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Abstract. In the traditional setting of routing games, the standard assumption
is that selfish agents are unconcerned with the performance of their competitors
in the network. We propose an extension to this setting by modeling agents to
consider a combination of their own performance as well as that of their rivals.
Per agent, we parameterize this trade-off, thereby allowing agents to be partially
selfish and partially malicious.
We consider two types of routing games based on the structure of the agents’
performance objectives, namely bottleneck routing games and additive routing
games. For bottleneck routing games, the performance of an agent is determined
by its worst-case link performance, and for additive routing games, performance
is determined by the sum of its link performances. For the bottleneck routing
scenario we establish the existence of a Nash equilibrium and show that the Price
of Stability is equal to 1. We also prove that the Price of Anarchy is unbounded.
For additive routing games, we focus on the fundamental load balancing game
of routing over parallel links. For an interesting class of agents, we prove the
existence of a Nash equilibrium. Specifically, we establish that a special case
of the Wardrop equilibrium is likewise a Nash equilibrium. Moreover, when the
system consists of two agents, this Nash equilibrium is unique, and for the general
case of N agents, we present an example of its non-uniqueness.

1 Introduction

To date, game theoretic models have been employed in virtually all networking con-
texts. These include control tasks at the network layer, such as flow control (e.g., [16]),
and routing (e.g., [1,5,18,20,24,25] and references therein), as well as numerous stud-
ies on control tasks at the link and MAC layers. A fundamental assumption in all of
these referenced studies is that the selfish agents compete over resources in the net-
work and aim to optimize their own performance; agents do not care (either way) about
the performance of their competitors. However, and typically in the context of routing,
scenarios exist in which this assumption is not warranted.

For example, consider the scenario where two Content Providers, A and B, offer
video-on-demand services in a network. Both A and B compete over the network re-
sources, however only Content Provider A aspires to minimize its own latency. Due to
business considerations, Content Provider B aims at offering its clients a performance
that is equal or better than A’s performance. Thus, the objective of B is not solely to
maximize its performance.

In light of examples like the one above, previous research in routing games has
extended the classical model of “performance-maximizing” or “selfish” agents, and



focused on different scenarios, e.g., settings where certain agents may act maliciously
towards other agents [4, 7, 22]. Such malicious behavior could be due to a range of
reasons, e.g., hackers or rivaling companies that aim to degrade network quality. In
contrast, other studies in routing games consider agents to have an altruistic component
to their objective [3, 9, 15].

In order to best model real-life scenarios, each agent’s objective should lie some-
where in the range between malicious, selfish and altruistic, as depicted in Figure 1.
This direction has been proposed in [11], where each agent i has a parameter that cap-
tures how important the social performance is to i. In this setting, a malicious agent
aims to minimize the social performance, an altruistic agent aims to maximize it and a
selfish agent does not take the social performance into account at all. However, [11] fo-
cuses on a non-atomic game, i.e., a game with an infinite amount of agents, where each
agent controls a negligible amount of flow. Following a similar course, in [3, 9, 10, 15],
agents are of finite size, and their objectives are parameterized to lie somewhere be-
tween selfish and altruistic, yet malicious objectives are not taken into account.

In this study, we intend to investigate agents of finite size whose objectives lie in the
range between malicious and selfish. Per agent i, we parameterize this trade-off through
a coefficient αi ∈ [0, 1], where αi = 1 corresponds to a selfish agent and αi = 0 to a
malicious agent. However, unlike [11], we represent agent i’s cost as a combination of
its own performance and that of its rival. We define the rival of an agent i as the agent
j 6= i with the current best performance in the system. Note that an agent’s rival is not
fixed, but is dependent on the current performance of all the agents in the system. In our
setting, a totally malicious agent aims to minimize the performance of its rival, while a
totally selfish agent does not take its rival’s performance into account.

Malicious Selfish Altruistic

Fig. 1. The range of agents’ objectives.

