadratic components of the model. The analysis provides important insights into the in-

fluence of nonlinear undermodeling (i.e., employing a purely linear model in the estimation

process) and the number of estimated crossband filters on the transient and steady-state

performances. We show that as the number of crossband filters increases, a lower steady-

state mse is achieved, whether a linear or a nonlinear model is employed; however, the

algorithm then suffers from a slower convergence. Accordingly, as more data is employed
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in the adaptation process, additional crossband filters should be estimated to achieve the

minimal mse (mmse) at each iteration. Moreover, we show that the choice of the model

structure (either linear or nonlinear) is mainly influenced by the nonlinear-to-linear ratio

(NLR), which represents the power ratio of nonlinear to linear components of the system.

Specifically for high NLR conditions, a lower steady-state mse can be achieved by incor-

porating a nonlinear component into the model. On the other hand, as the nonlinearity

becomes weaker (i.e., the NLR decreases), the steady-state mse associated with the linear

model decreases, while the relative improvement achieved by the nonlinear model becomes

smaller. Consequently, for relatively low NLR values, utilizing the nonlinear component

in the estimation process may not necessarily imply a lower steady-state mse in subbands.

Experimental results demonstrate the theoretical results derived in this chapter.

The chapter is organized as follows. In Section 8.2, we formulate the quadratic STFT

model and introduce an adaptive scheme for updating the model parameters. In Section

8.3, we derive explicit expressions for the transient and steady-state mse in subbands.

In Section 8.4, we address the computational complexity of the proposed algorithm and

compare it to that of the conventional time-domain Volterra approach. Finally, in Section

8.5, we present some experimental results to support the theoretical derivations.

8.2 Model formulation and identification

In this section, we introduce an LMS-based adaptive scheme for the identification of

quadratically nonlinear systems in the STFT domain. We assume that the system to

be identified can be represented by the nonlinear STFT model proposed in Chapter 6.

Throughout this chapter, scalar variables are written with lowercase letters and vectors

are indicated with lowercase boldface letters. Capital boldface letters are used for matrices

and norms are always `2 norms.

Let an input x(n) and output y(n) of an unknown (quadratically) nonlinear system

be related by

y(n) = {φx} (n) + ξ(n) = d(n) + ξ(n) (8.1)

where φ(·) denotes a discrete-time nonlinear time-invariant system, ξ(n) is a corrupting

additive noise signal, and d(n) is the clean output signal. Note that the ”noise” signal
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ξ(n) may sometimes include a useful signal, e.g., the local speaker signal in acoustic echo

cancellation [36–38]. The STFT of y(n) is given by [71]

yp,k =
∑

n

y(n) ψ̃∗p,k(n)

= dp,k + ξp,k (8.2)

where ψ̃p,k(n) = ψ̃(n− pL) ej 2π
N

k(n−pL) denotes a translated and modulated window func-

tion, ψ̃(n) is a real-valued analysis window of length N , p is the frame index, k represents

the frequency-bin index (0 ≤ k ≤ N−1), L is the translation factor and ∗ denotes complex

conjugation. A nonlinear system identification scheme in the STFT domain is illustrated

in Fig. 6.1. We assume that the system output signal d(n) arises from the nonlinear

STFT model proposed in Chapter 6. Accordingly, the true system is formed as a parallel

combination of linear and quadratic components in the time-frequency domain as follows:

dp,k =
N−1∑

k′=0

M−1∑

p′=0

xp−p′,k′h̄p′,k,k′

+
∑

k′∈F
xp,k′xp,(k−k′)mod N c̄k′,(k−k′)mod N (8.3)

where h̄p,k,k′ denotes the true crossband filter of length M from frequency bin

k′ to frequency bin k, c̄k′,(k−k′)mod N is the true quadratic cross-term, and F =

{0, 1, . . . bk/2c , k + 1, . . . , k + 1 + b(N − k − 2) /2c}. The crossband filters are necessary

for perfectly representing the linear component of the system in the STFT domain, and

are used for canceling the aliasing effects caused by the subsampling factor L [16, 65].

The cross-terms { c̄k′,(k−k′)mod N

∣∣ k′ ∈ F}, on the other hand, are used for modeling the

quadratic component of the system using a sum over all possible interactions between

pairs of input frequencies xp,k′ and xp,k′′ , where k′′ = (k − k′) mod N .

The goal in adaptive system identification is to define a model for describing the input-

output relationship of the true system, and to adaptively update its parameters according

to a given criterion. To do so, let us employ the model in (8.3) for the adaptive estimation

process, using only 2K + 1 crossband filters. The value of K controls the undermodeling

in the linear component of the model by restricting the number of estimated crossband

filters. Denoting by hp′,k,k′(p) and ck′,(k−k′)mod N(p) the adaptive crossband filters and

adaptive cross-terms of the model at frame index p, the resulting estimate ŷp,k can be
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written as

ŷp,k =
k+K∑

k′=k−K

M−1∑

p′=0

xp−p′,k′mod Nhp′,k,k′mod N(p)

+
∑

k′∈F
xp,k′xp,(k−k′)mod Nck′,(k−k′)mod N(p) . (8.4)

Let hk,k′(p) =
[

h0,k,k′(p) h1,k,k′(p) · · · hM−1,k,k′(p)
]T

denote an adaptive crossband

filter from frequency bin k′ to frequency bin k, and let hk(p) denote a column-stack

concatenation of the 2K + 1 estimated filters around the kth frequency bin, i.e.,

hk(p) =
[

hT
k,(k−K)modN(p) hT

k,(k−K+1)modN(p) · · · hT
k,(k+K)modN(p)

]T

. (8.5)

Let xk(p) =
[

xp,k xp−1,k · · · xp−M+1,k

]T

and let

xLk(p) =
[

xT
(k−K)modN(p) xT

(k−K+1)modN(p) · · · xT
(k+K)modN(p)

]T

(8.6)

be the input data vector to the linear component of the model hk(p). For notational

simplicity, let us assume that k is odd and N is even, such that according to (8.3), the

number of quadratic cross-terms in each frequency bin is N/2. Accordingly, let

ck(p) =
[

c0,k(p) · · · c k−1
2

, k+1
2

(p) ck+1,N−1(p) · · · cN+k−1
2

, N+k+1
2

(p)
]T

(8.7)

denote the quadratic cross-terms at the kth frequency bin, and let

xQk(p) =
[

xp,0xp,k · · · xp, k−1
2

xp, k+1
2

xp,k+1xp,N−1 · · · xp, N+k−1
2

xp, N+k+1
2

]
(8.8)

be the input data vector to the quadratic component of the model ck(p). Then, the output

signal estimate ŷp,k from (8.4) can be rewritten as

ŷp,k = xT
Lk(p)hk(p) + xT

Qk(p)ck(p) . (8.9)

The 2K + 1 adaptive crossband filters and the N/2 adaptive cross-terms are updated

using the LMS algorithm as

hk(p + 1) = hk(p) + µLep,kx
∗
Lk(p) (8.10)

and

ck(p + 1) = ck(p) + µQep,kx
∗
Qk(p) (8.11)
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hk(p)

xp,k−K

xp,k

xp,k+K

·

×

·

×
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·

×
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(µL)

ck(p)
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+
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.

.

.

.

.

−

Figure 8.1: Block diagram of the proposed adaptive scheme for identifying quadratically nonlin-

ear systems in the STFT domain. The block hk(p) models the linear component of the system,

and it is updated by (8.10) with a step-size µL. The block ck(p) models the quadratic component

of the system, and it is updated by (8.11) with a step-size µQ.

where

ep,k = yp,k − ŷp,k (8.12)

is the error signal in the kth frequency bin, yp,k is defined in (8.2)-(8.3), and µL and

µQ are the step-sizes of the linear and quadratic components of the model, respectively.

The separated update equations for hk(p) and ck(p) enable one to use different step-

sizes for the adaptation of the linear and quadratic components of the model. In case

one component varies slower than the other, such adaptation may enhance the tracking

capability of the algorithm by utilizing a proper step-size for each component. A block

diagram of this parallel adaptive scheme is illustrated in Fig. 8.1. Our objective is to

analyze the error attainable in each frequency bin and derive explicit expressions for the

transient and steady-state mse.
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8.3 MSE analysis

In this section, we derive explicit expressions for the transient and steady-state mse obtain-

able in the kth frequency bin. To make the following analysis mathematically tractable, we

use the common independence assumption which states that the current input data vector

is statistically independent of the currently updated parameters vector (e.g., [91], [69]).

Specifically, the vector
[

xT
Lk(p) xT

Qk(p)
]

is independent of
[

hT
k (p) cT

k (p)
]

. In ad-

dition, we assume that xp,k and ξp,k are zero-mean white complex Gaussian signals with

variances σ2
x and σ2

ξ , respectively, and that xp,k is statistically independent of ξp,k. The

Gaussian assumption of the corresponding STFT signals is often justified by a version of

the central limit theorem for correlated signals [82, Theorem 4.4.2], and it underlies the

design of many speech-enhancement systems [31,32].

