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Topology Design of Communication Networks:

A Game-Theoretic Perspective
Amir Nahir, Ariel Orda, Ari Freund

Abstract—We study the performance of non-cooperative net-
works in light of three major topology design considerations,
namely the price of establishing a link, path delay, and path
proneness to congestion, the latter being modeled through the “re-
laying extent” of the nodes. We analyze these considerations and
the tradeoffs between them from a game theoretic perspective,
where each network element attempts to optimize its individual
performance.

We show that for all considered cases but one, the existence
of a Nash equilibrium point is guaranteed. For the latter case,
we indicate, by simulations, that practical scenarios tend to
admit a Nash equilibrium. In addition, we demonstrate that the
price of anarchy, i.e., the performance penalty incurred by non-
cooperative behavior, may be prohibitively large; yet, we also
show that such games usually admit at least one Nash equilibrium
that is system-wide optimal, i.e., their price of stability is 1. This
finding suggests that a major improvement can be achieved by
providing a central (“social”) agent with the ability to impose
the initial configuration on the system.

Index Terms—Communication Networks, Game Theory.

I. INTRODUCTION

Topology design of computer networks focuses on finding

the network configuration with the best possible performance

given some optimization criteria [8]. Classical works on this

subject aimed at finding optimal network topologies with

respect to criteria such as fault tolerance [31], reliability [29]

and delay [26].

Many network settings involve selfish agents making de-

cisions to maximize their own profit. These non-cooperative

networks give rise to game-theoretic analysis to quantify

the stability of the emerging networks and the performance

associated with them. Prior studies on this subject, such as [2],

[23] and [19], mainly investigated the structure of the network

operating points i.e., the Nash equilibria of the respective

games. Such equilibria are inherently inefficient [12] and, in

general, exhibit suboptimal network performance. In order

to quantify this inefficiency, two conceptual measures have

been proposed in the literature. The first, termed the price of

anarchy [25], is the ratio between the worst Nash equilibrium

and the social optimum. The second, termed the price of

stability [4] is the ratio between the best Nash equilibrium

and the optimum.

In this work, we perform a rigorous analysis of topology

design issues of non-cooperative networks. We study the

Conference version appeared in the Proceedings of IEEE INFOCOM 2009.
Amir Nahir is with the Department of Computer Science, Technion, Israel

Institue of Technology, Haifa 32000, Israel, Email: nahira@cs.technion.ac.il
Ariel Orda is with the Department of Electrical Engineering, Technion, Is-

rael Institue of Technology, Haifa 32000, Israel, Email: ariel@ee.technion.ac.il
Ari Freund is with Google Israel, Haifa, Israel, Email: arief@google.com

effects of several topology design considerations on the per-

formance of non cooperative networks. These considerations

are the price of establishing a (directed) link between network

elements, the delay of the resulting routing paths, and the

“relaying extent” of nodes along the routing paths, where

the latter is a measure of the path’s proneness to congestion.

We analyze the effect of each of these considerations, as

well as tradeoffs amongst them, on the resulting network

topology and its implied performance. As mentioned, we

conduct our investigation within the realm of noncooperative

games; however, this requires us to consider also the more

basic framework of the (system) optimization problems.

First, we consider the price of establishing a link. We

consider directional links, and, in addition, we allow link

prices to assume different values throughout the network. In

addition, we analyze the link establishment price as a single

consideration before moving to analyze the tradeoff between

it and the delay consideration.

Delay is our second design consideration, and, similarly

to [15], it is estimated by counting the hops of the resulting

routing paths.

Finally, our third design consideration is termed the “re-

laying extent” of the nodes along the routing paths, and is a

function of the nodal in-degree. A higher relaying extent of a

node typically implies a higher number of nodes using it as

a relay, resulting in higher congestion at that node. In some

cases, they may affect the bandwidth allocated to a specific

user when sending its data along that path, while in other cases

this may increase the probability of packet loss. We capture

both of these cases through two separate cost functions.

While we focus our work on network design, our find-

ings are relevant also to topology control in wireless net-

works. Several studies have addressed such “topology control

games” [14], [16], [22], however in the context of omnidi-

rectional antennas, i.e., connectivity is (solely) derived by the

radius covered by the power level set by the node. Our results,

on the other hand, are relevant to the case of directional

antennas, where a node can choose its neighbors on a per-

node basis.

Our findings can be summarized as follows:

• For all considered cases but one, we establish the exis-

tence of a Nash equilibrium.

• For the remaining case, we provide a generic counter-

example. Furthermore, we show, through simulations,

that practical scenarios tend to admit at least one Nash

equilibrium with a reasonable price of anarchy.

• We show that, typically, the considered games may per-

form poorly from a systemwide perspective, as exhibited

by large values of the price of anarchy. Moreover, we
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show that such poor operating points may be reached

through a ”natural” course of the network game.

• On the other hand, we show that, in many cases, the

price of stability is 1, i.e., there is a Nash equlibrium that

is systemwide optimal. Therefore, efficient performance

can be often achieved by just controlling the initial

configuration of the system.

• In some of the considered cases we show that, similarly

to [15], Nash equilibria are obtained in very simple

topologies, such as a complete graph (clique) or a ring.

• Moreover, when the relaying extent is the only design

consideration, we show that the system optimum too is

obtained in such a simple topology, namely a ring. This

finding may suggest that a practically appealing model

should address the relaying extent only in conjunction

with additional design considerations. We achieve this by

adding delay as a second consideration.

The rest of this paper is organized as follows. After dis-

cussing related work in the next section, we formulate the

model and terminology in Section III. Sections IV-X deal

with the different topology design considerations we study, as

well as the tradeoffs between them. Finally, conclusions are

presented in section XI.

II. RELATED WORK

Game theoretic models have been employed in various

networking contexts, such as flow control [2], [17], routing [3],

[23] and bandwidth allocation [19]. These studies mainly

investigated the structure of the network operating points i.e.,

the Nash equilibria of the respective games. Such equilibria are

inherently inefficient [12] and, in general, exhibit suboptimal

network performance. As a result, the question of how much

worse the quality of a Nash equilibrium is with respect to

a centrally enforced optimum has received considerable atten-

tion e.g., [18], [27], [28]. In order to quantify this inefficiency,

two conceptual measures have been proposed in the literature.

The first, termed the price of anarchy [25], corresponds to a

worst-case analysis and is the ratio between the worst Nash

equilibrium and the social optimum. The second, termed the

price of stability [4], is the ratio between the best Nash

equilibrium and the optimum, and it quantifies the degradation

in performance when the solution is required to be stable (i.e.,

with no agent having an incentive to independently defect out

of it once being there).

Bottleneck models have many practical applications in the

context of network design and management. Such models can

be used to reflect the remaining battery life in a wireless

network [33], to minimize the usage of loaded buffers in traffic

engineering [8], or to avoid congested links when routing

traffic [32]. In the context of game theory, bottleneck models

have also been studied in [7].

Prior game-theoretic work on topology design has focused

on the tradeoff between the price of establishing a link and

the delay of the implied routing paths. In [15], the authors

presented a fundamental model where players set up links to

construct an undirected graph, trading off link establishment

costs with path lengths. They focused on the case of undirected

networks, with homogeneous link prices, that is: once a link

has been established between nodes vi and vj , either node

could use that link to transmit data to its adjacent node;

furthermore, the price of establishing a link was assumed

identical throughout the network. In [1], the authors followed

the model of [15] and improved some of the results.

In [10], the authors used a model similar to the one above,

but demanded bilateral agreement of both sides for every link

establishment, that is, a link is established only if both nodes

choose to establish it. In [13], the authors followed up and

improved some of the results of [10] and [15]).

In [9], the authors extended [15] by limiting the cost of

non-connectivity to a finite value.

In [5], [6], the authors studied a similar problem, where

players aspire to connect to only some of the other players,

and may buy non-adjacent links.

Finally, the authors of [21] looked at a similar problem

from a peer-to-peer network perspective, where the links are

directional and link delay may be arbitrary.

In this study, we consider directional links, and furthermore,

investigate several novel design criteria.

III. THE MODEL

Our unified network model is based on a set of N net-

work elements. We assume that network elements establish

links among themselves during the network’s setup phase,

and continue using these links when transmitting through-

out the remainder of the network’s lifetime. We refer to

the network elements as nodes, and denote them by V =
{v0, v1, . . . , vi, . . . , vN−1}. Edges are used to represent links

between nodes, and are denoted by a set E. Note that the

existence of a link from vi to vj means that vi can send data

directly to vj , but it does not imply that vj can send data

directly to vi, therefore the network’s topology is represented

by a directed graph, denoted as G. We use ηin(vi) to denote

vi’s in-degree, and AdjG(vi) to denote vi’s adjacent nodes,

i.e.,

AdjG(vi) = {vj | < vi, vj >∈ E}.
A non-cooperative game [24] is comprised of three com-

ponents, namely players, strategies and costs. In the non-

cooperative games we analyze, the network elements (nodes)

are the players. The strategies, si, of each player vi, are the

sets of links that it may choose to establish, i.e., each player

vi chooses its direct neighbors, AdjG(vi). A specific choice of

the players startegies, s =
⋃i=N−1

i=0 {si}, defines the strategy

profile, which induces the network’s topology G. Given the

network’s topology G, we denote by lG(vi, vj) the routing

path from vi to vj . Routing paths are chosen so as to (self-)

optimize some design considerations, which are captured by a

cost function. More specifically, in the games we investigate,

the goal of each node (player) is to achieve full connectivity

with all other nodes, and, under this constraint, optimize

the design considerations. We term this class of games as

connectivity games.