We consider two types of routing games based on the structure of the agents’ per-
formance objectives. The first game considers agents with bottleneck objectives (also
known as Max-Min or Min-Max objectives), i.e., their performance is determined by
the worst component (link) in the network [5,8,12]. Bottleneck routing games have been
shown to emerge in many practical scenarios. For example, in wireless networks, the
weakest link in a transmission is determined by the node with the least remaining bat-
tery power. Hence, each agent would route traffic so as to maximize the smallest battery
lifetime along its routing topology. Additionally, bottleneck routing games arise in con-
gested networks where it is desirable to move traffic away from congested hot spots. For
further discussion and additional examples see [5]. The second type of game considers
agents with additive performance measures, e.g., delay or packet loss. Much of the cur-
rent literature on networking games has focused on such games, e.g., [1,14,17–20,25],
albeit in the traditional setting of selfish agents.
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In [5] and [20], the existence of a Nash equilibrium has been established respec-
tively, for bottleneck and additive routing games with selfish agents. We note that a
major complication in proving the existence of a Nash equilibrium for agents with a
malicious component, i.e, αi < 1, is the inherent lack of convexity of the objective
functions. Thus, we cannot rely on the proofs of existence from the referenced works,
and need to establish proofs of our own that do not require (quasi-)convexity of the
performance functions.

For both types of games, many studies have attempted to bound the Price of An-
archy (PoA) [17] and the Price of Stability (PoS) [2]. The PoA and PoS quantify the
deficiency of the network from a social perspective, at respectively, the worst and best
Nash equilibrium. Due to the ever-growing work in this context, it is beyond the scope
of this writing to do justice and present an exhaustive survey of previous work on rout-
ing games with selfish agents. We refer the reader to the above cited papers and to the
references therein for a broader review of the literature.

1.1 Our Contribution

We focus our study on the atomic splittable routing model [5, 20], in which each agent
sends its non-negligible demand to its destination by splitting it over a set of paths
in the network. All agents share the same source and destination, and each agent i
has a coefficient αi, which captures the importance of its rival’s performance. We first
consider agents with bottleneck performance measures, and for which αi ∈ [1/2, 1].
Intuitively, this range of αi implies that they care more about their own performance
than that of their rivals’. We prove that the Price of Stability is equal to 1, i.e., there
always exists a system optimal Nash equilibrium. Moreover, we establish that the Price
of Anarchy is unbounded.

We then consider agents with additive performance objectives and focus on the
fundamental load balancing game of routing over parallel links. Beyond being a basic
framework of routing, this is the generic framework of load balancing among servers in
a network. It has been the subject of numerous studies in the context of non-cooperative
networking games, e.g., [14, 17, 18, 20, 23, 26], to name a few. We consider agents that
view their own performance and that of their rivals with equal importance, i.e., for all i,
αi = 1/2. We establish the existence of a Nash equilibrium and show that the Wardrop
equilibrium (which necessarily exists and is unique [13]) is also a Nash equilibrium.
Moreover, for a system with two agents, we prove the Nash equilibrium’s uniqueness
and for the general case of N agents, we provide an example of its non-uniqueness.
Finally, we present an example of a system with agents for which αi ∈ [0, 1] and show
that for both bottleneck and additive routing games, no Nash equilibrium necessarily
exists.

2 Model and Game Theoretic Formulations

2.1 Model

We consider a setN = {1, 2, . . . , N} of selfish “users” (or, “players”, “agents”), which
share a communication network modeled by a directed graph G(V,E). We denote by
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P the set of all paths in the network. Each user i ∈ N has a traffic demand ri and all
users share a common source S and common destination T . Denote the total demand
of all the users by R, i.e., R =

∑
i∈N r

i. For every i, we denote by −i the set of all
users in the system, excluding i. A user ships its demand from S to T by splitting it
along the paths in P , i.e., user i decides what fraction of ri should be sent on through
each path. We denote by f ip, the flow that user i ∈ N sends on path p ∈ P . User i can
fix any value for f ip, as long as f ip ≥ 0 (non-negativity constraint) and

∑
p∈P f

i
p = ri

(demand constraint); this assignment of traffic to paths, f i = {f ip}p∈P shall also be
referred to as the routing strategy of user i. The (routing strategy) profile f is the vector
of all user routing strategies, f = (f1, f2, . . . , fN). We say that a profile f is feasible if
it is composed of feasible routing strategies and we denote by F the set of all feasible
profiles. Turning our attention to a path p ∈ P , let fp be the total flow on that path
i.e., fp =

∑
i∈N f

i
p; also denote by f ie the flow that i sends on link e ∈ E, i.e., f ie =∑

p|e∈p f
i
p. Similarly, the total flow on link e ∈ E is denoted by fe =

∑
i∈N f

i
e. We

associate with each link a performance function Te(·), which corresponds to the cost
per unit of flow through link e and only depends on the total flow fe. Furthermore, we
impose the following assumptions on Te(fe):

A1 Te : [0,∞)→ [0,∞].
A2 Te(fe) is continuous and strictly increasing in fe.