8.3.1 Transient Performance

The transient mse is defined by

εk(p) = E
{|ep,k|2

}
. (8.13)

Let us define the misalignment vectors of the linear and quadratic components, respec-

tively, as

gLk(p) = hk(p)− h̄k (8.14)

and

gQk(p) = ck(p)− c̄k (8.15)

where h̄k and c̄k are the 2K + 1 crossband filters and the N/2 cross-terms of the true

system, respectively [defined similarly to (8.5) and (8.7)]. Then, substituting (8.9) and

the definition of yp,k from (8.2)-(8.3) into (8.12), the error signal can be written as

ep,k = x̃T
Lk(p)h̃k + xT

Lk(p)gLk(p) + xT
Qk(p)gQk(p) + ξp,k (8.16)

where h̃k and x̃T
Lk(p) are the column-stack concatenations of

{
h̄k,k′

}
k′∈L and {xk(p)}k′∈L,

respectively, and L = {k′| k′ ∈ [0, N − 1] and k′ /∈ [k −K, k + K]}. Substituting (8.16)



8.3. MSE ANALYSIS 209

into (8.13) and using our assumptions, the mse can be expressed as (see Appendix 8.A)

εk(p) = σ2
ξ + σ2

x

∥∥∥h̃k

∥∥∥
2

+ σ2
xE

{‖gLk(p)‖2}

+ σ4
xE

{‖gQk(p)‖2} . (8.17)

In order to find an explicit expression for the transient mse, recursive formulas for

E
{‖gLk(p)‖2} and E

{‖gQk(p)‖2} are required. By substituting (8.16) into (8.10)-(8.11),

the LMS update equations for the misalignment vectors can be written as

gLk(p + 1) =
[
I(2K+1)M−µLx

∗
Lk(p)xT

Lk(p)
]
gLk(p)− µLx

∗
Lk(p)xT

Qk(p)gQk(p)

+ µL

[
x̃T

Lk(p)h̃k

]
x∗Lk(p) + µLξp,kx

∗
Lk(p) (8.18)

gQk(p + 1) =
[
IN/2−µQx∗Qk(p)xT

Qk(p)
]
gQk(p)− µQx∗Qk(p)xT

Lk(p)gLk(p)

+ µQ

[
x̃T

Lk(p)h̃k

]
x∗Qk(p) + µQξp,kx

∗
Qk(p) (8.19)

where IP is the identity matrix of size P × P . We proceed with evaluating a recursion

for E
{‖gLk(p + 1)‖2}. Taking the norm on both sides of (8.18), and using the fact that

odd-order moments of a zero-mean complex Gaussian process are zero [10], we obtain

E
{‖gLk(p + 1)‖2} = E

{∥∥[
I(2K+1)M−µLx

∗
Lk(p)xT

Lk(p)
]
gLk(p)

∥∥2
}

+ µ2
LE

{∥∥x∗Lk(p)xT
Qk(p)gQk(p)

∥∥2
}

+ µ2
LE

{∥∥∥
[
x̃T

Lk(p)h̃k

]
x∗Lk(p)

∥∥∥
2
}

+ µ2
LE

{‖ξp,kx
∗
Lk(p)‖2} . (8.20)

Using the independence assumption, we obtain after some mathematical manipulations

(see Appendix 8.B.1)

E
{∥∥[

I(2K+1)M−µLx
∗
Lk(p)xT

Lk(p)
]
gLk(p)

∥∥2
}

=
[
1− 2µLσ2

x + µ2
Lσ4

x (2K + 1) M
]
E

{‖gLk(p)‖2} . (8.21)

Furthermore, using the Gaussian sixth-order moment-factoring theorem [10], the second

term on the right of (8.20) can be approximated by (see Appendix 8.B.2)

µ2
LE

{∥∥x∗Lk(p)xT
Qk(p)gQk(p)

∥∥2
}
≈ [

µ2
Lσ6

x (2K + 1) M
]
E

{‖gQk(p)‖2} . (8.22)



210 CHAPTER 8. ADAPTIVE NONLINEAR SYSTEM IDENTIFICATION

The evaluation of the last two terms in (8.20) is straightforward, and they can be expressed

as

µ2
LE

{∥∥∥
[
x̃T

Lk(p)h̃k

]
x∗Lk(p)

∥∥∥
2
}

= µ2
Lσ4

x

∥∥∥h̃k

∥∥∥
2

(2K + 1) M (8.23a)

µ2
LE

{‖ξp,kx
∗
Lk(p)‖2} = µ2

Lσ2
ξσ

2
x (2K + 1) M . (8.23b)

Substituting (8.21)-(8.23) into (8.20), we have an explicit recursive expression for

E
{‖gLk(p + 1)‖2}:

E
{‖gLk(p + 1)‖2} = αL E

{‖gLk(p)‖2} + βL E
{‖gQk(p)‖2} + γL (8.24)

where

αL , 1− 2µLσ2
x + µ2

Lσ4
x (2K + 1) M (8.25)

βL , µ2
Lσ6

x (2K + 1) M (8.26)

γL , µ2
Lσ2

x (2K + 1) M

[
σ2

ξ + σ2
x

∥∥∥h̃k

∥∥∥
2
]

. (8.27)

A recursive expression for E
{‖gQk(p + 1)‖2} is obtained by taking the norm on both

sides of (8.19) and using the Gaussian odd-order moment-factoring theorem:

E
{‖gQk(p + 1)‖2} = E

{∥∥[
IN/2−µQx∗Qk(p)xT

Qk(p)
]
gQk(p)

∥∥2
}

+ µ2
QE

{∥∥x∗Qk(p)xT
Lk(p)gLk(p)

∥∥2
}

+ µ2
QE

{∥∥∥
[
x̃T

Lk(p)h̃k

]
x∗Qk(p)

∥∥∥
2
}

+ 2µ2
Q Re

{
E

{
gH

Lk(p)x∗Lk(p)xT
Qk(p)

[
x̃T

Lk(p)h̃k

]
x∗Qk(p)

}}

+ µ2
QE

{∥∥ξp,kx
∗
Qk(p)

∥∥2
}

(8.28)

where the operator Re{·} takes the real part of its argument. Finding an explicit expres-

sion for the first term on the right of (8.28) is not straightforward; however, using the

independence assumption and the Gaussian eighth-order moment-factoring theorem [10],

it can be expressed as (see Appendix 8.C.1)

E
{∥∥[

IN/2−µQx∗Qk(p)xT
Qk(p)

]
gQk(p)

∥∥2
}

=

[
1− 2µQσ4

x + µ2
Qσ8

x

N

2

]
E

{‖gQk(p)‖2} . (8.29)
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In addition, using the Gaussian sixth-order moment-factoring theorem, the second term

on the right of (8.28) is approximated by (see Appendix 8.C.2)

µ2
QE

{∥∥x∗Qk(p)xT
Lk(p)gLk(p)

∥∥2
}
≈ µ2

Qσ6
x

N

2
E

{‖gLk(p)‖2} (8.30)

where similarly we get

µ2
QE

{∥∥∥
[
x̃T

Lk(p)h̃k

]
x∗Qk(p)

∥∥∥
2
}
≈ µ2

Qσ6
x

N

2

∥∥∥h̃k

∥∥∥
2

. (8.31)

The fourth term on the right of (8.28) is derived in Appendix 8.C.3 as

2µ2
Q Re

{
gH

Lk(p)x∗Lk(p)xT
Qk(p)

[
x̃T

Lk(p)h̃k

]
x∗Qk(p)

}
= 0 . (8.32)

Moreover, the evaluation of the last term in (8.28) is straightforward, and it can be

expressed as

µ2
QE

{∥∥ξp,kx
∗
Qk(p)

∥∥2
}

= µ2
Qσ4

xσ
2
ξ

N

2
. (8.33)

Finally, substituting (8.29)-(8.33) into (8.28), we have an explicit recursive expression for

E
{‖gQk(p + 1)‖2}:

E
{‖gQk(p + 1)‖2} = αQ E

{‖gQk(p)‖2} + βQ E
{‖gLk(p)‖2} + γQ (8.34)

where

αQ , 1− 2µQσ4
x + µ2

Qσ8
xN/2 (8.35)

βQ , 0.5µ2
Qσ6

xN (8.36)

γQ , 0.5µ2
Qσ4

xN

[
σ2

ξ + σ2
x

∥∥∥h̃k

∥∥∥
2
]

. (8.37)

Equations (8.17), (8.24)-(8.27) and (8.34)-(8.37) represent the mse transient behavior of

the proposed adaptive algorithm in the kth frequency bin, using 2K + 1 crossband filters

and N/2 quadratic cross-terms. As expected from the parallel structure of the model, one

can observe the coupling between the recursive equations (8.24) and (8.34). Accordingly,

the convergence rate of the linear component of the model depends on that of its quadratic

counterpart, and vice versa. This dependency, however, may be controlled by the step-size

value of each component.