As mentioned, we study the impact of three design consider-

ations. The first is the price of establishing a link. To model it,

we define a weight function W : V × V → ℜ, i.e., W (vi, vj)
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defines the price (to vi) of establishing a link from node vi to

node vj . The second design consideration is the delay of the

resulting routing path, which is captured through the number

of hops along the routing path. The third design consideration

is the relaying extent, which is captured by the in-degree of

the nodes along the path. Specifically, in-degrees quantify the

relaying extent in two possible ways, namely the product of the

in-degrees of nodes along the path, or the bottleneck of these

values. When nodal in-degree reflects the amount of traffic

expected to go through a node, a high in-degree may indicate

a high probability of packet loss (due to congested buffers).

In such a case, the product value of nodal in-degrees along a

path represents the probability of a succesful transmission of

a packet through a congested relay. Whereas the bottleneck

value may be chosen when nodes share the bandwidth of

the relay. In both cases, a lower value of the relaying extent

implies a better routing path.

Each of the three design considerations, namely establish-

ment price, delay and relaying extent, translates into a corre-

sponding nodal cost function, which captures the performance

of the node. Specifically, with each player vi ∈ V , we

associate a (non-negative) cost value c(vi), which accounts

for various factors, depending on the design consideration,

e.g., the node’s power consumption, its distance from some

other node, path interference, etc. The precise definition of

the node’s cost value is detailed in the following respective

sections. Each player (node) strives to minimize its cost c(vi).
Player vi’s best-response move is a strategy which, given

the strategies of all other players, yields the lowest value to

c(vi). A network topology G is said to be at Nash equilibrium

if each player considers its chosen strategy to be the best under

the given choices of other players.

The selfish behavior of the players typically leads to

network-wide inefficiency. We quantify this inefficiency

through the ratio between the cost of the worst possible Nash

equilibrium topology and the cost of an optimal solution. In

keeping with common terminology [18], [25], this ratio is

called the price of anarchy and it quantifies the “penalty”

incurred by lack of cooperation (or coordination) among the

players in a noncooperative game. We also consider the price

of stability [4], which is the ratio between the cost of the

best Nash equilibrium and the cost of an optimal solution and

quantifies the inefficiency of the noncooperative game in cases

where the initial operating point of the system can be chosen

by a social agent.

Note that, in order to quantify the price of anarchy and price

of stability, the related system optimization problems need to

be defined. In general, the goal of system optimization is to

minimize the total cost, namely C(G) =
∑

vi∈V c(vi). An

exception is whenever the nodes’ costs depend on a bottleneck

function, as when a bottleneck relaying extent is considered;

there, total cost is defined as the networkwide bottleneck, i.e.,

C(G) = maxvi∈V c(vi).

IV. LINK PRICES (SOLELY)

The first game we consider entails each player vi with the

total price of the links it chooses to establish, i.e., c(vi) =

∑

vj∈AdjG(vi)
W (vi, vj). In case player vi fails to connect

to one (or more) of the other nodes, its cost is infinite (i.e.,

c(vi) = ∞). We term the respective game as the connectivity

game with link prices. We show that this game has a Nash

equilibrium point. In addition, we show that the game’s price

of stability [4] is 1. On the other hand, we show that this game

has a high price of anarchy, and that an iterative best-response

move by each player may lead to that state.

Theorem 1: The connectivity game with link prices has a

Nash equilibrium.

Proof: By proving that this game is an exact potential

game [20]. To that end, we define the following (potential)

function Φ: Φ(G) =
∑

vi∈V c(vi). One needs to prove then,

that when a player vi improves its cost, the potential decreases

by the exact same amount. Let G be a valid topology (i.e., all

players have routing paths to all other players) induced by

a strategy profile s. Assume player vi changes its strategy

from si to s′i to improve its cost. It is easy to see that when

starting from a valid strategy profile, player vi must remove

at least one link to improve its cost. Let G′ be the topology

induced by the strategy profile after player vi has changed its

strategy. For any player vj 6= vi, since G is a valid topology,

it holds that vj has a routing path to vi. Note that when player

vi changes its strategy (i.e., adds or removes links), it cannot

affect vj’s connectivity to itself. It follows that vj is connected

to vi in G′. Since vi improved its cost, it is clear that vi has

routing paths to all other nodes in G′, and so vj has routing

paths to all nodes in G′. We conclude that for any player

vj 6= vi, cG(vj) = cG′(vj). Hence,

Φ(G′)− Φ(G) =
∑

vj∈V

cG′(vj)−
∑

vj∈V

cG(vj) =

cG′(vi) +
∑

vj 6=vi

cG′(vj)− cG(vi)−
∑

vj 6=vi

cG(vj) =

cG′(vi)− cG(vi).

In view of [20], the theorem follows.

Next, we prove an important property on the correlation

between the Nash equilibrium strategy profiles of the con-

nectivity game with link prices and the local optima of the

corresponding (system) optimization problem. We will later

rely on this lemma to prove our results on the price of stability

and price of anarchy of the game.

Lemma 1: Let G be a topology. G defines a local optimum

of the connectivity problem with link prices if and only if

G is at Nash equilibrium for the connectivity game with link

prices.

Proof: Recall that optimum is measured with respect to

the total costs of all players, i.e., the optimization objective

function is C(G) =
∑

vi∈V c(vi).
In one direction, let G be a local optimum for the optimiza-

tion problem. It is clear that G is a valid topology. Assume,

by negation, that G is not at Nash equilibrium. By definition,

there exists at least one player that can unilateraly improve its

cost. Let vi be such a player. Let G′ be the topology reached

after vi played its best response to G. As shown in the proof

of Theorem 1, for every player vj 6= vi, cG(vj) = cG′(vj). In
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addition, since vi played its best response move, cG′(vi) <
cG(vi). Hence, C(G′) < C(G) in contradiction to G’s local

optimality.

The other direction holds by definition.

Theorem 2: The price of stability for the connectivity game

with link prices is 1.

Proof: By proving that there exists an optimum point that

is at Nash equilibrium.

As the global optimum is also a local one, Theorem 2

follows directly from Lemma 1.1

In order to analyze the game’s price of anarchy, several

definitions are required. A player’s minimal connectivity price

is the minimal price a player must pay in order to establish

any link. Formally, W i
min = minvj∈V,vj 6=vi

{W (vi, vj)}. A

player’s maximal connectivity price is the price a player must

pay in order to establish the most costly link. Formally,

W i
max = maxvj∈V {W (vi, vj)} (note that this is not the

highest value c(vi) can take since it refers to a single link

only). A game’s minimal connectivity price is the minimal

price required so that some player may establish a link to

some other player. Formally, Wmin = minvi∈V {W i
min}. A

game’s maximal connectivity price is the price of the most

costly link (i.e., it’s the highest value W (·, ·) takes). Formally,

Wmax = maxvi∈V {W i
max}.

Theorem 3: The price of anarchy for the connectivity game

with link prices is Θ(Wmax

Wmin
).

Proof: By establishing the corresponding lower and upper

bounds, in the following lemmas.

Lemma 2: The price of anarchy for the connectivity game

with link prices is O(Wmax

Wmin
).

Proof: By showing a lower bound on the cost of the

optimal topology and an upper bound on the cost of any Nash

equilibrium.

First, we note that each player must establish at least one

out-going link in order to have any kind of connectivity with

the rest of the network. It follows that the cost of each player

is at least Wmin. Hence, the cost of the optimal topology is

at least N ·Wmin.

Next, we consider the problem of the worst Nash equilib-

rium. It follows from Lemma 1 that this Nash equilibrium is

also the worst local optimum for the optimization problem.

The following lemma proves a general property of directed

graphs. Using this property, we will establish the desired

upper bound.

Lemma 3: Let G = (V,E) be a directed clique of N nodes.

Let Ĝ = (V, Ê) be a subgraph of G, such that Ĝ is strongly

connected, and, in addition, for any edge ei ∈ Ê, (V, Ê\{ei})
is not strongly connected. Then, |Ê| ≤ 2 · (N − 1).

