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Abstract— We devise a computer vision approach which
removes degradation effects in optical underwater imaging.
It exploits natural illumination. By analysis of the physical
effects of visibility degradation, we associate natural backscat-
ter with partial polarization of light. This is contrary to
prior studies which have associated polarization with light
emanating from the objects, rather than the backscatter. Our
algorithm takes advantage of this aspect to invert the image
formation process. In this paper we show that our method
achieves a much better visibility recovery, compared to prior
methods. This is demonstrated in underwater experimentation
in the sea. In addition, the physics-based analysis of the
polarization filtered images recovers a range-map of the scene.
This allows 3D rendering of the scene from various viewpoints.

I. UNDERWATER VISIBILITY PROBLEMS

Underwater visibility is typically very poor
[6][13][16][19][33][40]. For this reason, a lot of research
effort is being invested in acoustic imaging, which
can penetrate water more easily. However, acoustics
sensors have their own shortcomings: they have a much
lower spatial resolution than optical systems [3][4][25];
sound waves may undergo convoluted and distorted
paths in the water due to refraction between layers of
water [17]; reverberations create false detections [35],
while scattering by tiny particles having acoustic contrast
creates speckle noise [17][24]; sonar detection is prone
to noise coming from electronic sources and suffers from
directionality problems associated with sidelobes of the
acoustic antenna [39]. Acoustic sensors trade spatial
resolution for detection range, since acoustic radiation
is attenuated quickly in water as the acoustic frequency
increases [17]. Low frequencies require systems that
are very large [12][34], in order to obtain any spatial
resolution. In addition, active sonar is disadvantageous
in stealth tasks [3]. Finally, the visual interpretation of
acoustic images is difficult, since we as humans have not
evolved to view fields of acoustic reflectances.

To avoid these problems, there is need for underwater
optical imaging systems. However, in addition to disrupting
human interpretation of scenes, the poor underwater optical
visibility hinders computer vision [10] tasks, e.g., those
based on stereo triangulation or on structure from motion.
It is important to alleviate these visibility problems, in
order to enhance engineering applications [1][2][9][11]
[19][23][32][33][40], as well as research in marine biol-
ogy [8][15][37][40] archaeology [6] and mapping [41].

We have recently introduced a physics-based approach
for recovery of visibility when imaging underwater scenes

in natural illumination [28]. It explicitly relies on the image
formation process, and thus accounts for the complex spa-
tially varying degradation effects which exist in submerged
scenes. The approach relies on raw images taken through
different states of a polarizing filter. We have shown that
due to the polarization of natural backscatter (veiling light),
these raw images have slight photometric differences. Thus,
these differences serve as initial cues for an algorithm that
factors out the effects that degrade underwater scenes.

In this paper we first give a brief overview of our method.
Then, we concentrate on comparison of its results to ones
obtained by prior methods. In particular, we show that the
method is superior to other methods based on polarization,
as well as to standard image processing tools. The reasons
for this superiority is explained.

II. IMAGE FORMATION MODEL

A. The Signal

As depicted in Fig. 1, under natural illumination we
sense two sources. The first source is the scene object.
The image of this source is degraded, as we detail below,
and we term it as the signal. The second source is the
ambient illumination. Part of the ambient light is scattered
towards the camera by the particles in the water, and is
termed veiling light or backscattered light [16][21]. The
description of the latter component is given in Sec. II-B.

In the literature, the signal is typically represented as a
sum of two components, termed direct transmission and
forward scattering [16][21]. The direct transmission is
given by

D(x, y) = Lobject(x, y)e−ηz , (1)

where η is the attenuation coefficient, and z is the distance
to the object. This distance depends on the pixel coordi-
nates x and y. Here Lobject is the object radiance we would
have sensed, had there been no scattering and absorption
along the line of sight (LOS).

The forward scattering component is similar to the direct
transmission. However, it represents light scattered at small
angles relative to the LOS, causing image blur. It has been
expressed as

F (x, y) = D(x, y) ∗ gz(x, y) , (2)

where D is given by (1) and gz is a point spread function
(PSF). The PSF [16][21] is parameterized by the distance
z, since the farther the object, the wider the support of the
blur kernel.
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Fig. 1. [Dashed rays] Backscatter: Light coming from a source is scattered towards the camera by particles in the water. This component
increases with the distance z to the object. [Solid ray] Signal: Light emanating from the object is attenuated and somewhat blurred as
z increases. Without scattering and absorption along the line of sight (LOS), the object radiance would have been Lobject .