In this context, it should be noted that the transient behavior of a purely linear model

can be achieved as a special case of the above analysis by substituting µQ = 0 into
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equations (8.34)-(8.37), which yields αQ = 1 and βQ = γQ = 0. Therefore, assuming

the adaptive vectors are initialized with zeros, we have E
{‖gQk(p)‖2} = ‖c̄k‖2, and the

resulting mse is given by

εk,linear(p) = σ2
ξ + σ2

x

∥∥∥h̃k

∥∥∥
2

+ σ4
x ‖c̄k‖2 +

+ σ2
xE

{‖gLk(p)‖2} (8.38)

where

E
{‖gLk(p + 1)‖2} = αlinear E

{‖gLk(p)‖2} + βlinear (8.39)

and αlinear = αL [see (8.25)] and βlinear = µ2
Lσ2

x (2K + 1) M

[
σ2

ξ + σ2
x

∥∥∥h̃k

∥∥∥
2

+ σ4
x ‖c̄k‖2

]
.

The error induced by employing a purely linear model for the estimation of nonlinear

systems is generally referred to as nonlinear undermodeling error [64, 123, 124]. The

quantification of this error is of major importance since in many cases a purely linear model

is fitted to the data, even though the system is nonlinear (e.g., employing a linear adaptive

filter in acoustic echo cancellation applications [89]). In 7, the influence of nonlinear

undermodeling in the STFT domain for an off-line estimation scheme was investigated.

Next, we analyze the convergence properties of the proposed adaptive algorithm and

investigate the influence of the parameter K and the nonlinear undermodeling error on

the steady-state mse in each frequency bin.

8.3.2 Steady-State Performance

Let us first consider the mean convergence of the misalignment vectors gLk(p) and gQk(p).

By taking the expected value of both sides of (8.18) and (8.19), and by using the Gaussian

odd-order moment-factoring theorem, we obtain

E {gLk(p + 1)} =
[
I(2K+1)M−µLR

∗
Lk

]
E {gLk(p)} (8.40)

E {gQk(p + 1)} =
[
IN/2−µQR∗

Qk

]
E {gQk(p)} (8.41)

where RLk = E
{
xLk(p)xH

Lk(p)
}

and RQk = E
{
xQk(p)xH

Qk(p)
}

are the corresponding

correlation matrices. Using (8.66) and (8.74) from Appendix 8.A, it can be verified that
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equations (8.40) and (8.41) are convergent if the corresponding step-sizes satisfy

0 < µL <
2

σ2
x

(8.42)

0 < µQ <
2

σ4
x

(8.43)

and their steady-state solution is E {gLk(∞)} = E {gQk(∞)} = 0. Consequently, we get

E {hk(∞)} = h̄k (8.44)

E {ck(∞)} = c̄k (8.45)

which indicates that the LMS adaptive vectors hk(p) and ck(p) converge in the mean to

the linear and quadratic components of the true system, respectively. Substituting (8.44)

for hk(p) and (8.45) for ck(p) into (8.17) we find the minimum mse obtainable in the kth

frequency bin

εmin
k = σ2

ξ + σ2
x

∥∥∥h̃k

∥∥∥
2

. (8.46)

Note that the unbiased property of the estimators hk(p) and ck(p) are a consequence of

employing a white input signal. However, had the input signal xp,k been correlated, a bias

phenomenon could appear, and the adaptive vectors would not converge in the mean to

the true parameters [79].

We proceed with the mean-square convergence of the adaptive algorithm. Defining

q(p) ,
[

E
{‖gLk(p)‖2} E

{‖gQk(p)‖2} ]T

, we combine equations (8.24) and (8.34) and

rewrite them in a vector form as

q(p + 1) = Aq(p) + γ (8.47)

where

A =


 αL βL

βQ αQ


 (8.48)

is an 2× 2 matrix, and γ =
[

γL γQ

]T

. Equation (8.47) is convergent if and only if the

eigenvalues of A are all within the unit circle. Finding explicit conditions on the step-sizes

µL and µQ that imposed by this demand is tedious and not straightforward. However,

sufficient conditions on the step-sizes may be derived by assuming that the adaptive

vectors hk(p) and ck(p) are not updated simultaneously. More specifically, assuming that
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ck(p) is constant during the adaptation of hk(p) (i.e., µQ ¿ µL), a sufficient condition for

the convergence of (8.24) is |αL| < 1, which yields

0 < µL <
2

σ2
x(2K + 1)M

. (8.49)

Note that since the upper bound of µL is inversely proportional to K, a lower step-size

value should be utilized with increasing the number of crossband filters, which may result

in a slower convergence of the algorithm. An optimal step-size that results in the fastest

convergence of the linear component is then obtained by differentiating αL with respect to

µL, which yields µLopt = 1/ [σ2
x(2K + 1)M ]. For the quadratic component, we similarly

assume that hk(p) is constant during the adaptation of ck(p) (i.e., µL ¿ µQ), which

results in the following condition on the step-size µQ:

0 < µQ <
2

σ4
xN/2

. (8.50)

The optimal step-size for the quadratic component is obtained by differentiating αQ [see

(8.35)] with respect to µQ, which yields µQopt = 1/ [σ4
xN/2]. It should be noted that when

the assumption of the separated adaptation of the adaptive vectors does not hold (that

is, hk(p) and ck(p) are updated simultaneously), the convergence of the algorithm is no

longer guaranteed by using the derived optimal step-sizes. This can easily be shown by

substituting µLopt and µQopt, respectively, for µL and µQ in (8.48), which results in an

eigenvalue on the unit circle. Practically, though, the stability of the algorithm can be

guaranteed by using the so-called normalized LMS (NLMS) algorithm [10], which also

leads to a faster convergence of the adaptive algorithm.

Provided that µL and µQ satisfy the convergence conditions of the LMS algorithm,

the steady-state mse can be expressed as

εk(∞) = εmin
k + σ2

xE
{‖gLk(∞)‖2} + σ4

xE
{‖gQk(∞)‖2} (8.51)

where εmin
k is defined in (8.46), and E

{‖gLk(∞)‖2} and E
{‖gQk(∞)‖2} are the steady-

state solutions of (8.24) and (8.34), which can be derived using (8.47) as

q(∞) =


 E

{‖gLk(∞)‖2}

E
{‖gQk(∞)‖2}


 = [I−A]−1 γ . (8.52)
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Finally, substituting (8.48), (8.25)-(8.27), and (8.35)-(8.37) into (8.52), we obtain explicit

expressions for E
{‖gLk(∞)‖2} and E

{‖gQk(∞)‖2}, which we substitute into (8.51) to

obtain after some manipulations

εk(∞) = f (µL, µQ) εmin
k (8.53)

where

f (µL, µQ) =
2

2− µLσ2
x(2K + 1)M − µQσ4

xN/2
. (8.54)

Equations (8.46) and (8.53)-(8.54) provide an explicit expression for the steady-state mse

in the kth frequency bin. Note that since µL is inversely proportional to K [see (8.49)], we

expect f (µL, µQ) to be independent of K. Consequently, based on the definition of εmin
k

from (8.46), a lower steady-state mse is expected by increasing the number of estimated

crossband filters, as will be further demonstrated in Section 8.5.

Following a similar analysis, the steady-state mse of a purely linear model can be

derived by finding the steady-state solution of (8.38)-(8.39), which yields

εk,linear(∞) = f (µL, 0) εmin
k,linear (8.55)

where εmin
k,linear = σ2

ξ +σ2
x

∥∥∥h̃k

∥∥∥
2

+σ4
x ‖c̄k‖2 represents the minimum mse that can be obtained

by employing a linear model in the estimation process. It can be verified from (8.46)

and (8.54) that εmin
k ≤ εmin

k,linear and f (µL, µQ) ≥ f (µL, 0), which implies that in some

cases, a lower steady-state mse might be achieved by using a linear model, rather than a

nonlinear one. A similar phenomenon was also indicated in Chapter 7 in the context of

off-line system identification, where it was shown that the nonlinear undermodeling error

is mainly influenced by the NLR. Specifically in our case, let ϕ = σ2
dQ

/σ2
dL

denote the

NLR, where σ2
dL

= σ2
x ‖hk‖2 and σ2

dQ
= σ4

x ‖c̄k‖2 are the powers of the output signals of

the linear and quadratic components, respectively, and hk is a vector that consists of all

the crossband filters at the kth frequency bin. Then, the ratio between εmin
k,linear and εmin

k

can be written as
εmin
k,linear

εmin
k

= 1 +
ϕ

‖hk‖−2

(
σ2

ξ/σ
2
x +

∥∥∥h̃k

∥∥∥
2
) . (8.56)

Equation (8.56) indicates that as the nonlinearity becomes stronger (i.e., ϕ increases), the

minimum mse attainable by the full nonlinear model (εmin
k ) would be much lower than
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that obtained by the purely linear model (εmin
k,linear), such that εk(∞) < εk,linear(∞). On the

other hand, the purely linear model may achieve a lower steady-state mse when low NLR

values are considered. In the limit, for ϕ → 0, we get εmin
k = εmin

k,linear, and consequently

εk,linear(∞) < εk(∞). Note, however, that since more parameters need to be estimated in

the nonlinear model, we expect to obtain (for any NLR value) a slower convergence than

that of a linear model.