The performance measure of a user i ∈ N is given by a cost function Hi(f), which we
shall refer to as the selfish cost of i. In bottleneck routing games, Hi(f) corresponds to
the performance of the worst-case link, and in additive routing games it corresponds to
the sum of all link performances in the system. We define the rival of i at f , as the user
with the lowest selfish cost at f , i.e., minj 6=iH

j(f). The aim of each user is to minimize
the weighted difference between its own cost and the cost of its rival in the network.
Thus, the aim of i is to minimize

J i(f) ≡ αiHi(f)− (1− αi) min
j 6=i
{Hj(f)}. (1)

Note that J i(f) is not necessarily convex in its user flows.

2.2 Bottleneck routing cost function

Following [5], we define the bottleneck of a user i ∈ N , bi(f), as the worst performance
of any link in the network that i sends a positive amount of flow on,

bi(f) = max
e∈E|fi

e>0
Te(fe).

The selfish cost of user i is equal to its bottleneck,Hi(f) = bi(f) = maxe∈E|fi
e>0 Te(fe).

Thus, we consider users whose cost functions contain the following form,

J i(f) = αi max
e∈E|fi

e>0
{Te(fe)} − (1− αi) min

j 6=i
max

l∈E|fj
l >0
{Tl(fl)}. (2)
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In other words, user i aims to minimize the weighted difference between its bottleneck
and that of its best-off competitor. We define the bottleneck of a path p ∈ P with fp > 0
as bp(f) = maxe∈p Te(fe) and we define the bottleneck of the system as

b(f) = max
e∈E|fe>0

Te(fe).

We equate the “welfare” of the system to its bottleneck and denote by f∗ = (f∗)e∈E ,
the optimal vector of link flows. Thus, the social optimum equals b(f∗) = minf∈F b(f).

2.3 Additive routing cost functions

An important class of problems is when users are interested additive performance mea-
sures, e.g., delay or packet loss. In this case, Te may correspond to the total delay of
link e. For additive routing games, we consider the framework of routing in a “paral-
lel links” network. Thus, G(V,E) corresponds to a graph with parallel “links” (e.g.,
communication links, servers, etc.) L = {1, 2, . . . , L}, L > 1, and a users ships its
demand by splitting it over the links L. In particular, we consider users whose selfish
cost functions are of the following form:

Hi(f) =
1

ri

∑
l∈L

f il Tl(fl). (3)

Thus, Hi(f) corresponds to the average sum of the link costs. From (1) we get that

J i(f) = αi
∑
l∈L

f il
ri
Tl(fl)− (1− αi) min

j 6=i

{∑
l∈L

f jl
rj
Tl(fl)

}
. (4)

2.4 Nash Equilibrium

A profile f is said to be a Nash equilibrium if, given f−i, no user finds it beneficial to
deviate from its routing strategy f i. More formally, f is a Nash equilibrium if, for all
i ∈ N and any feasible routing strategy f̄ i 6= f i, the following condition holds

J i(f i, f−i) ≤ J i(f̄ i, f−i). (5)

In order to quantify the degradation of a Nash equilibrium, we turn towards the Price of
Anarchy [17] (the Price of Stability [2]), which is defined as the ratio between the worst
(best) Nash equilibrium, and the social optimum,

3 Bottleneck Routing Games

We start by establishing the existence of a Nash equilibrium in our bottleneck routing
game. Note that the user cost function in (2) is not continuous, as pointed out in [5].
Moreover, J i(f) is not necessarily quasi-convex in f il . Consequently, we need to con-
struct an existence proof that does not rely on the continuity or the quasi-convexity of
the cost functions. We establish the existence of a Nash equilibrium by constructing a
feasible strategy profile for all users, such that no user wishes to unilaterally deviate
from its routing strategy. We first provide the following definition.
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Definition 1. A profile, f , is referred to as balanced, if for any two paths p1, p2 ∈ P
with fp1

> 0, it holds that, bp1
(f) ≤ maxe∈p2

{Te(fe)}.
Thus, at a balanced flow profile, for any two paths p1, p2 ∈ P with positive flow, their
bottlenecks are equal, bp1

(f) = bp2
(f).

Definition 2. A profile, f , is referred to as proportional, if for any path p ∈ P , and for
any user i ∈ N , f ip = ri

R fp.