Proof: Assume, by negation, that there exists a strongly

connected graph Ĝ = (V, Ê), such that for any edge ei ∈ Ê,

(V, Ê\{ei}) is not strongly connected, and, in addition, |Ê| >
2 · (N − 1). Let us now run Tarjan’s algorithm for strongly

connected components [11]. It holds, from the correctness

of Tarjan’s algorithm and our assumption, that the algorithm

will return a single strongly connected component, which

1Actually, the first direction of Lemma 1 proves a claim stronger than
required for establishing the theorem.

Fig. 1. A network topology with price of anarchy Wmax

Wmin

includes all of V . However, Tarjan’s algorithm is comprised

of two runs of the Depth-First-Search algorithm [11]. Since in

each run the DFS algorithm traverses N − 1 edges, Tarjan’s

algorithm traverses at most 2 · (N − 1) edges. It follows that

some of the edges in Ê can be removed without damaging

Ĝ’s connectivity, in contradiction to our assumption. This

completes the proof of Lemma 3.

Corollary 1: The cost of the worst Nash equilibrium for the

connectivity game with basic link prices is ≤ 2·(N−1)·Wmax.

Therefore, the cost of any Nash equilibrium is upper

bounded by 2·(N−1)·Wmax, while the optimal configuration

is lower bounded by N ·Wmin, yielding a bound on the price of

anarchy of O(Wmax

Wmin
). This completes the proof of Lemma 2.

Lemma 4: The price of anarchy for the connectivity game

with link prices is Ω(Wmax

Wmin
).

Proof: By proving that any directed ring topology is at

Nash equilibrium and providing an example.

Lemma 5: Every directed ring topology is at Nash equilib-

rium.

Proof: Assume, by negation, that there exists a directed

ring topology G, such that G is not at Nash equilibrium. Since

G is not at Nash equilibrium, it holds that there exists at least

one player that can unilaterally reduce it cost. Let vi be such

a player, and let vj ∈ AdjG(vi). Since G is a directed ring,

it holds that vi is the only node directly connected to vj .

And so, it holds that vi cannot remove its link with vj , since

any topology resulting from such a move will not be strongly

connected. Hence, vi’s best response move can only include

addition of links. Since W (·, ·) is a non-negative function,

this contradicts the best response definition. This completes

the proof of Lemma 5.

Consider, for example, the network setup (partly) depicted

in Figure 1. In this network, the price of the link connecting

vi to vi−1 is Wmin, while all other link prices are Wmax.

In case each node vi chooses to establish a single link to

vi−1, the resulting topology Gmin is a directed ring topology,

thus, following Lemma 5, it is at Nash equilibrium. In addition,

we note that the cost of this topology is C(Gmin) = N ·Wmin

(which is optimal). Next, we consider the case in which each

node vi chooses to establish a single link to vi+1, the resulting

topology Gmax is a directed ring topology, thus, following

Lemma 5, it is at Nash equilibrium. The cost of this topology

is C(Gmax) = N ·Wmax, yielding a lower bound on the price

of anarchy of Ω(Wmax

Wmin
).
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This completes the proof of Lemma 4.

Theorem 3 follows directly from Lemmas 2 and 4.

A natural order game is a game that begins with all players

having no outgoing links (i.e., ∀vi ∈ V,AdjG(vi) = ∅), and

it advances as each player, in its turn, plays its best response;

the game ends when in equilibrium.

We show that, even in such a simple setting, the connectivity

game with link prices still yields a price of anarchy of

Θ(Wmax

Wmin
).

Theorem 4: The price of anarchy for the natural order

connectivity game with link prices is Θ(Wmax

Wmin
).

Proof: By showing both upper and lower bounds. Note

that the upper bound of O(Wmax

Wmin
) proven in Lemma 2 still

holds. We prove the lower bound by using the example

defined in Lemma 4. First, we show that if players perform

best response moves in ascending order of index (i.e., player

v0 plays first, followed by v1, v2, and so on), then the optimal

Nash equilibrium is achieved. When player v0 first plays, all

other players have no outgoing links established, and so v0
is forced to directly connect with all other nodes at a cost of

Wmin+(N−2)·Wmax. When player v1 enters the game, it can

either transmit through v0, or transmit directly to all players.

Since transmission through v0 yields v1 a cost of Wmin, it

will strictly prefer this startegy. When player v2 enters the

game, its best response is to transmit through v1 at a cost of

Wmin. In a similar fashion, each player vi, 3 ≤ i ≤ N − 1
will establish a single link to vi−1 at a cost of Wmin. Once

all players have played once, only v0 can improve its cost by

removing all links except for a single link to vN−1 (which has

the price of Wmin). It can be easily seen that, after v0’s second

move, the resulting topology is the same as Gmin defined in

Lemma 4, and thus at Nash equilibrium. The total cost of this

topology is N ·Wmin.

Next, we present an entry order that yields a Nash equilib-

rium with a cost of N · Wmax. In this case players enter in

decending order of index (i.e., vN−1 plays first, followed by

vN−2, vN−3, and so on).

When player vN−1 first plays, all other players have no

outgoing links established, and so vN−1 is forced to directly

connect with all other nodes at a cost of Wmin + (N − 2) ·
Wmax. When player vN−2 enters the game, its best response

move is to transmit through vN−1 at a cost of Wmax. In a

similar fashion, each player vi, 0 ≤ i ≤ N −3 will establish a

single link to vi+1 at a cost of Wmax (note that in this case,

other options with the same cost exist. making other choices

will result in a Nash equilibrium with an equally bad cost).

Once all players have played once, only vN−1 can improve

its cost by removing all links but the one connecting it to

v0. It can be easily seen, that after vN−1’s second move, the

resulting topology is the same as Gmax defined in Lemma 4,

and thus at Nash equilibrium. The total cost of this topology

is N · Wmax, and the lower bound on the price of anarchy

follows. This completes the proof of Theorem 4.

V. LINK PRICES AND DELAY

In this section we discuss a game in which the cost function

of each player vi entails it both with the total price of the

links it chooses to establish, as well as its distance from its

destinations. This is perhaps the most elementary model that

exhibits the link-delay tradeoff: on the one hand, each node

aspires to reduce its expenses on link establishment; on the

other hand, transmitting to many other nodes implies less hops

between the node and its destinations, thus reducing the hops

component of the cost.2 Formally, the cost of each node vi is

defined as

c(vi) = α ·
∑

vj∈AdjG(vi)

W (vi, vj) +
∑

vj∈V

dG(vi, vj),

where α is a parameter quantifying the relative importance of

the hops component in comparison with the link establishment

price component, and dG(vi, vj) denotes the length of the

shortest path connecting vi to vj in G. As before, in case

node vi fails to connect to one (or more) of the nodes in

the network, its cost is infinite (i.e., c(vi) = ∞). We term

the respective game as the connectivity game with price-delay

costs.

We show that, while this game resembles the game analyzed

in [15] (there, for homogeneous prices and undirected links), it

may fail to admit a Nash equilibrium. Furthermore, we provide

a generic example that does not admit any Nash equilibrium,

regardless of the value of α. However, this example is rather

particular; indeed, through simulations, we indicate that more

typical scenarios do admit a Nash equilibrium. Our simulation

results also indicate a reasonable (lower) bound on the price

of anarchy. Finally, we show that a special case of the game,

in which all link prices are identical, admits similar results

to those described in [15]; we denote this special case as the

directed network creation game.

Theorem 5: For any α, there exist instances of the connec-

tivity game with price-delay costs that do not admit any Nash

equilibrium point.

Proof: First, we prove two properties of the connectivity

game with price-delay costs.

Lemma 6: Let < V,W > define a network. Any Nash

equilibrium includes all links with price < 1
α

.

Proof: Assume, by negation, that there exists a Nash

equilibrium topology G and a pair of node vi, vj ∈ V , such

that W (vi, vj) <
1
α

and vj /∈ AdjG(vi). It holds that the length

of the path connecting vi to vj , dG(vi, vj), is greater than 1.

We construct a new configuration G′, which is identical to G,

with the addition that AdjG′(vi) = AdjG(vi) ∪ {vj} (i.e., vi
establishes an additional link to vj). It holds that vi’s price of

link establishment has increased by α ·W (vi, vj) < 1, while

its distance to vj has decreased by at least one hop. It follows

that CG′(vi) < CG(vi), which contradicts our assumption that

G is a Nash equilibrium topology. This completes the proof

of Lemma 6.

Lemma 7: Let < V,W > define a network. Let G be a

topology defined in the following manner: ∀vi, vj ∈ V, vj ∈
AdjG(vi) ⇔ W (vi, vj) <

1
α

(G includes all links with price

2Note that there is no interest in dealing with delay as the only design
consideration, as it boils down to a trivial case where a clique, i.e., complete
graph, is the optimal solution as well as the unique Nash equilibrium.
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1
α

, and only such links). If G is strongly connected, then no

Nash equilibrium includes any link with a price > N2

2·α .