In this context, the close relation to the problems of model-structure selection and

model-order selection [24–30] should be mentioned. In our case, the model structure is

determined by µQ , the step-size of the nonlinear component of the model. By setting

µQ = 0, the nonlinearity is ignored and a purely linear model is fitted to the data; whereas

for µQ 6= 0 the vector ck(p) is also updated and a full nonlinear model is employed.

Generally (for sufficiently high NLR), as more data is available in the estimation process,

a richer structure can be used, and correspondingly a better estimation can be achieved

by incorporating a nonlinear model rather than a linear one. Therefore, the purely linear

model is associated with faster convergence, but suffers from higher steady-state mse,

compared to using a nonlinear model. Once a model structure has been chosen, its

optimal order (i.e., the number of estimated parameters) should be selected, where in our

case the model order is determined by the number of crossband filters. Accordingly, at

the beginning of the adaptation process, the length of the data is short, and only a few

crossband filters are estimated, whether a linear or a nonlinear model is employed. As the

adaptation process proceeds, more data can be used, additional crossband filters can be

estimated, and lower mse can be achieved. These points will be demonstrated in Section

8.5.

8.4 Computational complexity

In this section, we consider the computational complexity of the proposed subband ap-

proach, and compare it to that of the conventional time-domain Volterra approach.

For subband system identification, the adaptation formulas given in (8.10) and (8.11)

requires (2K + 1) M + N/2 + 2 complex multiplications, (2K + 1) M + N/2 complex ad-

ditions, and one complex substraction to compute the error signal. Moreover, computing
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the desired signal estimate in (8.9) results in an additional 2 (2K + 1) M + 2N/2 − 2

arithmetic operations. Note that each arithmetic operation is not carried out every input

sample, but once for every L input samples, where L denotes the decimation factor of the

STFT representation. Thus, the adaptation process requires 4(2K +1)M +2N +1 arith-

metic operations for every L input samples and each frequency bin. Finally, repeating the

process for each frequency bin, and neglecting the computations required for the forward

and inverse STFTs, the complexity associated with the proposed subband approach is

given by

Os ∼ O

{
N

L
(4 [(2K + 1) M + N/2] + 1)

}
. (8.57)

Expectedly, we observe that the computational complexity increases as K increases. Note

that the complexity of the proposed approach may be further reduced if the signals are

assumed real valued in the time domain, since in this case it is sufficient to consider only

the first N/2 + 1 frequency bins.

For time-domain system identification, we apply a second-order Volterra model [44] for

estimating the quadratically nonlinear system. Accordingly, an estimator for the system

output signal in the time domain can be expressed as

ŷ(n) =

N1−1∑
m=0

h1(m)x(n−m)

+

N2−1∑
m=0

N2−1∑

`=m

h2(m, `)x(n−m)x(n− `) (8.58)

where h1(m) and h2(m, `) are the linear and quadratic Volterra kernels, respectively, with

N1 and N2 being their corresponding memory lengths. Note that for the quadratic kernel,

the triangular Volterra representation is used [44, 45]. Since the model output depends

linearly on the filter coefficients, it can be written in a vector form as

ŷ(n) = xT
1 (n)h1(n) + xT

2 (n)h2(n) (8.59)

where h1(n) =
[

h1 (0) h1 (1) · · · h1 (N1 − 1)
]T

and h2(n) =
[

h2(0, 0) · · · h2(0, N2 − 1) h2(1, 1) · · · h2(1, N2 − 1) · · · h2(N2 − 1, N2 − 1)
]T

are the coefficient vectors of the adaptive linear and quadratic kernels, respectively, and

x1(n) and x2(n) are their corresponding input data vectors. The adaptive vectors are
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updated using the LMS algorithm as

h1(n + 1) = h1(p) + µ1e(n)x∗1(p) (8.60)

and

h2(n + 1) = h2(p) + µ2e(n)x∗2(p) (8.61)

where e(n) = y(n) − ŷ(n) is the error signal, y(n) is the system output in the time

domain, and µ1 and µ2 are the step-sizes of the linear and quadratic components of the

Volterra model, respectively. Similarly to the subband approach, updating the vectors

h1(p) and h2(p) using (8.60)-(8.61), and computing the output signal estimate (8.59), the

computational complexity of the fullband approach can be expressed as

Of ∼ O
{
4
(
N1 + N̄2

)
+ 1

}
. (8.62)

where N̄2 = N2 (N2 + 1) /2 is the dimension of the vector h2(p). Rewriting the subband

approach complexity (8.57) in terms of the fullband parameters (by using the relation

M ≈ N1/L [65]), the ratio between the fullband and subband complexities can be written

as

Of

Os

∼ L

N

2N1 + N2
2

2N1
(2K+1)

rN
+ N

. (8.63)

According to (8.63), the complexity of the proposed subband approach would typically

be lower than that of the conventional fullband approach. This computational efficiency

becomes even more significant when systems with relatively large second-order memory

length are considered (e.g., nonlinear acoustic echo cancellation applications [36–38]).

This is because these systems necessitate an extremely large memory length N2 for the

quadratic kernel of the time-domain Volterra model, such that N2
2 À N and consequently

Of À Os. For instance, for N = 128, L = 64 (i.e., 50% overlap), N1 = 1024, N2 = 80

and K = 2 the proposed approach complexity is reduced by approximately 15, when

compared to the fullband-approach complexity. Note that the computational efficiency

of the proposed approach was proved also in the context of off-line nonlinear system

identification (see Chapter 6).



8.5. EXPERIMENTAL RESULTS 219

8.5 Experimental results

In this section, we present experimental results which verify the mean-square theoretical

derivations. The influence of nonlinear undermodeling and the number of crossband

filters on the mse performance is demonstrated. The adaptive algorithm performance is

evaluated under the assumption of white Gaussian signals in the STFT domain, for given

SNR and NLR values, where the SNR is defined by σ2
d/σ

2
ξ , and σ2

d = E
{|dp,k|2

}
denote

the power of the system output signal in the STFT domain. Results are obtained by

averaging over 1000 independent runs.

The system to be identified is formed as a parallel combination of linear and quadratic

components as described in (8.2)-(8.3). The input signal xp,k is a zero-mean white complex

Gaussian process with variance σ2
x. Note that xp,k is not necessarily a valid STFT signal,

as not always a sequence whose STFT is given by xp,k may exist [88]. Similarly, the

corrupting noise signal ξp,k is also a zero-mean white Gaussian process with variance σ2
ξ ,

which is uncorrelated with xp,k. We use a Hamming analysis window of length N =

128 with 50% overlap (i.e., L = 0.5N), and a corresponding minimum-energy synthesis

window that satisfies the completeness condition [72]. Note that the true crossband filters

of the system h̄p,k,k′ are related to the time-domain linear impulse response h̄(n) by [65]

h̄p,k,k′ =
{
h̄(n) ∗ φk,k′(n)

}∣∣
n=pL

(8.64)

where the function φk,k′(n) depends on the analysis and synthesis windows. Here, we

model the linear impulse response h̄(n) as a nonstationary stochastic process with an

exponential decay envelope, i.e., h̄(n) = u(n)β(n)e−0.009n, where u(n) is the unit step

function and β(n) is a unit-variance zero-mean white Gaussian noise. The length of the

impulse response is set to 768 samples. For the quadratic component, the cross-terms of

the system { c̄k′,(k−k′)mod N

∣∣ k′ ∈ F} are modeled here as a unit-variance zero-mean white

Gaussian process.

First, we employ several values of K in order to determine the influence of the

number of estimated crossband filters on the mse performance. Since the step-size

of the linear kernel µL should be inversely proportional to K [see (8.49)], we choose

µL = 0.25/ [σ2
x(2K + 1)M ], which ensures convergence. Similarly, the nonlinear compo-

nent of the model is estimated with a step-size of µQ = 0.25/ (σ4
xN/2) [see (8.50)]. Figure
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Figure 8.2: Comparison of simulation and theoretical curves of the transient mse (8.13) for white

Gaussian signals, as obtained for an SNR of 40 dB, and a nonlinear-to-linear ratio (NLR) of

−10 dB.

8.2 shows the resulting (normalized) mse curves εk(p) for frequency bin k = 11, an SNR

of 40 dB, and an NLR of −10 dB, as obtained from simulation results and from the

theoretical derivations [see (8.17), (8.24)-(8.27) and (8.34)-(8.37)]. Clearly, the theoreti-

cal analysis accurately describes both the transient and steady-state performance of the

adaptive algorithm. The results confirm that as more data is employed in the adaptation

process, a lower mse is obtained by estimating additional crossband filters. As expected

from (8.53)-(8.54), as K increases, a lower steady-state mse εk(∞) is achieved; however,

the algorithm then suffers from a slower convergence. For instance, ignoring the crossband

filters and estimating only the band-to-band filters (K = 0) yields the fastest convergence,

but also results in the highest steady-state mse. Including 5 crossband filters (K = 2), on

the other hand, enables a decrease of approximately 16 dB in the steady-state mse, but

at the expense of a slower convergence of the adaptive algorithm. It should be noted that

similar results are obtained for the other frequency bins.