To demonstrate that a proportional profile is feasible, it needs to satisfy (i) the non-
negativity constraint and (ii) the demand constraint of all users. Consider a user i ∈ N .
It follows that f ip = ri

R fp ≥ 0, thus the non-negativity constraint is satisfied. Further-

more,
∑

p∈P f
i
p = ri

R

∑
p∈P fp = ri, thus the demand constraint is also satisfied. In

order to construct a feasible Nash equilibrium, we first establish following lemma.

Lemma 1. Consider a bottleneck routing game. Any system optimal strategy profile is
balanced.

Proof. See Appendix A.1. ut

We continue to construct a feasible profile, which is also a Nash equilibrium. Specifi-
cally, we focus on a profile that is proportional and system optimal.

Theorem 1. Consider a bottleneck routing game, where for any user i, αi ∈ [1/2, 1].
Each system optimal proportional profile is a Nash equilibrium.

Proof. Consider a system optimal, proportional profile, f . As a result of Lemma 1, f is
balanced, thus for all i ∈ N , bi(f) = b(f). Therefore, for any user i,

J i(f) = αibi(f)− (1− αi) min
j 6=i
{bj(f)} = (2αi − 1) · b(f). (6)

Assume by contradiction that f is not a Nash equilibrium. In other words, there exists
a user i, which can send its flow according to f̄ i 6= f i and by doing so, decreases its
cost. Moreover, consider the case that the cost of the bottleneck link of i’s rival, has
increased due to i’s deviation, i.e.,

min
j 6=i
{bj(f̄ i, f−i)} > min

j 6=i
{bj(f)}. (7)

Denote the bottleneck link of i’s rival at (f̄ i, f−i) as n, thus

min
j 6=i
{bj(f̄ i, f−i)} ≡ Tn(f̄ in + f−in ). (8)

Since f is balanced, from (8) it follows that,

Tn(f̄ in + f−in ) > min
j 6=i
{bj(f)} = b(f) ≥ Tn(fn). (9)

From (9) and Assumption A2 it follows that f̄ in > 0. Therefore from (6), (7) and (9),

J i(f̄ i, f−i) = αibi(f̄ i, f−i)− (1− αi) min
j 6=i
{bj(f̄ i, f−i)}

= αibi(f̄ i, f−i)− (1− αi)Tn(f̄ in + f−in )

≥ (2αi − 1)Tn(f̄ in + f−in ) ≥ (2αi − 1)b(f) = J i(f).
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The last inequality follows from (9) and from αi ∈ [1/2, 1]. Therefore, J i(f̄ i, f−i) ≥
J i(f), which is a contradiction. We now consider the case where f is not a Nash equi-
librium and

min
j 6=i
{bj(f̄ i, f−i)} ≤ min

j 6=i
{bj(f)}. (10)

Since f is system optimal, it holds that

b(f̄ i, f−i) ≥ b(f). (11)

Denote the bottleneck link of the system, at (f̄ i, f−i) as s and consider the case where
f̄ is = 0. By definition f−is > 0, otherwise s cannot be the system’s bottleneck. Since,
f−is > 0 it follows that fs > 0 and f is = ri

R fs > 0. Consequently, from (11) and
Assumption A2, Ts(f is + f−is ) > Ts(f̄

i
s + f−is ) ≥ b(f), which is a contradiction to s

being the system’s bottleneck. Therefore, f̄ is > 0 and

b(f̄ i, f−i) ≡ Ts(f̄ is + f−is ) = bi(f̄ i, f−i). (12)

Finally, from (6), (10), (11) and (12)

J i(f̄ i, f−i) = αibi(f̄ i, f−i)− (1− αi) min
j 6=i
{bj(f̄ i, f−i)}

≥ αibi(f̄ i, f−i)− (1− αi) min
j 6=i
{bj(f)}

= αib(f̄ i, f−i)− (1− αi) min
j 6=i
{bj(f)}

≥ αib(f)− (1− αi) min
j 6=i
{bj(f)} = (2αi − 1) · b(f) = J i(f),

which is a contradiction. Thus, any system optimal proportional balanced flow is a Nash
equilibrium. ut

Theorem 1 illustrates that in any bottleneck routing game where for each user i, αi ∈
[1/2, 1], there exists a Nash equilibrium. Moreover, there always exists a Nash equilib-
rium, which is system optimal1. This brings us to the following conclusion.