Proof: Assume, by negation, that there exists a Nash

equilibrium topology G′ and a pair of nodes vi, vj ∈ V , such

that W (vi, vj) >
N2

2·α and vj ∈ AdjG′(vi). Assume now that

vi removes its link to vj . Note that following Lemma 6 the

network remains strongly connected. It holds that vi’s price of

link establishment has decreased by α·W (vi, vj) >
N2

2 , while

the value of it distances component of the cost is always upper

bound by
∑N−1

i=1 (i) = N ·(N−1)
2 . It follows that by removing

its link to vj , vi has reduced its own cost, which contradicts

our assumption that G′ is a Nash equilibrium topology. This

completes the proof of Lemma 7.

We continue by providing a specific example of a network

which does not admit any Nash equilibrium for the connec-

tivity game with price-delay costs. Consider the following

network:

• V = {v0, v1, v2, v3, v4};

• W :

– ∀vi ∈ V,W (vi, vi+1) =
1

2·α ;

– ∀vi ∈ V,W (vi, vi+2) =
2.5
α

;

– for every other vi, vj ∈ V,W (vi, vj) =
13
α

.

Assume, by negation, that the network described above has

a Nash equilibrium topology G. Following Lemmas 6 and 7,

it holds that G includes all links with price < 1
α

, and does not

include any of the links with price > 12.5
α

. Hence, each node

vi ∈ V has only two possible strategies:

• establish a single link to vi+1, i.e., AdjG(vi) = {vi+1},

we denote this strategy as s1G;

• establish two links, one to vi+1 and another to vi+2, i.e.,

AdjG(vi) = {vi+1, vi+2}, we denote this strategy as s2G.

Lemma 8: For any player vi, if vi+1 uses strategy s1G, vi
strictly prefers using strategy s2G.

Proof: Assume, w.l.o.g., that player v1 uses the strategy

s1G. First, we evaluate v0’s cost of using strategy s1G. Since

v1 establishes a single link to v2, it is clear that the distance

between v0 and players v3, v4, is at least 3. It follows that v0’s

cost of using strategy s1G is at least α· 1
2·α+1+2+3+3 = 9.5.

By switching to strategy s2G, v0 reduces its distance to three

destinations (v2, v3 and v4) by one hop each, at a cost of α· 2.5
α

,

and Lemma 8 follows.

Lemma 9: For any player vi, if vi+1 uses the s2G strategy,

vi strictly prefers using s1G.

Proof: Assume, w.l.o.g., that player v1 uses the strategy

s2G. It is clear that v0’s distance from v3 is exactly 2. Player

v0’s cost of using strategy s2G is α · 3.5
α

+1+1+2+d(v0, v4),
where d(v0, v4) depends on player v2’s strategy, and may be

either 2 or 3. By switching to strategy s1G, player v0 increases

its distance from v2 and v4 by one hop, but saves α · 2.5
α

in

power, and Lemma 9 follows.

We consider two cases, based on v4’s strategy. In the first

case, assume v4 uses the strategy s1G It follows from Lemma 8

that player v3 must use strategy s2G. It then follows from

Lemma 9 that player v2 must use strategy s1G. Applying the

same reasoning again, yields the conclusion that v0 must use

strategy s1G, hence v4 must use strategy s2G, which contradicts

our assumption. The second case in which v4 uses the strategy

s2G yields a similar contradiction. This completes the proof of

Theorem 5.

While the example above does not admit any Nash equi-

librium, it is obtained within a rather particular case. We

therefore turn to simulations in order to explore the existence

of Nash equilibria in more general cases. In our simulation

environment, five nodes are randomly placed on a grid. Next,

the nodes’ initial strategies are constructed. Initial strategies

are constructed, following one out of three policies: all empty,

that is, the game begins with no links; all connected, where

the game begins with all possible links established; and

random connections where the probability of each link to exist

when the game begins is determined randomly, i.i.d, with 0.5
probability per link.

We consider three different weight functions, based on the

Eucleadan distance between the two node, that is, if node vi
is placed at < xi, yi >, and node vj is placed at < xj , yj >,

then

d(vi, vj) =
√

(xi − xj)2 + (yi − yj)2.

Specifically, we consider the following weight functions:

W (vi, vj) = d(vi, vj)
2,

W (vi, vj) = d(vi, vj),

and

W (vi, vj) = log10(d(vi, vj)).

The players then take turns, by random order, and make

best-response moves. We term a sequence in which each

player makes a single best response move as an iteration. In

case an iteration completes and all player strategies remain

unchanged, we conclude that this strategy profile constitutes a

Nash equilibrium point. On average, very few iterations (under

10) were required to reach a Nash equilibrium point. In case

100 iterations are played, and no Nash equilibrium is reached,

we conclude that (apparently) there is no Nash equilibrium.

We employed the above simulation environment in order

to evaluate the impact of the weight function, the grid size

and the α value on the existence of Nash equilibria points.

We used grids of three different sizes: 10x10, 100x100 and

1000x1000, and 16 different α values, ranging from 0.25 to

1000. For each grid size and α value, we simulated 20 different

random placements. We tested each random placement with 50
different play sequences and all strategy initialization policies.

All in all, 432, 000 different simulation runs were executed.

Our results are conclusive: in each out of the 2880 tested cases

(3 weight functions, 3 grid sizes, 16 α values, 20 placements),

at least one Nash equilibrium point was found. In fact, the

vast majority (over 94%) of simulation runs (i.e., obtained for

different play sequences) completed with a Nash equilibrium

point.

In addition, for each node placement, we computed the

optimal configuration (by converting the problem into a Binary

Integer Problem, and using MATLAB to solve it). We used

the optimal value, along with the value of the worst Nash

equilibrium identified in the simulations, to compute a lower

bound on the price of anarchy.
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Figures 2, 3 and 4 show the results of our experiment for

the three weight functions. As can be seen in the figures, the

lower bound on the price of anarchy is rather low (the worst

value is 3.77).

A. The Directed Network Creation Game

Here, we address the directed network creation game, which

is the directed version of the game first introduced in [15] (and

later extended in [1], [13], all considering the undirected case).

The directed network creation game is, in fact, a special case

of the connectivity game with price-delay costs, in which the

prices of all links are equal. For simplicity, we assume the for
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every vi, vj ∈ V,W (vi, vj) = 1. Similar results hold for any

other link price value, w̄, by substituting ᾱ ≡ α
w̄

.

Before analyzing the game’s price of anarchy, we note that

a Nash equilibrium is guaranteed to exist. More precisely,

and similarly to the undirected case [15], for any α < 1, the

directed clique is at Nash equilibrium, whereas for any α ≥ 1,

the directed star is at Nash equilibrium.

Theorem 6: For any α < N2 the price of anarchy for the

directed network creation game is O(
√
α).

Proof: The proof goes along similar lines to that of

Theorem 1 in [15]. First, we note that, since in any strongly

connected graph there are at least N edges and the distance

between any two nodes is at least 1, the cost of the optimal

configuration is at least α · N + N2. In addition, we note

that the cost of a directed star is less than 2 · (α · N + N2).
Hence, as in the undirected version, the price of anarchy is

Θ

(

α·|E|+
∑

vj∈V
dG(vi,vj)

α·N+N2

)

. Notice that, for every vi, vj ∈

V , it holds that dG(vi, vj) < 2
√
α, since otherwise vi would

connect to a node that is mid-way on the path to vj , and since

the path to vj is at least 2
√
α hops long, it will thus shorten

its distance to at least
√
α nodes (all the nodes from the mid-

way node to vj) by
√
α (by substituting the

√
α long path

from vi to the mid-way node by a single link), at the cost of

adding a single link - α. Therefore, it suffices to prove that

|E| = O
(

N2

α

)

.

Consider the edges emanating from node vi: e1, e2, . . . , etc.

For any edge we will count vertices vj for which < vi, vj > is

not in the graph. In other words, we will associate several non-

edges with each edge. Ideally, we want the ratio between the

number of edges and the number of non-edges to be 1 :
√
α.

Let T (vj) be the set of all nodes vk ∈ V such that the

shortest path connecting vi to vk, lG(vi, vk), goes through vj ,

i.e.,

T (vj) = {vk ∈ V |lG(vi, vk) goes through < vi, vj >}.

We ensure that T (vj) are disjoint by considering a canonical

shortest path for each node. Let G′ be the graph without G,

i.e., G′ = (V,E \ {e}). The alternative shortest path from vi
to vj ∈ T (vj) in G′ is either infinity of < 4

√
α. We consider

these two cases separately.

If vi is connected to T (vj) in G′, it holds that the distance

from vi to each node vk ∈ T (vj) is at most 4
√
α. To justify

the addition of e, the total improvement from the addition

of e must be greater then α, i.e.,
∑

vk∈T (vj)
(dG′(vi, vk) −

dG(vi, vk)) ≥ α, which implies that |T (vj)| = Ω(
√
α).