Next, we examine the influence of nonlinear undermodeling on the mse performance.

A purely linear model is fitted to the data by setting the step-size of the quadratic com-

ponent to zero (i.e., µQ = 0); whereas a full nonlinear model is employed by updating
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the quadratic component with a step-size of µQ = 0.25/ (σ4
xN/2). For both cases, the

linear kernel is updated with a step-size µL = 0.25/ [σ2
x(2K + 1)M ] for two different val-

ues of K (K = 1 and 3). Figure 8.3 shows the resulting transient mse curves εk(p) and

εk,linear(p), as obtained from simulation results and from the theoretical derivations [see

(8.17), (8.24)-(8.27) and (8.34)-(8.37) for the full nonlinear model; and (8.38)-(8.39) for

the purely linear model]. The results are obtained for frequency bin k = 11, an SNR

of 40 dB, and an NLR of −10 dB [Fig. 8.3(a)] and −30 dB [Fig. 8.3(b)]. It can be

seen that the experimental results are accurately described by the theoretical mse curves.

We observe from 8.3(a) that for a −10 dB NLR, a lower steady-state mse is achieved by

using the nonlinear model. Specifically for K = 3, a significant improvement of 12 dB

can be achieved over a purely linear model. On the contrary, Fig. 8.3(b) shows that for

a lower NLR value (−30 dB), the inclusion of the nonlinear component in the model is

not necessarily preferable. For example when K = 1, the linear model achieves the lowest

steady-state mse, while for K = 3, the improvement achieved by the nonlinear model is

insignificant, and apparently does not justify the substantial increase in model complex-

ity. In general, by further decreasing the NLR, the steady-state mse associated with the

linear model decreases, while the relative improvement achieved by the nonlinear model

becomes smaller. These results, which were accurately described by the theoretical error

analysis in Section 8.3.2 [see (8.53)-(8.56)], are attributable to the fact the linear model

becomes more accurate as the nonlinearity strength decreases. As a result, the advantage

of the nonlinear model due to its improved modeling capabilities becomes insignificant

(i.e., εmin
k ≈ εmin

k,linear), and therefore cannot compensate for the additional adaptation noise

caused by updating also the nonlinear component of the model. Another interesting point

that can be concluded from the comparison of Figs. 8.3(a) and (b) is the strategy of con-

trolling the model structure and the model order. Specifically for high NLR conditions

[Fig. 8.3(a)], a linear model with a small K should be used at the beginning of the adap-

tation. Then, the model structure should be changed to a nonlinear one at a very initial

stage of the adaptation, and the number of estimated crossband filters should increase as

the adaptation process proceeds in order to achieve the mmse at each iteration. On the

other hand, for low NLR conditions [Fig. 8.3(b)], one would prefer to initially update a

purely linear model in order to achieve faster convergence, and then to gradually increase
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Figure 8.3: Comparison of simulation and theoretical curves of the transient mse (8.13) for white

Gaussian signals, as obtained by using a purely linear model (µQ = 0; light) and a nonlinear

one (µQ 6= 0; dark). (a) Nonlinear-to-linear ratio (NLR) of −10 dB (b) NLR of −30 dB.

the number of crossband filters. In this case, switching to a different model structure and

incorporating also the nonlinear component into the model would be preferable only at

an advanced stage of the adaptation process.

8.6 Conclusions

We have proposed an adaptive scheme for the estimation of quadratically nonlinear sys-

tems in the STFT domain, based on the quadratic model proposed in Chapter 6. The

proposed model consists of a parallel combination of a linear component, which is repre-

sented by crossband filters between subbands, and a quadratic component, modeled by

multiplicative cross-terms. We adaptively updated the model parameters using the LMS

algorithm and derived explicit expressions for the transient and steady-state mse in fre-

quency bins for white Gaussian inputs. We showed that as more data is employed in the

adaptation process, whether a purely-linear or a nonlinear model is employed, additional

crossband filters should be estimated to achieve the mmse at each iteration. We further

showed that incorporating the nonlinear component into the model may not necessarily

imply a lower steady-state mse in subbands. In fact, the estimation of the nonlinear com-
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ponent improves the mse performance only for high NLR conditions. This improvement

in performance becomes smaller as the nonlinearity becomes weaker. It was also shown

that the proposed adaptive algorithm is more advantageous in terms of computational

complexity than the conventional time-domain Volterra approach.

The adaptive algorithm presented in this chapter may be further improved by incor-

porating adaptive control methods [110–114], which dynamically adjust the number of

model parameters to provide a balance between complexity, convergence rate and steady-

state performance. Accordingly, by adaptively controlling the model structure (employing

either a linear or a nonlinear model) and the model order (determining the number of

crossband filters), a full adaptive-control scheme may be constructed to achieve a faster

convergence without compromising for higher steady-state mse.

8.A Derivation of (8.17)

Substituting (8.16) into (8.13), and using the independence assumption and the whiteness

property of the input signal, the mse can be expressed as

εk(p) = σ2
ξ + σ2

x

∥∥∥h̃k

∥∥∥
2

+ E
{
gT

Lk(p)RLkg
∗
Lk(p)

}

+ 2 Re
{

E
{
gT

Lk(p)RLQkg
∗
Qk(p)

}
+ h̃T

k R̃LQkg
∗
Qk(p)

}

+ E
{
gT

Qk(p)RQkg
∗
Qk(p)

}
(8.65)

where RLk = E
{
xLk(p)xH

Lk(p)
}
, RQk = E

{
xQk(p)xH

Qk(p)
}
, RLQk = E

{
xLk(p)xH

Qk(p)
}

and R̃LQk = E
{
x̃Lk(p)xH

Qk(p)
}

are correlation matrices, and the operator Re{·} takes the

real part of its argument. From (8.6), the (m, `)th term of RLk is given by

(RLk)m,` = E
{

xp−m mod M,(k−K+bm
M c)mod Nx∗

p−` mod M,(k−K+b `
M c)mod N

}

= σ2
xδm−` (8.66)

where the last equation is due to the whiteness property of xp,k (see [65, Appendix I-A]).

In addition, from (8.8), the (m, `)th term of RLQk can be written as

(RLQk)m,` = E
{

xp−m mod M,(k−K+bm
M c)mod Nx∗p,`k

x∗p,(k−`k)mod N

}
(8.67)
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where `k = ` if ` ≤ (k − 1) /2, and `k = `+(k + 1) /2 otherwise. Since odd-order moments

of a zero-mean complex Gaussian process are zero [10, p. 68], we get

(RLQk)m,` =
(
R̃LQk

)
m,`

= 0 . (8.68)

The (m, `)th term of RQk can be written as

(RQk)m,` = E
{
xp,mk

xp,(k−mk)mod Nx∗p,`k
x∗p,(k−`k)mod N

}
(8.69)

where mk is defined similarly to `k in (8.67). By using the fourth-order moment factoring

theorem for zero-mean complex Gaussian samples [10, p. 68], (8.69) reduces to products

of second-order moments as follows:

(RQk)m,` = E
{
x∗p,`k

xp,mk

}
E

{
x∗p,(k−`k) mod Nxp,(k−mk)mod N

}

+ E
{
x∗p,`k

xp,(k−mk)mod N

}
E

{
x∗p,(k−`k)mod Nxp,mk

}
(8.70)

Using the whiteness property of xp,k, we can write (8.70) as

(RQk)m,` = r1 + r2 (8.71)

where

r1 = σ4
xδmk−`k

δ(k−mk)mod N−(k−`k)mod N (8.72)

and

r2 = σ4
xδ(k−mk)mod N−`k

δmk−(k−`k)mod N . (8.73)

Clearly, r1 is nonzero only if mk = `k and (k −mk) mod N = (k − `k) mod N . Us-

ing the definitions of mk and `k, it is easy to verify that these conditions reduce

to m = `, and therefore r1 = σ4
xδm−`. In addition, r2 is nonzero only if `k =

(k −mk) mod N and mk = (k − `k) mod N . Note, however, that since mk ∈ T1 =

{[0, (k − 1) /2] ∪ [k + 1, (N + k − 1) /2]}, the possible values of (k −mk) mod N belong

to the set T2 = {[(k + 1) /2, k] ∪ [(N + k + 1) /2, N − 1]}. Therefore, since T1 ∩ T2 = ∅
(an empty set), the conditions imposed in r2 cannot be satisfied, and we get r2 = 0.