Corollary 1. Consider a bottleneck routing game, where for any user i, αi ∈ [1/2, 1].
The Price of Stability is equal to 1.

Even though Theorem 1 establishes the existence of desirable equilibria from a system’s
perspective, it might also happen that the selfishness of the users degrades the system
substantially. This deficiency is captured by the Price of Anarchy.

Theorem 2. Consider a bottleneck routing game, where for any user i, αi ∈ [1/2, 1].
The Price of Anarchy is unbounded.

Proof. We establish the theorem through the following example.

1 In [5] a similar theorem was proven for a more general topology. However, they only consid-
ered selfish users (i.e, ∀i, αi = 1).
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Fig. 2. Example of a network with an unbounded PoA.

Example 1. Consider the network G = (V,E) as depicted in Figure 2. Further, con-
sider two users i and j, each with a flow demand of ri = rj = R

2 and αi = αj ≡ α ∈
[1/2, 1]. For any edge e ∈ E, the cost per unit of flow is equal to Te(fe) = efe − 1.
We focus on a specific profile f , in which user i sends its total demand on a sin-
gle path, namely {S,A,B,E, F, I, J, T}, and, user j sends its demand on the path
{S,D,C, F,E,H,G, T}. The labels on the edges in Figure 2 correspond to the portion
of the total flow that transverses on that edge at f , i.e., fe/R. Thus,

J i(f) = αbi(f)− (1− α)bj(f) = (2α− 1) · (eR/2 − 1).

It is straightforward that J i(f) = Jj(f). Now assume by contradiction that f is not a
Nash equilibrium. Hence, there exists a different routing strategy for user i, f̄ i 6= f i at
which user i can decrease its cost. If i places a positive flow on either (S,D), (S,C) or
(A,G), it is immediate that bi(f̄ i, f j) = bj(f̄ i, f j) > bi(f) and J i(f̄ i, f j) > J i(f).

Thus, if iwishes to refrain from increasing its cost, it will send all its flow on (B,E)
and its bottleneck will be at least T(B,E)(

R
2 ) = eR/2−1. It follows that at (f̄ i, f j), there

cannot exist an edge on which both i and j send a positive amount of flow, otherwise i
increases its cost. Thus, the bottleneck of j stays the same. Hence,

J i(f̄ i, f j) = αbi(f̄ i, f j)− (1− α)bj(f̄ i, f j) = αbi(f̄ i, f j)− (1− α)bj(f)

≥ (2α− 1) · (eR/2 − 1) = J i(f),

which is a contradiction. Because the users i and j are symmetric, the above analysis
also holds for j. Therefore f is a Nash equilibrium. The bottleneck of the system at f is
equal to b(f) = eR/2 − 1.

On the other hand, at the system optimum, f∗, an amount of flow, R/4, is sent
through the following four paths: 1: {S,A,G, T}, 2: {S,B,E,H, T}, 3: {S,C, F, I, T},
4: {S,D, J, T}. The system bottleneck at f∗ is equal to b(f∗) = eR/4 − 1. As a result,
the Price of Anarchy in our example is lower bounded by

PoA =
eR/2 − 1

eR/4 − 1
≥ eR/2 − 1

eR/4
= eR/4 − 1

eR/4
≥ eR/4 − 1.

Since R can be any positive number, the PoA is unbounded. ut
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4 Additive Routing Games

In this section we consider additive performance measures, such as delay, jitter and
packet loss. Similar to bottleneck routing games, we first need to prove the existence of
a Nash equilibrium. As mentioned in Section 3, due to the lack of quasi-convexity we
cannot rely on well-known existence proofs for convex-games, such as the one given
in [21]. We establish the existence of a Nash equilibrium by constructing a feasible
strategy profile for all users, such that no user wishes to unilaterally deviate from its
routing strategy. Moreover, we consider the specific case where for all i ∈ N , αi =
1/2.2 In other words, each user views its own performance and that of its rival, with
equal importance. From (3), the cost of user i turns into

J i(f) =
∑
l∈L

f il
ri
Tl(fl)−min

j 6=i

{∑
l∈L

f jl
rj
Tl(fl)

}
. (13)

Note that we disregard αi ≡ α = 1/2 from our equilibrium analysis, since it multiplies
all users’ costs by the same constant. We now bring the following definition from [27].

Definition 3. A profile, f , is a Wardrop equilibrium if for any two links l, n ∈ L with
fl > 0, Tl(fl) ≤ Tn(fn).