If vi is not connected to T (vj) in G′, it holds that G′ can be

partitioned into two parts: all the nodes reachable from vi in G′

and T (vj). It holds that these two sets are disjoint. The lack of

connectivity implies that none of the edges in the set reachable

from vi has an edge connecting it to a node in T (vj). Hence,

we can count (N − |T (vj)|) · |T (vj)| non-edges in G. The

minimal value this expression takes is N2

4 when |T (vj)| = N
2 .

Since α < N2, it follows that |T (vj)| = Ω(
√
α).

This completes the proof of Theorem 6.
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VI. RELAYING EXTENT - PRODUCT FORM

In the game presented in this section, players strive to

achieve full connectivity while minimizing the use of routing

paths that go through “hot spots”, which are characterized as

paths with a high ”relaying extent”. The latter is captured

by the in-degree of the nodes along the path. As explained

in Section III, in-degrees quantify the relaying extent in two

possible forms, namely the product of the in-degrees of nodes

along the path, or the bottleneck of these values. The reader is

referred to Section III for the motivation of these two forms.

In this section we focus on the product case, namely, each

player chooses routes such that the product of nodal in-degrees

along the path is minimal. We term this cost structure as PRE

(Product of Relaying Extent) costs, and formally define them

as follows:

c(vi) =
∑

vk∈V

∏

vj∈lvi,vk

ηinG (vj)

As before, in case node vi fails to achieve connectivity with

one (or more) other nodes, its cost is infinite, i.e., c(vi) = ∞.

We term the resulting game as the connectivity game with PRE

costs.

We show that both a directed clique, as well as a ring graph,

are always at Nash equilibrium; but while the ring is also

optimal, the clique configuration has a high cost, and therefore

the game has a high price of anarchy.

Theorem 7: The clique configuration, i.e., ∀vi ∈ V ,

AdjG(vi) = V , is a Nash equilibrium configuration for the

connectivity game with PRE costs, for which ∀vi ∈ V, c(vi) =
(N − 1)2.

Proof: Assume, by negation, that the clique configuration

is not a Nash equilibrium. Then, there exists some node vi,
such that vi can unilaterally reduce its cost. vi can do this

only by removing links. Assume, then, that vi can reduce its

cost by removing its link to vj . It holds that vi must remain

connected to vj . Let vm be the first node on vi’s path to vj .

ηinvm
= N − 1. Hence, vi’s new cost is

c(vi) =
∑

vk∈V

∏

vl∈lvi,vk

ηinG (vl) =

∑

vk∈V \{vj}

∏

vl∈lvi,vk

ηinG (vl) +
∑ ∏

vl∈lvi,vj

ηinG (vl) =

∑

vk∈V \{vj}

(N − 1) + (N − 1) ·
∏

vl∈lvm,vj

ηinG (vl) =

(N − 2) · (N − 1) + (N − 1) ·
∏

vl∈lvm,vj

ηinG (vl) >

(N − 1)2,

which contradicts our assumption.

Theorem 8: Any ring configuration, e.g., ∀vi ∈
V,AdjG(vi) = {vi+1}, is a Nash equilibrium configuration

for the connectivity game with PRE costs, for which

∀vi ∈ V, c(vi) = N − 1.

Proof: It holds that, in the ring configuration,

∀vi ∈ V, ηinvi
= 1, hence the cost of each node vi is

c(vi) =
∑

vk∈V

∏

vj∈lvi,vk
ηinG (vj) =

∑

vk∈V

∏

vj∈lvi,vk
1 =

∑

vk∈V 1 = N −1. Since 1 is the minimal cost of any path, it

holds that no node can reduce its cost, and the claim follows.

Theorem 9: Any ring configuration, e.g., ∀vi ∈
V,AdjG(vi) = {vi+1}, is an optimal configuration for

the connectivity problem with PRE costs, for which

∀vi ∈ V, c(vi) = N − 1.

Proof: Trivial. In a ring configuration, the in-degree of

each node is 1. Therefore, the cost of each path is 1, which

is the lowest cost possible. Hence, the cost of each node is

c(vi) =
∑

vj∈V 1 = N − 1.

Corollary 2: The optimal configuration cost for the connec-

tivity problem with PRE costs is N ·(N−1), and it is achieved

by any ring configuration.

Corollary 3: The price of stability for the connectivity

game with PRE costs is 1.

Theorem 10: The price of anarchy for the connectivity

game with PRE costs is Θ(N).
Proof: By establishing the corresponding lower and upper

bounds, in the following lemmas.

Lemma 10: The price of anarchy for the connectivity game

with PRE costs is O(N).
Proof: By establishing, in the next lemma, an upper

bound on the cost of each node in any Nash equilibrium.

Lemma 11: Let s be a strategy profile, such that there exists

a node vi for which cs(vi) > N · (N − 1). s is not a Nash

equilibrium strategy profile.

Proof: Assume, by negation, that there exists a strategy

profile s and a node vi, such that cs(vi) > N · (N − 1) and

s is a Nash equilibrium strategy profile. It follows that there

exists a node vj , such that
∏

vk∈lvi,vj
ηinG (vk) > (N −1), and

vj is not used by vi as a relay in any other path. Since the

in-degree of each node is at most N−1, it holds that vi is not

directly connected to vj in G. Assume now that vi establishes

a direct link to vj . It holds that the cost vi pays for the path

connecting it to vj has decreased, while the cost of any other

path has not changed, which contradicts our assumption that

s is a Nash equilibrium strategy profile.

This establishes Lemma 11.

Following Lemma 11, we derive an upper bound of N2 ·
(N − 1) on the cost of any Nash equilibrium configuration.

Since the value of the optimal configuration is exactly N ·
(N − 1), Lemma 10 follows.

The correctness of the lower bound follows directly from

Theorem 7 and Theorem 9, thus Theorem 10 follows.

VII. RELAYING EXTENT - BOTTLENECK FORM

Following the previous section, in this section we focus on

the bottleneck case namely, the cost entailed by each player

reflects the player’s “greatest relaying extent point”, i.e., the

node along all of the player’s routing paths that has the highest

relaying extent value, which in our case is represented by

the node’s in-degree. We term this cost structure as BRE

(Bottleneck Relaying Extent) costs, and formally define them

as follows:

c(vi) = max
vk∈V

max
vj∈lvi,vk

ηinG (vk).
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The resulting game is termed as the connectivity game with

BRE costs. Recall that paths are chosen to optimize the

considered design criteria, i.e., in this section, lvi,vj
denotes

the path connecting vi to vj which has the lowest BRE cost

value.

Note that, since each node is required to connect to all

other nodes, it holds (in a strongly connected configuration)

that c(vi) = maxvj∈V,vj 6=vi
ηinG (vj). In this model, the social

welfare, C(G), is the bottleneck of the entire configuration;

formally, C(G) = maxvi∈V c(vi) which, in strongly con-

nected configurations, is equivalent to maxvi∈V ηinG (vi).
We shall show that the directed ring is an optimal solution to

the connectivity problem with BRE costs, and that any graph

in which all in-degrees are equal is induced by a strategy

profile that is at Nash equilibrium. With these findings, we

shall establish that the game has a low price of stability and

a high price of anarchy.

Theorem 11: The directed ring configuration, e.g., ∀vi ∈ V ,

AdjG(vi) = {vi+1}, is an optimal configuration for the con-

nectivity problem with BRE costs, for which ∀vi ∈ V, c(vi) =
1.

Proof: Trivial. In a directed ring configuration, the in-

degree of each node is 1. A ring configuration is strongly

connected, and therefore the cost of each node is 1, which is

the lowest cost possible.

Theorem 12: Let s be a strategy profile for the connectivity

game with BRE costs, and let G be the directed graph induced

by s. If ∀vi, vj ∈ V ηinG (vi) = ηinG (vj), then s is at Nash

equilibrium.

Proof: Let s be a strategy profile such that for each

player vi, η
in
G (vi) = η̂ for some 1 ≤ η̂ ≤ N − 1. Assume,

by negation, that s is not at Nash equilibrium. Then, there

exists some player vi, such that vi can unilaterally reduce its

cost. vi can do this in either one out of three ways: removing

existing links; adding new links; and replacing links (i.e.,

removing some links, and adding others). Recall that vi’s cost

is maxvj∈V,vj 6=vi
ηinG (vj) = η̂. It holds that if vi adds any new

links, connecting it to, say, vj , it increases vj’s in-degree to

η̂+1, increasing vi’s cost to η̂+1 thus contradicting the best

response move definition. It remains to be shown that vi cannot

improve its cost by removing links. Note that vi must keep

at least one of its out-going links in order to be connected.

Assume that vi keeps its link connecting it to, say, vj . It holds

that vj’s in-degree remains unchanged, and therefore, vi’s cost

does not change, in contradiction to our assumption.

Corollary 4: The directed ring configuration, e.g., ∀vi ∈
V , AdjG(vi) = {vi+1}, is a Nash equilibrium configuration

for the connectivity game with BRE costs, for which ∀vi ∈
V, c(vi) = 1.