Consequently, (8.71) reduces to

(RQk)m,` = σ4
xδm−` . (8.74)

Substituting (8.66), (8.68), and (8.74) into (8.65) yields (8.17).
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8.B Evaluation of (8.24)

8.B.1 Derivation of (8.21)

Using the independence assumption of xLk(p) and hk(p), the first term on the right of

(8.20) can be expressed as

E
{∥∥[

I(2K+1)M−µLx
∗
Lk(p)xT

Lk(p)
]
gLk(p)

∥∥2
}

= E
{‖gLk(p)‖2}− 2µLE

{
gH

Lk(p)Ak(p)gLk(p)
}

+ µ2
LE

{
gH

Lk(p)Bk(p)gLk(p)
}

(8.75)

where

Ak(p) = E
{
x∗Lk(p)xT

Lk(p)
}

(8.76)

and

Bk(p) = E
{
x∗Lk(p)xT

Lk(p)x∗Lk(p)xT
Lk(p)

}
. (8.77)

Using the whiteness property of xp,k, Ak(p) reduces to [see (8.66)]

Ak(p) = σ2
xI(2K+1)M (8.78)

where I(2K+1)M is the identity matrix of size (2K +1)M × (2K +1)M . The (m, `)th term

of Bk(p) from (8.77) can be written as

[Bk(p)]m,`

=
∑

n

E
{

x∗
p−mmodM,(k−K+bm

M c)modN
xp−`modM,(k−K+b `

M c)modN

× x∗
p−nmodM,(k−K+b n

M c)modN
xp−nmodM,(k−K+b n

M c)modN

}
(8.79)

where the index n sums over integer values for which the subscripts of x are defined.

By using the fourth-order moment factoring theorem for zero-mean complex Gaussian

samples, (8.79) can be rewritten as

[Bk(p)]m,` =
∑

n

E
{

x∗
p−mmodM,(k−K+bm

M c)modN
xp−`modM,(k−K+b `

M c)modN

}

× E
{

x∗
p−nmodM,(k−K+b n

M c)modN
xp−nmodM,(k−K+b n

M c)modN

}

+
∑

n

E
{

x∗
p−mmodM,(k−K+bm

M c)modN
xp−nmodM,(k−K+b n

M c)modN

}

× E
{

x∗
p−nmodM,(k−K+b n

M c)modN
xp−`modM,(k−K+b `

M c)modN

}
(8.80)
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where by using the whiteness property of xp,k, we obtain [see (8.66)]

[Bk(p)]m,` = σ4
x

∑
n

δm−` + σ4
x

∑
n

δm−nδ`−n . (8.81)

Since n ranges from 0 to (2K + 1) M − 1, (8.81) reduces to

Bk(p) = σ4
x [(2K + 1)M + 1] I(2K+1)M . (8.82)

Assuming (2K + 1)M À 1, and substituting (8.78) and (8.82) into (8.75) yields (8.21).

8.B.2 Derivation of (8.22)

Using the independence assumption, the second term on the right of (8.20) can be ex-

pressed as

µ2
LE

{∥∥x∗Lk(p)xT
Qk(p)gQk(p)

∥∥2
}

= µ2
LE

{
gH

Qk(p)Ck(p)gQk(p)
}

(8.83)

where

Ck(p) = E
{
x∗Qk(p)xT

Lk(p)x∗Lk(p)xT
Qk(p)

}
. (8.84)

The (m, `)th term of Ck(p) can be written as

[Ck(p)]m,` =
∑

n

E
{

x∗p,mk
xp−n mod M,(k−K+b n

M c)mod Nx∗p,(k−mk)mod Nxp,`k

× x∗
p−n mod M,(k−K+b n

M c)mod N
xp,(k−`k)mod N

}
(8.85)

where `k is defined in (8.67), and mk is defined similarly. A similar expression to (8.85)

was derived in Chapter 7 using the sixth-order moment factoring theorem for zero-mean

complex Gaussian samples [10, p. 68]. Then, following the analysis given in Appendix

7.A.2, we obtain

[Ck(p)]m,` = σ6
x [(2K + 1) M + δmk∈S ] δm−` (8.86)

where S = A ∩ {Bk ∪ B0}, with A , {[0, (k − 1) /2] ∪ [k + 1, (N + k − 1) /2]} and Bk ,
{ [(k −K + n1)modN ] M | n1 ∈ {0, . . . , 2K}}. Substituting (8.86) into (8.83), and using

the definition of gQk(p) from (8.15), we obtain

µ2
LE

{∥∥x∗Lk(p)xT
Qk(p)gQk(p)

∥∥2
}

=
[
µ2

Lσ6
x (2K + 1) M

]
E

{‖gQk(p)‖2}

+ µ2
Lσ6

x

∑
m∈S

E
{∣∣cm,(k−m) mod N(p)− c̄m,(k−m)mod N

∣∣2
}

(8.87)
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In order to simplify the expression above, let us assume that

∑
m∈S

E
{∣∣cm,(k−m)mod N(p)− c̄m,(k−m)mod N

∣∣2
}

¿ (2K + 1) ME
{‖gQk(p)‖2} . (8.88)

This assumption is reasonable and can be justified by noting that dimS ≤ 4K + 2 and

max K ¿ dimgQk(p) = N/2, where the latter is due to fact that most of the energy of the

STFT representation of a real-world linear system is concentrated around a few number

of crossband filters [65]. Then, neglecting the last term in (8.87), we obtain (8.22).

8.C Evaluation of (8.34)

8.C.1 Derivation of (8.29)

Using the independence assumption of xQk(p) and ck(p), the first term on the right of

(8.28) can be expressed as

E
{∥∥[

IN/2−µQx∗Qk(p)xT
Qk(p)

]
gQk(p)

∥∥2
}

= E
{‖gQk(p)‖2}− 2µQE

{
gH

Qk(p)Dk(p)gQk(p)
}

+ µ2
QE

{
gH

Qk(p)Fk(p)gQk(p)
}

(8.89)

where

Dk(p) = E
{
x∗Qk(p)xT

Qk(p)
}

(8.90)

and

Fk(p) = E
{
x∗Qk(p)xT

Qk(p)x∗Qk(p)xT
Qk(p)

}
. (8.91)

Using the whiteness property of xp,k, Dk(p) reduces to [see (8.74)]

Dk(p) = σ4
xIN/2 (8.92)

where IN/2 is the identity matrix of size N/2 × N/2. The (m, `)th term of Fk(p) from

(8.91) can be written as

[Fk(p)]m,`

=
∑

n

E
{
xp,mk

xp,(k−mk)mod Nx∗p,`k
x∗p,(k−`k)mod N

× xp,nk
xp,(k−nk)mod Nx∗p,nk

x∗p,(k−nk)mod N

}
(8.93)



228 CHAPTER 8. ADAPTIVE NONLINEAR SYSTEM IDENTIFICATION

where `k is defined in (8.67), and mk is defined similarly. Using the Gaussian eighth-order

moment-factoring theorem [10, p. 68], (8.93) can be expressed as

[Fk(p)]m,`

=
∑

n

E
{
xp,mk

xp,(k−mk)mod Nx∗p,`k
x∗p,(k−`k)mod N

}

× E
{
xp,nk

xp,(k−nk)mod Nx∗p,nk
x∗p,(k−nk)mod N

}

+
∑

n

E
{
xp,mk

xp,(k−mk)mod Nx∗p,nk
x∗p,(k−nk)mod N

}

× E
{
xp,nk

xp,(k−nk) mod Nx∗p,`k
x∗p,(k−`k)mod N

}

+
∑

n

E
{
xp,mk

xp,(k−mk)mod Nx∗p,`k
x∗p,nk

}

× E
{
xp,nk

xp,(k−nk)mod Nx∗p,(k−`k)mod Nx∗p,(k−nk)mod N

}

+
∑

n

E
{
xp,mk

xp,(k−mk)mod Nx∗p,`k
x∗p,(k−nk)mod N

}

× E
{
xp,nk

xp,(k−nk)mod Nx∗p,nk
x∗p,(k−`k)mod N

}
(8.94)

Each term in (8.94) can be decomposed into products of different combinations of second-

order moments, imposing certain conditions on both the matrix indices m and `, and

the summation index n. It can be verified that the possible structures of the resulting

conditions are α = β, (k − α) mod N = (k − β) mod N , and α = (k − β) mod N , where

α, β ∈ {mk, `k, nk}. Then, since the last condition cannot be satisfied [see (8.73)], and

the first two conditions reduce to m = ` [see (8.72)], (8.94) reduces to

[Fk(p)]m,`

= σ8
x

∑
n

(δm−` + δn−mδ`−m + 0 + δ`−mδn−mδ`−n) (8.95)

and since n ranges from 0 to N/2− 1, we get

[Fk(p)]m,` = σ8
x

(
N

2
+ 2

)
δm−` . (8.96)

Assuming N À 4, and substituting (8.92) and (8.96) into (8.89) yields (8.29).