In any additive routing game, there exists a Wardrop equilibrium. Moreover, it is unique
with respect to the aggregated link flows fl, [13, 27]. We focus on a specific Wardrop
equilibrium, which is also proportional in the sense of Definition 2. Hence, it is also
unique with respect to the individual user flows.

Theorem 3. Consider an additive routing game as described in Section 2, where for
all users i, αi = 1/2. There exists a Nash equilibrium. In particular, it is equal to the
proportional Wardrop equilibrium.

Proof. We consider the unique proportional Wardrop equilibrium, f , and prove that no
user wishes to unilaterally deviate from f . Assume by contradiction that f is not a Nash
equilibrium. Hence, there exists a user i and a routing strategy , f̄ i 6= f i such that
J i(f̄ i, f−i) < J i(f). We split the set of links L, into three subsets: L+ = {l ∈ L|f̄ il >
f il }, L− = {l ∈ L|f̄ il < f il } and L0 = {l ∈ L|f̄ il = f il }. Since f̄ i 6= f i, it follows that
L+ and L− are not empty. For any link l ∈ L+, denote εl ≡ f̄ il − f il and for any link
l ∈ L−, denote δl ≡ f il − f̄ il . Since ri is constant, the differences in L+ and L− are
equal and

∑
l∈L+ εl =

∑
l∈L− δl.

Because f is a proportional profile, it holds that for any two users i, k ∈ N and for
any link l ∈ L, f il /r

i = fkl /r
k. Thus, for any link l ∈ L0 and any user k ∈ N ,[
f̄ il
ri
− fkl
rk

]
=

[
f il
ri
− fkl
rk

]
= 0. (14)

2 An existence and uniqueness proof for selfish users is given in [20].
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Equation (14) holds for any k ∈ N , hence also for i’s rival at (f̄ i, f−i). Denote i’s rival
at (f̄ i, f−i) as j. Combining (14) with (13), we get

J i(f̄ i, f−i) =
∑
l∈L+

[
f̄ il
ri
−
f jl
rj

]
Tl(f̄

i
l + f−il ) +

∑
l∈L−

[
f̄ il
ri
−
f jl
rj

]
Tl(f̄

i
l + f−il )

+
∑
l∈L0

[
f̄ il
ri
−
f jl
rj

]
Tl(f̄

i
l + f−il ) (15)

=
∑
l∈L+

[
f il + εl
ri

−
f jl
rj

]
Tl(fl + εl) +

∑
l∈L−

[
f il − δl
ri

−
f jl
rj

]
Tl(fl − δl)

=
∑
l∈L+

εl
ri
Tl(fl + εl)−

∑
l∈L−

δl
ri
Tl(fl − δl) >

∑
l∈L+

εl
ri
Tl(fl)−

∑
l∈L−

δl
ri
Tl(fl).

The last inequality follows from Assumption A2. Since f is a Wardrop equilibrium, we
make two observations, namely
(1): ∀l ∈ L−, δl > 0, thus fl > 0. Therefore, from Definition 3, for any two links
l, n ∈ L−, Tl(fl) = Tn(fn).
(2): From Definition 3 it follows that for any link l ∈ L+ and any link n ∈ L−,
Tl(fl) ≥ Tn(fn).

Consider a link e ∈ L−. Consequently, equation (15) turns into

J i(f̄ i, f−i) >
∑
l∈L+

εl
ri
Te(fe)−

∑
l∈L−

δl
ri
Te(fe) =

1

ri
Te(fe) ·

[∑
l∈L+

εl −
∑
l∈L−

δl

]
= 0.

On the other hand, because f is proportional, it follows from (13) that

J i(f) =
∑
l∈L

f il
ri
Tl(fl)−min

k 6=i
{
∑
l∈L

fkl
rk
Tl(fl)} =

∑
l∈L

f il
ri
Tl(fl)−

∑
l∈L

f il
ri
Tl(fl) = 0.

Thus, J i(f̄ i, f−i) > J i(f), which is a contradiction. Hence, f is a Nash equilibrium.

Now that we have proven the existence of a Nash equilibrium, we continue to investigate
its uniqueness. We focus on a special case in which the network has two users, i.e.,N =
2, and we denote these two users as i and j. It follows from (13) that Jj(f) = −J i(f).
In order to prove the Nash equilibrium’s uniqueness, we use of the following lemma.