Corollary 5: The price of stability for the connectivity

game with BRE costs is 1.

Theorem 13: The directed clique configutaion, i.e., ∀vi ∈
V , AdjG(vi) = V , is a Nash equilibrium configuration for the

connectivity game with BRE costs, for which ∀vi ∈ V, c(vi) =
N − 1.

Corollary 6: The price of anarchy for the connectivity

game with BRE costs is N − 1. In addition, since N − 1
is the maximal in-degree possible, this result is tight.

The above results suggest that, when the relaying extent

of the bottleneck type is the only design consideration, the

network nodes should not be left to play their game without

any intervention of a social agent. Indeed, without such

intervention, they may end up in an equilibrium where each

node connects to each other node through a direct link. On the

other hand, by allowing a social agent to be able to impose

just the initial configuration of the system, it can guarantee a

stable working point that is systemwide optimal.

VIII. RELAYING EXTENT (PRODUCT FORM) AND DELAY

In this section we discuss a combination of two design

considerations, namely relaying extent and delay. Specifically,

we consider the product form of relaying extent costs, i.e.,

PRE costs, defined in Section VI, however paths longer than

d hops are not allowed. Accordingly, the cost is defined as

Section VI, namely:

c(vi) =
∑

vk∈V

∏

vj∈lvi,vk

ηinG (vj),

however, in case node vi fails to connect to one (or more) of

the nodes in the network, or if one (or more) of its routing

paths are more than d hops long, its cost is infinite (i.e.,

c(vi) = ∞). We term this cost structure as H-PRE (Hop-

constrained PRE) costs, while the resulting game is termed

the connectivity game with H-PRE costs.

We show that the optimal solution to the connectivity

problem with H-PRE costs is Θ(N
3

d
). In addition, we show

that the corresponding game has a unique Nash equilibrium

and that the price of anarchy is Θ(d).
Theorem 14: The optimal value for the connectivity prob-

lem with H-PRE costs is Ω(N
3

d
).

Proof: First, recall the cost of a strongly connected

configuration, namely:

c(G) =
∑

vi∈V

∑

vj∈V

∏

vk∈lvi,vj

ηinG (vk).

This cost function can also be written as
∑

vj∈V

∑

vi∈V

∏

vk∈lvi,vj

ηinG (vk).

We proceed by showing that, for any vj ∈ V ,

∑

vi∈V

∏

vk∈lvi,vj

ηinG (vk) ≥
(N − 1)2

d
.

Lemma 12: Let G∗
d(V, vj) = (V,E) be an inversed graph in

which every node has a directed path connecting it to vj in at

most d hops. Let C(G∗
d(V, vj)) =

∑

vi∈V

∏

vk∈lvi,vj
ηinG (vk).

If G∗
d(V, vj) is optimal w.r.t C(G∗

d(V, vj)), then G∗
d(V, vj) is

a tree.

Proof: We partition the nodes to sets according to their

distance (on their chosen path) to vj . Let Uk denote the nodes

at distance k from vj . We show that for every k, 1 ≤ k ≤ d
and every node vk ∈ Uk, vk has exactly one out-going edge

to a node in Uk−1.

First, we show that for every k, 1 ≤ k ≤ d and every

node vk ∈ Uk, vk has exactly one out-going edge to nodes
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in sets Um, m < k. Assume, by negation, that vk ∈ Uk has

more than one out-going edge to nodes in sets Um, m <
k. It holds that all but one of these edges are not on lvk,vj

(i.e., they are not used by vk to route data to vj , but are

there for other nodes). Let e = (vk, vr) be such an edge,

and let Ue be the set of nodes which are directly connected

to vk and their paths include e. Let vn be a leaf (i.e., it is

not on the path of any other node) such that e ∈ lvn,vj
. We

construct a new graph Gd(V, vj)) = (V,E′), where E′ =
E
⋃{(vn, vr)}

⋃{(vw, vn)|vw ∈ Ue} \ {e} \ {(vw, vk)|vw ∈
Ue}, i.e., vn replaces vk on all paths going through e. It is easy

to see that C(Gd(V, vj)) < C(G∗
d(V, vj)), which contradicts

G∗
d(V, vj)’s optimality.

Next, following the above, it is easy to see that the only

out-going edge from node vk ∈ Uk must connect it to a node

in Uk−1.

Finally, we show that for every k, 1 ≤ k ≤ d and every

node vk ∈ Uk, vk has no out-going edges to nodes in sets Um,

m ≥ k. Assume, by negation, that vk ∈ Uk has at least one

out-going edge to a node in Um, m ≥ k. Let e = (vk, vm)
be such an edge. Since vk is at distance k from the root, and

vm is at distance m from the root, where m ≥ k, it holds that

there must be a node vn on lvm,vj
, such that vn ∈ Un, and

vn has an out-going edge to a node in Ui, i < n − 1, which

contradicts the properties established above, and lemma 12

follows.

Lemma 13: Let Gd(V, vj) be an inversed tree of depth ≤ d
rooted at vj spanning V . For any N ≥ d ≥ 1, (where N =
|V |, and N ≥ 1) it holds that

∑

vi∈V

∏

vk∈lvi,vj

ηinG (vk) ≥
(N − 1)2

d
.

Proof: Note that for N = 1 the claim holds trivialy (since

the lower bound is 0 and the cost is always non-negative).

Throughout the rest of the proof we assume N > 1 and

prove by induction on d. For d = 1 it holds that G1(V, vj)
is an inversed star (i.e., each node vi ∈ V \ {vj} has a link

connecting it to vj), hence, vj’s in-degree is N − 1 and

∑

vi∈V

∏

vk∈lvi,vj

ηinG (vk) = (N − 1)2 =
(N − 1)2

d
.

Assume now that the claim holds for d − 1, and consider

Gd(V, vj). In case Gd(V, vj) is of depth < d the claim

holds, otherwise, let U denote vj’s siblings in Gd(V, vj),
i.e., U = {vi|vj ∈ AdjG(vi)}. For each vi ∈ U we

define T (vi) = {vk|vi ∈ lvk,vj
}. Note that the different

Ti’s are mutually disjoint. By the inductive hypothesis, the

cost of Gd−1(T (vi), vi) is at least
(|T (vi)|−1)2

d−1 . Consider now

Gd(V, vj). It holds that the cost of Gd(V, vj) is at least

|U | ·
∑

vi∈U

(|T (vi)| − 1)2

d− 1
+ |U |2.

Since
∑

vi∈U |T (vi)| = N − 1 − |U |, it holds that
∑

vi∈U (|T (vi)| − 1)2 is minimal when all T (vi)’s are of the

same size. Hence, the cost of Gd(V, vj) is at least

|U | ·
∑

vi∈U

(N − 1− |U |)2
d− 1

+ |U |2.

This expression is minimized for |U | = N−1
d

, yielding a lower

bound of
(N−1)2

d
as required by the lemma.

Let G∗ be an optimal solution to the connectivity problem

with H-PRE costs. It holds that for each node vi ∈ V , there

exists a graph Gd(V, vi) which is a subgraph of G∗. Following

Lemma 13 it holds that the cost of each such graph is at least
(N−1)2

d
, and thus the total cost of G∗ is lower bounded by

N ·(N−1)2

d
. This concludes the proof of Theorem 14.

Theorem 15: The optimal value for the connectivity prob-

lem with H-PRE costs is O(N
3

d
).

Proof: By presenting a directed graph whose cost is at

most 3·N3

d
. First, we partition V \{v0} into sets of d

2−1 nodes,

and denote these sets by V1, V2, . . . V 2·(N−1)
d−2

. For each such set,

we construct a directed ring that includes all the nodes in the

set and v0. It holds that, for each node vi ∈ V \ {v0}, vi’s
in-degree is exactly 1. Since v0 has a single in-coming link

for each ring, its in-degree is
2·(N−1)

d−2 . First, we show that the

maximal distance between any two nodes is d. Let vi, vj ∈ V
denote two nodes. In case vi, vj ∈ Vl for some l, or one of

the nodes is v0, it holds that both nodes are on the same ring,

hence the maximal distance between them is d
2 . Otherwise, it

holds that v0 is reachable from vi within d
2 hops, and vj is

reachable from v0 within d
2 hops. Finally, we evaluate the cost

of the constructed graph. Note that each path goes through v0
at most once, hence the cost of each path is ≤ 2·(N−1)

d−2 . Thus,

the total cost of the graph is ≤ N2 · 2·(N−1)
d−2 .

Theorem 16: For any d < N − 1, the connectivity game

with H-PRE costs has a unique Nash equilibrium configura-

tion, which is the directed clique graph.

Proof: By showing, through the next lemma, that no other

directed graph can be at Nash equilibrium.