8.C.2 Derivation of (8.30)

Using the independence assumption, the second term on the right of (8.28) can be ex-

pressed as

µ2
QE

{∥∥x∗Qk(p)xT
Lk(p)gLk(p)

∥∥2
}

= µ2
QE

{
gH

Lk(p)Gk(p)gQk(p)
}

. (8.97)
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where

Gk(p) = E
{
x∗Lk(p)xT

Qk(p)x∗Qk(p)xT
Lk(p)

}
. (8.98)

The (m, `)th term of Gk(p) can be written as

[Gk(p)]m,` =
∑

n

E
{

x∗
p−m mod M,(k−K+bm

M c)mod N
x∗

p−` mod M,(k−K+b `
M c)mod N

× xp,nk
xp,(k−nk) mod Nx∗p,nk

x∗p,(k−nk)mod N

}
(8.99)

where nk is defined similarly to `k in (8.67). Using the Gaussian sixth-order moment

factoring theorem, and following a similar analysis to that given in Appendix 7.A.2, we

obtain

[Gk(p)]m,` = σ6
x

[
N

2
+ δm∈U

]
δm−` (8.100)

where U = {{[(K − n1)modN ] M} ∪ {[(n1 − k + K)modN ] M} |n1 ∈ A} and

A , {[0, (k − 1) /2] ∪ [k + 1, (N + k − 1) /2]}. Using the definition of gLk(p) from

(8.14), and substituting (8.100) into (8.97), we obtain

µ2
QE

{∥∥x∗Qk(p)xT
Lk(p)gLk(p)

∥∥2
}

= µ2
Qσ6

x

[
N

2
E

{‖gLk(p)‖2} +
∑
m∈U

E
{|[gLk(p)]m|2

}
]

(8.101)

where [gLk(p)]m denotes the mth term of gLk(p). Assuming that N À 2 and noting that

dimU ≤ 4K + 2 ¿ dimgLk(p), we may neglect the last term in (8.101) to obtain (8.30).

8.C.3 Derivation of (8.32)

Using the independence assumption, the fourth term on the right of (8.28) can be ex-

pressed as

2µ2
Q Re

{
E

{
gH

Lk(p)x∗Lk(p)xT
Qk(p)

[
x̃T

Lk(p)h̃k

]
x∗Qk(p)

}}

= 2µ2
Q Re

{∑

n,`,m

fnm` (xp,k) E {[g∗Lk(p)]n}
(
h̃k

)
`

}
(8.102)

where

fnm` (xp,k) = E
{
x∗p−n mod M,g1(n)xp−` mod M,g2(`)

× xp,mk
xp,(k−mk)mod Nx∗p,mk

x∗p,(k−mk)mod N

}
(8.103)
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and the functions g1(n) and g2(`) determine the frequency-bin indices that correspond to

the nth term of xLk(p) and the `th term of x̃Lk(p), respectively. It is easy to verify from

the definitions of xLk(p) and x̃Lk(p) that g1(n) 6= g2(`) for any pair of indices (n, `), which

implies that E
{

x∗p−n mod M,g1(n)xp−` mod M,g2(`)

}
= 0. Consequently, using the Gaussian

sixth-order moment factoring theorem and following a similar analysis to that given in

Appendix 7.A.2, (8.103) can be written as

fnm` (xp,k) = σ6
xδn mod Mδ` mod Mδg1(n)−g2(`)

× [
δmk−g1(n) + δ(k−mk)mod N−g1(n)

]
. (8.104)

However, since g1(n) 6= g2(`) we get fnm` (xp,k) = 0, which can be substituted into (8.102)

to obtain (8.32).



Chapter 9

Research Summary and Future

Directions

9.1 Research summary

In this thesis, we have considered the problem of system identification in the STFT do-

main and developed novel theoretical approaches as well as practical algorithms for the

identification of linear and nonlinear systems. We have investigated the influence of cross-

band filers on a system identifier operating in the STFT domain, and derived important

explicit relations between the attainable mse in subbands and the power and length of the

input signal. This strategy of controlling the number of crossband filters was then success-

fully applied to acoustic echo cancellation applications in batch or adaptive forms. The

widely-used MTF approximation, which avoids the crossband filters by approximating

the linear system as multiplicative in the STFT domain, was also considered. We investi-

gated the performance of a system identifier that utilizes this approximation and proved

the existence of an optimal STFT analysis window length that achieves the mmse. Ac-

cordingly, a new approximation for linear systems in the STFT domain was derived, and

a novel adaptive control algorithm, applied to acoustic echo cancellation, was proposed.

Concerning nonlinear system identification, we have introduced a novel nonlinear model

in the STFT domain, which consists of a parallel combination of linear and nonlinear

components. The proposed model achieves a significant reduction in computational cost

as well as a substantial improvement in estimation accuracy over the conventional time-

231
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domain Volterra model, particularly when long-memory nonlinear systems are considered.

We have concentrated on the error caused by nonlinear undermodeling and considered the

problem whether the inclusion of a nonlinear component in the model is always prefer-

able, taking into account the noise level, data length and the power ratio of nonlinear to

linear components of the system. The applicability of this model to nonlinear acoustic

echo cancellation problems was demonstrated.

The main contributions of the thesis chapters are as follows:

In Chapter 3, we have derived explicit relations between the attainable mmse in sub-

bands and the power and length of the input signal for a system identifier implemented in

the STFT domain. We showed that the mmse is achieved by using a variable number of

crossband filters, determined by the power ratio between the input signal and the additive

noise signal, and by the effective length of input signal that can be used for the system

identification. Generally the number of crossband filters that should be utilized in the

system identifier is larger for stronger and longer input signals. Accordingly, during fast

time variations in the system, shorter segments of the input signal can be employed, and

consequently less crossband filters are useful. However, when the time variations in the

system become slower, additional crossband filters can be incorporated into the system

identifier and lower mse is attainable. Furthermore, each subband may be characterized

by a different power ratio between the input signal and the additive noise signal. Hence,

a different number of crossband filters may be employed in each subband.

In Chapter 4, we have derived explicit relations between the mmse and the analysis

window length, for a system identifier implemented in the STFT domain and relying on

the MTF approximation. We showed that the mmse does not necessarily decrease with

increasing the window length, due to the finite length of the input signal. The optimal

window length that achieves the MMSE depends on the SNR and length of the input

signal.

Next, in Chapter 5, we have introduced an CMTF approximation for identifying an LTI

system in the STFT domain. The cross-terms in each frequency bin are estimated either

off-line by using the LS criterion, or adaptively by using the LMS (or NLMS) algorithm.

We have derived explicit relations between the attainable mmse and the power and length

of the input signal. We showed that the number of cross-terms that should be utilized
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in the system identifier is larger for stronger and longer input signals. Consequently, for

high SNR values and longer input signals, the proposed CMTF approach outperforms

the conventional MTF approximation. This improvement is due to the fact that data

from adjacent frequency-bins becomes more reliable and may be beneficially utilized for

the system identification. In addition, we have analyzed the transient and steady-state

mse performances obtained by adaptively estimating the cross-terms. We showed that

the MTF approximation yields faster convergence, but also results in higher steady-state

mse. As the adaptation process proceeds, more data is employable, and lower mse is

achieved by estimating additional cross-terms. Accordingly, during rapid time variations

of the system, fewer cross-terms are useful. However, when the system time variations

become slower, additional cross-terms can be incorporated into the system identifier and

lower mse is attainable.

In Chapter 6, we have introduced a novel approach for identifying nonlinear systems

in the STFT domain. We have derived an explicit nonlinear model, based on an effi-

cient approximation of Volterra-filters representation in the time-frequency domain. The

proposed model consists of a parallel combination of a linear component, which is repre-

sented by crossband filters between subbands, and a nonlinear component, modeled by

multiplicative cross-terms. We showed that the conventional discrete frequency-domain

model is a special case of the proposed model for relatively long observation frames. Fur-

thermore, we showed that a significant reduction in computational cost can be achieved

over the time-domain Volterra model by the proposed approach. Experimental results

have demonstrated the advantage of the proposed STFT model in estimating nonlinear

systems with relatively large memory length. The time-domain Volterra model fails to

estimate such systems due to its high complexity. The proposed model, on the other

hand, achieves a significant improvement in mse performance, particularly for high SNR

conditions. Overall, the results have met the expectations originally put into STFT-

based estimation techniques. The proposed approach in the STFT domain offers both

structural generality and computational efficiency, and consequently facilitates a practical

alternative for conventional methods.

In Chapter 7, we have provided an explicit estimation-error analysis for quadratically

nonlinear system identification in the STFT domain. We assumed that the system to
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be identified can be represented by the nonlinear STFT model proposed in Chapter 6.

The proposed model consists of a parallel combination of a linear component, which is

represented by crossband filters between subbands, and a quadratic component, modeled

by multiplicative cross-terms. We showed that the inclusion of the quadratic component

in the model is preferable only for high SNR conditions and slowly time-varying systems

(which enables to use longer observable data). A significant improvement in mse perfor-

mance is then achieved compared to using a purely linear model. This improvement in

performance becomes larger as the nonlinearity becomes stronger. On the other hand,

as the SNR decreases or as the time variations in the system become faster, a lower mse

is attained by allowing for nonlinear undermodeling and employing only the linear com-

ponent in the estimation process. Furthermore, we showed that increasing the number

of crossband filters in the linear component does not necessarily imply a lower mse. For

every noise level, whether a linear or a nonlinear model is employed, there exists an op-

timal number of crossband filters, which increases as the SNR increases. Experimental

results have supported the theoretical derivations.