Lemma 2. Consider an additive routing game as described in Section 2, where N = 2
and αi = αj = 1/2. At any Nash equilibrium f , J i(f) = Jj(f) = 0.

Proof. See Appendix A.2.

We are now ready to prove our theorem.

Theorem 4. For N = 2, the proportional Wardrop equilibrium is the unique Nash
equilibrium, i.e., the Nash equilibrium is unique in the users’ individual flows.
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Proof. See Appendix A.3.

An immediate consequence of Theorem 4 is that, the PoA of two-user systems is
bounded by well-known bounds on the Wardrop equilibrium, e.g., see [19, 25].

Although Theorem 4 holds for a network with two users, in the general case of N -
players, it does not hold. Indeed, in Appendix A.4 we provide an example of a network
with N users and multiple Nash equilibria. Finally, in Appendix A.5, we provide an
example of a network with users for which αi ∈ [0, 1], in which no Nash equilibrium
exists for either bottleneck routing games or additive routing games.

5 Conclusions

In this study we investigated routing games where the cost of each agent is represented
as a combination of its own performance and that of its rival. We established the ex-
istence of Nash equilibria in games with bottleneck performance measures and games
with additive performance measures. For bottleneck routing games and agents with
αi ∈ [1/2, 1], namely, games where agents care more about their own performance
than that of their rivals’, we established that the Price of Stability is equal to 1, i.e.,
a system optimal Nash equilibrium always exists. Moreover, we provide an example
in which the Price of Anarchy is unbounded. For additive routing games, we focused
on the fundamental load balancing game of routing over parallel links and on agents
with αi = 1/2, namely, games where agents view their own performance and that of
their rivals with equal importance. We proved that the proportional Wardrop equilibrium
(which exists and is unique) is also a Nash equilibrium. Moreover, for a two-player sys-
tem, we established the uniqueness of the Nash equilibrium. In this case, the PoA can
be bounded by well-known bounds on the Wardrop equilibrium. We also provided an
example of the non-uniqueness of the Nash equilibrium for a system with N -players,
and an example of its non-existence for agents with αi ∈ [0, 1]. In future research, it
would be interesting to consider networks with multiple sources and destination pairs.
Lastly, establishing the existence of a Nash equilibrium for additive games and agents
with αi ∈ [1/2, 1], remains an open problem.
Acknowledgments: This research was supported by the European Union through the
CONGAS project (http://www.congasproject. eu/) in the 7th Framework Programme.
Gideon Blocq is supported by the Google Europe Fellowship in Computer Networking.
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A Appendix

A.1 Proof of Lemma 1
Proof. Consider a system optimal profile f∗. Let the set Pf∗ contain all paths with
positive flow, whose bottlenecks are equal to the bottleneck of the system. Thus, for

12



any path p ∈ Pf∗ ,
bp(f∗) = b(f∗).

Now assume by contradiction that the system optimal strategy profile f∗ is not balanced.
Therefore, the set P\Pf∗ is not empty, and for all q ∈ P\Pf∗ and all p ∈ Pf∗ ,

bp(f∗) > bq(f∗). (16)

Consider a path q ∈ P\Pf∗ . We construct a different feasible routing strategy f by
sending a small amount of flow, ε > 0 from all the paths in Pf∗ to path q. Specifically,
for all p ∈ Pf∗ , fp = f∗p − ε, fq = f∗q + |P̄| · ε, for some small ε > 0, and for all other
paths, p ∈ P\{Pf∗ ∪ q}, fp = f∗p . If we consider a small enough ε, it follows from
the strict inequality of (16) that for all q ∈ P\Pf∗ and for all p ∈ Pf∗

bp(f∗) > bp(f) > bq(f) > bq(f∗). (17)

In other words, for a small enough ε,

b(f∗) > b(f). (18)

By constructing a new routing strategy f we are able to lower the bottleneck of the
system, which is a contradiction to the optimality of f∗.

A.2 Proof of Lemma 2

Proof. Assume by contradiction that J i(f) > 0. Consider a different routing strategy
f̄ i in which for any link l ∈ L, i sends its flow according

f̄ il =
ri

rj
f jl .

f̄ i is a feasible routing strategy for i, since (1) ∀l ∈ L, f̄ il ≥ 0 and (2)
∑

l∈L f̄
i
l =∑

l∈L
ri

rj f
j
l = ri. Moreover, from (13) it follows that J i(f̄) = 0, which contradicts

the fact that f is a Nash equilibrium. Thus, at any Nash equilibrium f , Jk(f) ≤ 0, for
k = i, j.