Lemma 14: Let s be a strategy profile, and let G be the

directed graph induced by s. Assume that there exists a pair

of nodes vi, vj ∈ V for which
∏

vk∈lvi,vj
ηinG (vk) > 2 and,

in addition, either (i)
∏

vk∈lvi,vj \{vj}
ηinG (vk) > 2 or (ii)

∏

vk∈lvi,vj \{vj}
ηinG (vk) = 2 and ηinG (vj) ≥ 2 (i.e., either

the product of in-degrees on the path connecting vi to vj ,

excluding vj , is more than 2, or it is exactly 2 and vj’s in-

degree is at least 2). Then, s is not at Nash equilibrium for

the connectivity game with H-PRE costs.

Proof: Let s be a strategy profile as described in the

claim above, and let G be the directed graph induced by it.

We assume that vj is a leaf in vi’s routing tree (i.e., vi does

not use vj as a relay in any other path); otherwise, there exists

another node vk that conforms to the same conditions and is

a leaf in vi’s routing tree. We show that vi can unilaterally

reduce its cost by adding a link connecting it to vj . Let s′

denote a strategy profile identical to s with the addition of

a link connecting vi to vj , and let G′ be the directed graph

induced by s′.

cs′(vi) =
∑

vk∈V

∏

vm∈lvi,vk

ηinG′(vm) =
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cs(vi)−
∏

vm∈lvi,vj

ηinG (vm) +
(

ηinG (vj) + 1
)

.

It holds that vi reduces its cost only if
∏

vm∈lvi,vj

ηinG (vm)−
(

ηinG (vj) + 1
)

> 0.

Hence,
∏

vm∈lvi,vj

ηinG (vm)−
(

ηinG (vj) + 1
)

=

∏

vm∈lvi,vj \{vj}

ηinG (vm) · ηinG (vj)−
(

ηinG (vj) + 1
)

which is greater than 0 when

∏

vm∈lvi,vj \{vj}

ηinG (vm) >
ηinG (vj) + 1

ηinG (vj)
.

By assumption, either
∏

vk∈lvi,vj \{vj}
ηinG (vk) > 2 in which

case the inequality holds since

ηinG (vj) + 1

ηinG (vj)
≤ 2,

or
∏

vk∈lvi,vj \{vj}
ηinG (vk) = 2 in which case the inequality

holds since
ηinG (vj) + 1

ηinG (vj)
< 2

(following our assumption that ηinG (vj) ≥ 2). This concludes

the proof of Lemma 14.

Next, we show that, in any directed well-connected graph

G such that, for each pair of nodes vi, vj , there exists a path

connecting vi to vj that is d hops or less, where d < |V | − 1,

there exists a pair of nodes that adhere to the conditions of

Lemma 14.

Lemma 15: Let G be a directed well-connected graph such

that, for each pair of nodes vi, vj , there exists a path connect-

ing vi to vj that is d hops or less, where d < |V | − 1. Then,

one of the following holds:

• there is at least one relay node vk such that ηinG (vk) > 2;

or

• there are at least two relay nodes vk, vm such that

ηinG (vk) ≥ 2 and ηinG (vm) ≥ 2.

Proof: Assume, by negation, that the claim is wrong. It

holds that there exists a directed graph G, such that G is well

connected and for each pair of nodes, vi, vj , there exists a path

in G connecting vi to vj which is d hops or less, d < |V |−1.

In addition, either every node in G has an in-degree of 1, or it

holds that G includes a single node v0 such that ηinG (v0) = 2
whereas for any other node vi, ηinG (vi) = 1. In the former

case, it is clear that G is a ring, and therefore there exist pairs

of nodes vi, vj such that the shortest path connecting vi to vj
is |V | − 1 hops long, contradicting our assumption.

In the latter case, it holds that G is a “figure-8” graph, such

as the one depicted in Figure 5. Note that the different parts of

the graph may be of various size, i.e., it may be that vb ≡ vz ,

and/or v0 ≡ va. Consider the shortest path connecting vb to vy .

Fig. 5. A “figure-8” graph

Fig. 6. well connected graphs including relays with in-degrees eqal to 2.

It is clear that this path is |V | − 1 hops long, in contradiction

to our assumption. This concludes the proof of Lemma 15.

Note, however, that Lemma 15 is not enough to complete

the proof of Theorem 16, since in the case of relay nodes with

an in-degree of at least 2 we must prove the existence of a

path in G that uses at least two such nodes (one of which may

be the end node). Since the case of relay nodes with an in-

degree strictly larger than 2 has been covered by Lemma 14,

we need to address only the case of relay nodes whose in-

degree is precisely 2.

Lemma 16: Let G be directed well-connected graph such

that for each pair of nodes, vi, vj , there exists a path connect-

ing vi to vj which is d hops or less, d < |V | − 1, and, in

addition, G includes at least two nodes whose in-degree is 2.

Then, there is a path in G that uses at least two relay nodes

whose in-degree is 2 (one of which may be the end node).

Proof: Assume, by negation, that the claim is wrong. Let

vi, vj be two nodes whose in-degree is 2. We consider three

cases. The first and second cases are that either vi /∈ AdjG(vj)
or vj /∈ AdjG(vi), as depicted in Figure 6(a) and Figure 6(b).

In the first case, the two nodes that have links to vi (va, vb in

the figure) must have paths to vj that go through nodes with an

in-degree of 1. Hence, when we consider the path connecting

vi to vj we need to create an additional relay along one of

these paths, contradicting our assumption. In the second case,
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the path connecting vb to vj goes through va; this example

yields a contradiction in a similar manner (from the need to

connect vc to vi without going through vj). Finally, the third

case is one in which vi ∈ AdjG(vj) and vj ∈ AdjG(vi),
depicted in Figure 6(c). Using the same reasoning as above

(from the need to connect vi to vb and vj to va), a similar

contradiction is obtained.

Theorem 16 follows from Lemmas 14, 15 and 16.

Corollary 7: The price of anarchy for the connectivity

game with H-PRE costs is Θ(d).

IX. RELAYING EXTENT (BOTTLENECK) AND DELAY

In this section we analyze the combination of relaying extent

in its bottleneck form (i.e., BRE costs) with delay. As in

Section VIII, we restrict players from using routing paths

longer than d hops by entailing them with an infinite cost

in case such paths are used. Formally, the cost in this model

is defined as:

c(vi) = max
vk∈V

max
vj∈lvi,vk

ηinG (vk),

however, in case node vi fails to connect to one (or more) of

the nodes in the network, or if one (or more) of its routing

paths are more than d hops long, its cost is infinite (i.e.,

c(vi) = ∞). We term this cost structure as H-BRE (Hop-

constrained BRE) costs, while the resulting game is termed

the connectivity game with H-BRE costs.

As in Section VII, the social welfare in this game, C(G), is

the bottleneck of the entire configuration; formally, C(G) =
maxvi∈V c(vi).

In the following, we obtain the following results. First,

we establish upper and lower bounds on the solution of

the systemwide (i.e., social) optimization problem (Theorems

17-19). In particular, we show that, if the restriction d on

the number of hops is loose, namely d = θ(N), then the

value of the solution is small, namely the bottleneck in-

degree is θ(1) (Corollary 8). With these bounds at hand,

we proceed to characterize the properties of the game. First,

we characterize sufficient conditions for a topology to be at

Nash equilibrium (Theorem 20). This allows us to show that

a Nash equilibrium exists, and, moreover, there is one that

is systemwide optimal (Theorem 21). On the other hand, we

show that the clique configuration is the worst possible Nash

equilibrium (Corollary 9), which implies a very large price of

anarchy (Theorems 22-23).

Theorem 17: The optimal value for the connectivity prob-

lem with H-BRE costs is upper bounded by 2·N
d

.

Proof: By showing a configuration with a maximal in-

degree of
2·(N−1)

d−1 . First, we partition V \{v0} into sets of d−1
nodes, denote these groups by V1, V2, . . . VN−1

d−1
. Next, for each

set, we construct a doubly-linked ring including all the nodes

in the set and v0. It holds that for each node vi ∈ V \{v0}, vi’s
in-degree is exactly 2. Since v0 has two in-coming links on

each ring, its in-degree is
2·(N−1)

d−1 . Finally, we show that the

maximal distance between any two nodes is d. Let vi, vj ∈ V
denote two nodes. We show that the maximal distance from vi
to vj is d. In case vi, vj ∈ Vl for some l, or one of the nodes

is v0, it holds that both nodes are on the same ring, hence the

maximal distance between them is d
2 . Otherwise, it holds that

v0 is reachable from vi within d
2 hops, and vj is reachable

from v0 within d
2 hops, and the claim follows.

Theorem 18: For any d larger than log(N), the optimal

value for the connectivity problem with H-BRE costs is upper

bounded by min{ 2·N
d
, log(N)}.

Proof: First, we note that the upper bound of 2·N
d

proven

in Theorem 17 holds for any value of d. Next, we note that

if we arrange the nodes in a chord-skip-list structure [30],

where each node vi is connected to all nodes vj such that

j = (i+ 2k)%N (where % denotes the modulo operator) for

some 0 ≤ k ≤ log(N), the distance between any two nodes

will be at most log(N), and the in-degree of each node will

be log(N).