Finally, in Chapter 8, we have proposed an adaptive scheme for the estimation of

quadratically nonlinear systems in the STFT domain, based on the quadratic model

proposed in Chapter 6. The proposed model consists of a parallel combination of a linear

component, which is represented by crossband filters between subbands, and a quadratic

component, modeled by multiplicative cross-terms. We adaptively updated the model

parameters using the LMS algorithm and derived explicit expressions for the transient and

steady-state mse in frequency bins for white Gaussian inputs. We showed that as more

data is employed in the adaptation process, whether a purely-linear or a nonlinear model

is employed, additional crossband filters should be estimated to achieve the mmse at each

iteration. We further showed that incorporating the nonlinear component into the model

may not necessarily imply a lower steady-state mse in subbands. In fact, the estimation

of the nonlinear component improves the mse performance only for high NLR conditions.

This improvement in performance becomes smaller as the nonlinearity becomes weaker.

It was also shown that the proposed adaptive algorithm is more advantageous in terms of

computational complexity than the conventional time-domain Volterra approach.
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9.2 Future research directions

In this thesis, we have developed novel theoretical approaches as well as practical algo-

rithms for improved linear and nonlinear system identification. Several directions may

be interesting for future research. In the following, we discuss some of the main issues.

Additional details and other possible topics for future research are given in the conclusions

of each chapter.

Adaptive control algorithms for nonlinear system identification: The novel

algorithms for nonlinear system identification considered in this research employ a fixed

number of parameters during the estimation process, either in batch or adaptive forms

(see Chapters 6-8). As a result, the proposed adaptive algorithm may suffer from either

slow convergence in case the model order is high, or relatively high steady-state mse in

case the model order is low. However, the insights provided in this research, regarding

the strategy of controlling the model structure and the model order, may further enhance

the performance of such algorithm. This may be done by combining the proposed model

with adaptive control methods [110–114], which dynamically adjust the number of model

parameters to provide a balance between complexity, convergence rate and steady-state

performance. Accordingly, by adaptively controlling the model structure (employing ei-

ther a linear or a nonlinear model) and the model order (determining the number of

crossband filters), a full adaptive-control scheme may be constructed to achieve a faster

convergence without compromising for higher steady-state mse.

Time-varying system identification: The insights derived in the context of time-

invariant linear and nonlinear system identification may be extended to the time-varying

case. Many real world systems are often characterized by certain time variations that

cannot be sufficiently modeled by conventional LTI models. For instance, the system rep-

resenting a loudspeaker, room and a microphone, in acoustic echo cancellation applica-

tions is generally time-varying [89]. The time variations in this system are a consequence

of changes in the echo path. These variations are attributable to frequent changes in

objects’ positions in the enclosure, e.g., varying positions of the microphone, the loud-

speaker or the speaker in the enclosure. Such variations, although resulting in relatively

slow and small changes in the direct path and the early reflections, cause fast changes
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in the late reflections. Several adaptive algorithms have been proposed for tracking the

time variations of an linear time-varying system, and their mse performances have been

extensively analyzed [10, 127–129]. However, most of them operate in the time domain

and the influence of the time variations on STFT-based identification approach has not

been investigated. Analyzing the model mismatch resulting from a time-invariant model

assumption and investigating the influence of time variations on the attainable mmse in

the STFT domain are interesting topics for future research. Note that the variations in a

linear system may be specified in terms of the time-domain impulse response h(n,m), or

alternatively in terms of variations in the crossband filters hp′,k,k′(p)1. The undermodeling

error caused by not tracking the system variations may make the STFT domain preferable

for system identification. For instance, when only a few coefficients in the time-frequency

domain are varying, the additional error due to the time-varying model mismatch may be

lower in the time-frequency domain than in the time domain.

In this context, it should be noted that time variations in the system may also influence

the selection of the model order. For instance, when abrupt variations occur in a particular

coefficient, the model complexity may decrease and the performance may be improved by

not estimating this particular coefficient. The analysis may be extended by allowing the

model complexity to vary in time, thus possibly improving the accuracy of the model

and decreasing the mmse. This approach may be combined with the nonlinear model

presented in Chapter 6 for achieving an efficient and general model for nonlinear time-

varying systems in the STFT domain. Consequently, by selecting the optimal domain,

choosing an appropriate model for time variations and nonlinearities, and determining the

optimal model order may further improve the tracking capability of a nonlinear system

identifier.

RTF identification and multichannel processing: The crossband filtering ap-

proach and the algorithms proposed in this research may be employed for developing

improved multichannel communication systems. An important component of a multi-

channel communication system is the identification of a relative transfer function (RTF)

between sensors in response to a desired source signal. Since the RTF represents the

1The dependence of the crossband filters hp′,k,k′(p) on the frame index p indicates the time-variations

of the system as observed in the STFT domain.
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relative response between two sensors, it can be considered linear, even when the desired

source signal. Many existing multichannel processing approaches approximate the RTF in

the STFT domain as multiplicative (i.e., the MTF approximation) by assuming that the

analysis window is long and smooth relative to the RTF impulse response. However, in

such applications, the impulse response is practically of infinite length (since it represents

the impulse response of the ratio of room transfer functions), so the large window support

assumption may result in an inaccurate system estimate. Nonetheless, the restriction

of the large support assumption may be avoided by incorporating crossband filters in

the RTF identification process; thus possibly improving the system estimate accuracy.

Note, however, that the identification approaches derived in this paper (either in batch

or adaptive forms) are inapplicable in the RTF identification problem, since in this case

the additive interfering signal is correlated with the system input and also depends on the

system impulse response. The crossband filtering approach can therefore be extended to

this more general problem. In particular, taking into account the nonstationarity of the

input signal [3, 130], the number of useful crossband filters can be determined according

to the different SNR values per time-frequency bin. Consequently, an efficient algorithm

for RTF identification that will result in a smaller error variance can be derived.

Another drawback of existing methods for RTF identification is associated with the

time-varying nature of the system. Therefore, even when infinite analysis window is

employed, the MTF approximation is not accurate due to frequent time-variations in

the acoustic enclosure, which cannot be efficiently modeled by the time-invariant MTF

model. An extension of the MTF approximation to the time-varying case may be done by

assuming that the analysis window ψ̃(n) is long and smooth relative to the time-varying

impulse response h(n,m), such that

ψ̃(n−m) h(n,m) ≈ ψ̃(n) h(n,m) . (9.1)

Note that the assumption in (9.1) generalizes the assumption made for LTI systems [see

(2.16)]. Based on (9.1), a corresponding time-varying MTF approximation may be derived

and can easily be incorporated into existing STFT-based multichannel algorithms in order

to enhance their performance in estimating and tracking time-varying systems.
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[2] E. Hänsler and G. Schmidt, Acoustic Echo and Noise Control: A Practical Approach.

New Jersey: Wiley, 2004.

[3] I. Cohen, “Relative transfer function identification using speech signals,” Special

Issue of the IEEE Trans. Speech and Audio Processing on Multi-channel Signal

Processing for Audio and Acoustics Applications, vol. 12, no. 5, pp. 451–459, Sept.

2004.

[4] Y. Huang, J. Benesty, and J. Chen, “A blind channel identification-based two-

stage approach to separation and dereverberation of speech signals in a reverberant

environment,” IEEE Trans. Speech and Audio Processing, vol. 13, no. 5, pp. 882–

895, September 2005.

[5] M. Wu and D. Wang, “A two-stage algorithm for one-microphone reverberant speech

enhancement,” IEEE Trans. Audio, Speech and Language Processing, vol. 14, no. 3,

pp. 774–784, May 2006.

[6] S. Araki, R. Mukai, S. Makino, T. Nishikawa, and H. Saruwatari, “The fundamental

limitation of frequency domain blind source separation for convolutive mixtures of

speech,” IEEE Trans. Audio, Speech and Language Processing, vol. 14, no. 3, pp.

774–784, May 2006.

[7] F. Talantzis, D. B. Ward, and P. A. Naylor, “Performance analysis of dynamic

acoustic source separation in reverberant rooms,” IEEE Trans. Audio, Speech and

Language Processing, vol. 14, no. 4, pp. 1378–1390, July 2006.

239



240 BIBLIOGRAPHY

[8] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using beamform-

ing and nonstationarity with applications to speech,” IEEE Trans. Signal Process-

ing, vol. 49, no. 8, pp. 1614–1626, Aug. 2001.

[9] S. Gannot and I. Cohen, “Speech enhancement based on the general transfer func-

tion GSC and postfiltering,” IEEE Trans. Speech and Audio Processing, vol. 12,

no. 6, pp. 561–571, November 2004.

[10] S. Haykin, Adaptive Filter Theory, 4th ed. New Jersey: Prentice-Hall, 2002.

[11] P. P. Vaidyanathan, Multirate systems and filters banks. New Jersey: Prentice-Hall,

1993.

[12] H. Yasukawa, S. Shimada, and I. Furukawa, “Acoustic echo canceller with high

speech quality,” in Proc. Int. Conf. on Acoustics, Speech and Signal Processing

(ICASSP). Dallas, Texas: IEEE, Apr. 1987, pp. 2125–2128.

[13] W. Kellermann, “Analysis and design of multirate systems for cancellation of

acoustical echoes,” in Proc. Int. Conf. on Acoustics, Speech and Signal Processing

(ICASSP). New-York City, USA: IEEE, Apr. 1988, pp. 2570–2573.
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