Now assume by contradiction that J i(f) < 0. Thus, Jj(f) > 0, which is a contra-
diction. ut

A.3 Proof of Theorem 4

Proof. Denote the proportional Wardrop equilibrium as f̂ and assume by contradiction
that there exists another Nash equilibrium f 6= f̂ . From Lemma 2 it follows that J i(f) =
Jj(f) = 0. Consider a new routing strategy for user i, f̄ i 6= f i. At f̄ i, user i sends its
flow according f̄ il = ri

rj f
j
l for any l ∈ L. In Lemma 2, f̄ i is shown to be feasible.

Furthermore, from (13) and Lemma 2, it follows that J i(f̄ i, f j) = J i(f i, f j) = 0, hence
i does not increase its cost by changing its strategy to f̄ i. At the new routing strategy
profile (̄f i, f j), either one of the two cases holds:
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Case 1: (̄f i, f j) is not a Wardrop equilibrium.
Case 2: (̄f i, f j) is a Wardrop equilibrium.

Consider Case 1. There must exist two links, l, n ∈ L such that fl > 0 and Tl(fl) >
Tn(fn). We construct a new strategy for i, at which i sends a small amount of flow,
ε > 0, from link l to n. Denote this new strategy as f̃ i. At (̃f i, f j), i’s cost equals:

J i(f̃ i, f j) =

[
f̄ il − ε
ri

−
f jl
rj

]
Tl(fl − ε) (19)

+

[
f̄ in + ε

ri
− f jn
rj

]
Tn(fn + ε)

+
∑

e∈L\{l,n}

[
f̄ ie
ri
− f je
rj

]
Te(fe)

Thus, (19) turns into:

J i(f̃ i, f j) =
ε

ri
[Tn(fn + ε)− Tl(fl − ε)] , (20)

which is negative for a small enough ε. Hence, we constructed a feasible strategy in
which user i decreases its cost, which is a contradiction to f being a Nash equilibrium.

Now consider Case 2. It follows that (f̄ i, f j) is the unique proportional Wardrop
equilibrium. However, in Theorem 3 it is proven that any unilateral deviation of user i
from the proportional Wardrop equilibrium causes a strict increase in cost to user i. In
other words,

J i(f̂ i, f̂ j) = J i(f̄ i, f j) < J i(f i, f j),

which is a contradiction.

A.4 Example with multiple Nash equilibria in additive routing games.

Example 2. Consider a network with four users i, j, k, h and with two parallel links,
for which T1(f1) = f1, T2(f2) = f2. The demand of each individual user is equal to
1. Consider the profile, f , at which f i2 = f j2 = fk1 = fh1 = 1 and f i1 = f j1 = fk2 =
fh2 = 0. It is clear that Hz(f) = 2 for z = i, j, k, h. Thus, Jz(f) = 2 − 2 = 0 for
z = i, j, k, h.

Now consider user i and a different profile f̄ = (f̄ i, f−i), in which i sends an amount
of 0 < ε ≤ 1 to link 1. It follows that Hi(f̄) = ε(2+ ε)+(1− ε)(2− ε), Hj(f̄) = 2− ε
and Hk(f̄) = Hh(f̄) = 2 + ε. Thus,

J i(f̄) = Hi(f̄)−Hj(f̄) = 2ε2 > 0.

Thus i increases its cost at f̄ i. Since the example is symmetric, this holds for all users,
which proves that f is a Nash equilibrium. However, f is not a proportional profile, thus
according to Theorem 3, there must exist another Nash equilibrium.
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A.5 Example of a network without a Nash equilibrium, for users with
αi ∈ [0, 1]

Consider a network with two parallel links and two users with demands r1 = 1, r2 =
1/2. Moreover, α1 = 1 and α2 = 0. Consider the cost per unit of flow on the links,
T1(f1) = 1

1−f1 , T2(f2) = 1
1−f2 .

User 2 aims to minimize its cost J2(f) = −H1(f). By sending its entire demand,
r2, on the link with max{f11 , f12 }, user 2 is able to minimize its cost to −∞. However,
J1(f) =∞, thus user 1 will respond by sending part of its flow on the other link. User
2 will then follow user 1 and again bring its own cost to −∞. It is clear that for both
bottleneck routing games and additive routing games, there does not exist any Nash
equilibrium.
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