Theorem 19: The optimal value for the connectivity prob-

lem with H-BRE costs is lower bounded by N
1
d ≡ 2

1
d
·log(N).

Proof: Let η∗ denote the optimal in-degree value. It holds

that at most η∗ nodes can reach v0 within a single hop. In

general, at most
∑l

i=0(η∗)i nodes can reach v0 within l hops.

Therefore, since all nodes must be able to reach v0 within d
hops, it holds that N ≤∑d

i=0(η∗)i ≤ η∗d, which means that

η∗ ≥ N
1
d , and the claim follows.

Corollary 8: In case d ∈ θ(N), the bounds defined in

Theorems 17 and 19 are asymptotically tight, i.e., the optimal

solution has θ(1) in-degree.

Theorem 20: Let s be a strategy profile for the connectivity

problem with H-BRE costs, and let G be the directed graph in-

duced by s. If ∀vi, vj ∈ V ηinG (vi) = ηinG (vj) and dG(vi, vj) ≤
d, then s is at Nash equilibrium.

Proof: Let s be a strategy profile such that for each

player vi, η
in
G (vi) = η̂ for some 1 ≤ η̂ ≤ N−1, that is, all in-

degrees in the induced graph are the same (a ring, a clique, and

a chord-skip-list are examples of such graphs), and, ∀vi, vj ∈
V, dG(vi, vj) ≤ d. Assume, by negation, that s is not at Nash

equilibrium. Then, there exists some player vi, such that vi
can unilaterally reduce its cost. vi can do this in either one

out of three ways: removing existing links; adding new links;

and replacing links (i.e., removing some links, and adding

others). Recall that vi’s cost is maxvj∈V,vj 6=vi
ηinG (vj) = η̂.

It holds that if vi adds any new links, connecting it to, say,

vj , it increases vj’s in-degree to η̂ + 1, increasing vi’s cost

to η̂+ 1 thus contradicting the best response move definition.

It remains to be shown that vi cannot improve its cost by

removing links. Note that vi must keep at least one of its out-

going links in order to be connected. Assume that vi keeps

its link connecting it to, say, vj . It holds that vj’s in-degree

remains unchanged, and therefore, vi’s cost does not change,

in contradiction to our assumption.

Theorem 21: The connectivity game with H-BRE costs

admits a Nash equilibrium; moreover, its price of stability is

1.

Proof: By showing that there exists a strategy profile

s which is at Nash equilibrium, and that the directed graph

induced by it, G, is optimal. Let G′ denote an optimal solution

for the connectivity problem with H-BRE costs. Let s′ be a

strategy profile such that G′ is induced by s′. Let η∗ denote
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the maximal in-degree in G′, i.e.,

η∗ = max
vi∈V

ηinG′(vi).

It holds that C(G′) = η∗. In addition, it holds that ∀vi, vj ∈
V, dG′(vi, vj) ≤ d. We construct a new strategy profile, s in

the following manner: starting with s′, we add links connecting

arbitrary nodes to nodes that have in-degree smaller than η∗.

We continue to add links until all nodes have an in-degree

of η∗. Let G be the graph induced by s. It holds that in s,

∀vi, vj ∈ V, ηinG (vi) = ηinG (vj) = η∗ and dG(vi, vj) ≤ d, and,

in addition, C(G) = maxvi∈V ηinG (vi) = η∗. And so, it holds

that s satisfies the conditions of Theorem 20, while its social

welfare is optimal, and the claim follows.

Corollary 9: The clique configuration, i.e.,

∀vi ∈ V,Adj(vi) = V , is a Nash equilibrium configuration for

the connectivity problem for which ∀vi ∈ V, c(vi) = N − 1.

Since any node’s in-degree in upper bounded by N − 1,

it holds that the clique configuration is the worst Nash

equilibrium configuration.

Theorem 22: The price of anarchy for the connectivity

game with H-BRE costs is O(N1− 1
d ).

Proof: The correctness of the theorem follows directly

from Theorem 19 and Corollary 9.

Theorem 23: The price of anarchy for the connectivity

game with H-BRE costs is Ω(d).
Proof: The correctness of the theorem follows directly

from Theorem 17 and Corollary 9.

Corollary 10: If d is larger than log(N), then the price

of anarchy for the connectivity game with H-BRE costs is

Ω(max{d, N
log(N)}).

X. RELAYING EXTENT AND LINK COSTS

In this section we discuss a combination of two design

considerations, namely relaying extent and link establishment

costs. That is, each player vi is entailed with both the total

price of the links it chooses to establish, as well as the relaying

extent along the paths it uses. Formally, the cost of each node

vi is defined as

c(vi) = α ·
∑

vj∈AdjG(vi)

W (vi, vj) +
∑

vj∈V

RG(lvi,vj
),

where α is a parameter quantifying the relative importance

of the relaying extent component in comparison with the

link establishment price component, and R(lvi,vj
) denotes the

relaying extent along the shortest path connecting vi to vj
in G, which may reflect either the product or the bottleneck

forms of the relaying extent (RE). As before, in case node vi
fails to connect to one (or more) of the nodes in the network,

its cost is infinite (i.e., c(vi) = ∞). We term the respective

game as the connectivity game with price-RE costs.

Lemma 17: In the connectivity game with price-RE costs,

every directed ring topology is at Nash equilibrium.

Proof: The proof is identical to that of Lemma 5.

In the proof of the next Theorem, we make use of the nota-

tions defined in Section IV, namely, W i
min denotes player i’s

minimal connectivity cost, W i
max denotes player i’s maximal

connectivity cost, and Wmin and Wmax denote the game’s

minimal and maximal connectivity prices, respectively.

Lemma 18: The price of anarchy for the connectivity game

with price-RE costs is Ω(Wmax+N
Wmin+N

).
Proof: The proof follows the same lines as that of

Lemma 4. Specifically, consider the network setup (partly)

depicted in Figure 1. In this network, the price of the link

connecting vi to vi−1 is Wmin, while all other link prices are

Wmax.

In case each node vi chooses to establish a single link to

vi−1, the resulting topology Gmin is a directed ring topology,

thus, following Lemma 17, it is at Nash equilibrium. In

addition, we note that the cost of this topology is C(Gmin) =
N · (Wmin +N) (which is optimal). Next, we consider the

case in which each node vi chooses to establish a single link to

vi+1, the resulting topology Gmax is a directed ring topology,

thus, following Lemma 17, it is at Nash equilibrium. The cost

of this topology is C(Gmax) = N · (Wmax +N), yielding a

lower bound on the price of anarchy of Ω(Wmax+N
Wmin+N

).
This completes the proof of Lemma 18.

Finally, we show that, in the case of homogeneous link

costs, i.e., (vi, vj) = w for every pair of players vi and vj ,

and for some non-negative cost w, the price of stability is 1.

Theorem 24: The price of stability for the connectivity

game with homogeneous price-RE costs is 1.

Proof: We consider (any) directed ring. The cost for

every player vi is

c(vi)α · w + (N − 1).

We note that this cost is minimum, as each player must

establish at least one out-going edge, and, in addition, the

bottleneck on the path to every other player is at least 1.

Therefore, in the case of homogeneous link costs, every

directed ring is optimal. By Lemma 17, it is also at Nash

equilibrium, and the theorem follows.

XI. CONCLUSION

We considered three major topology design considerations,

namely the price of establishing a link, path delay and the

relaying extent, the latter being a measure of the potential

congestion along a path. To our knowledge, this is the first

work that studies the game-theoretic aspects of these problems.

We established that, while all but one of the considered games

are guaranteed to have a Nash equilibrium point, their price of

anarchy is potentially large. We also indicated that the price

of stability is typically 1; hence, often optimal (networkwide)

performance is achievable by just being able to impose the

initial configuration on the players.

Several issues merit further research. First, we note that,

even when the price of stability is 1, computing the actual

initial configuration may be computationally hard. Therefore,

the computational tractability of the basic system optimiza-

tion variants of the problems considered in this paper is an

intriguing question. In addition, the question of designing

mechanisms to induce cooperation among the network nodes

without enforcing an initial configuration is an interesting one.

Moreover, as one of the considered games fails to admit a
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Nash equilibrium, it is important to investigate how the system

behavior can be characterized in such cases; another related

question is whether a Nash equilibrium (and its implied stabil-

ity) could be obtained in such cases through the intervention

of a central (“social”) agent.

While the present study provides important insight for

the above considerations, several extensions of the model

assumptions are of interest. Examples of such assumptions

are the rather simple cost structures and the complete topo-

logical information available to each user. Finally, while this

study focused on stationary networks, future research should

investigate the impact of nodal mobility in wireless settings,

that is, a case where nodes may move around and thus the

cost of links would change dynamically.
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