Accounting for both the direct transmission (1) and the
forward scattering (2), we define the signal as

S = D + F . (3)

In addition, we define an effective object radiance Leffective
object

as
Leffective

object = Lobject + Lobject ∗ gz . (4)

It is a somewhat blurred version of Lobject. From (1,2,3),
the signal is

S = e−ηz Leffective
object . (5)

In [28] we demonstrated that blur due to forward scat-
tering is generally not the dominating contributor to image
degradation. Rather, image degradation occurs mainly due
to the veiling light, described in Sec. II-B. For this reason,
our recovery approach, described in Sec. III, does not at-
tempt to compensate for image blur, say by deconvolution.
Hence, we do not seek, at this point, to recover Lobject, but
make do with the recovery of Leffective

object from the signal. For
this reason, we prefer the signal representation of (5), rather
than using the more familiar representation of (3).

B. Veiling Light

Veiling light is often referred to in the literature as
backscatter. We thus use these terms interchangeably. It is
caused by scattering the ambient illumination into the LOS
and towards the camera by suspended particles (Fig. 1).
Consider a single distant source that illuminates the LOS
from direction �r = (θ, ϕ) relative to the LOS, with intensity
Isource. Following [16][21], the contribution of this source
to the backscatter is

B (�r) =
∫ z

0

β (θ) Isource (�r) e−ηl

[
1 − f

l + l0

]2

dl (6)

where f is the focal length of the camera and l0 is the
distance between the lens and the underwater housing
window. Here β(θ) is the angular scattering coefficient.

In [28] we have shown that (6) can be greatly simplified.
Integrating the illumination distribution caused by distant
light sources in all directions, the backscatter can be
approximated by

B = B∞
(
1 − e−ηz

)
, (7)

camera

camera

Fig. 2. [Top] Light from close sources. [Bottom] Light from non-
distant sources can be represented as originating from equivalent
sources at infinity.

where B∞ is the backscatter in a LOS which extends to
infinity in the water. This approximation is accurate to 99%,
when accounting for the practical orders of magnitude of
focal lengths vs. attenuation distances [28]. The constant
B∞ depends on the wavelength λ. In addition, the wave-
length affects the values of η, gz and β in (1,2,5-7).

Fig. 2 shows that light from the non-distant particles
can be represented as originating from equivalent sources
at infinity. This is based on an assumption of homogeneous
lighting along the LOS. We believe that this is a reasonable
assumption in horizontal photography. The reason is that
underwater lighting naturally comes from a limited light
cone directly above [15], and is thus typically unobscured
along the LOS. Thanks to this equivalence, the expres-
sion (7) which was developed for distant light sources is
applicable to the general case of non-distant light sources
(as particles suspended in the water volume).

The total image irradiance is

Itotal = S + B = e−ηz Leffective
object + B . (8)

The veiling light thus acts as a bias which reduces the



detected contrast. In fact [28], this bias often overwhelms
the attenuated signal.

A major problem stems from the spatial dependence of
the degradation effects. Image pixels at various coordinates
(x, y) correspond to objects at different distances z. As
indicated in (5,7) and (8), the backscatter and the attenua-
tion depend on z, and thus implicitly depend on the image
coordinates x and y. The consequence of this aspect is
that any attempt to invert the image formation process in
order to recover the scene must be spatially varying, i.e., it
must account for the range of distances in the scene. For
this reason, standard image processing yield only a limited
improvement, as we show in Sec. IV.

C. Polarization Effects

It has been known that various marine animals use po-
larization for improved vision [8][26][38][40]. This has en-
couraged researchers to find an analogous artificial method
for improved computer vision. Before dealing with those
past attempts and with our approach, we shall now briefly
describe the related natural polarization effects.

Under natural illumination, the veiling light is partially
polarized horizontally [7][15][38]. The reason is that off-
axis scattering of light has different intensities for different
polarization components. In particular, the strongest scatter-
ing occurs for the polarization component perpendicular to
the plane formed by the LOS and the off-axis illumination
ray. The weakest scattering occurs for the polarization
component parallel to this plane. Since underwater light-
ing naturally comes from a limited light cone directly
above [15] the LOS, the dominant polarization component
is horizontal. These extrema of the backscatter (strongest
and weakest scattering) correspond to values Bmax and
Bmin, where

B = Bmax + Bmin (9)

is given by (7). The backscatter degree of polarization is
defined as

p ≡ Bmax − Bmin

B
. (10)

We assume that the polarization of the veiling light
dominates the overall measured polarization, and neglect
polarization associated with the signal S. This is an im-
portant aspect which distinguishes our work from most of
the prior polarization-related methods. The reasons for this
assumption are detailed in [28]. The validity of this as-
sumption has recently been verified independently by [30].

III. SCENE RECOVERY

To recover the scene, we first image it via a polarizing
filter. We take two images, each using a different state of
the polarizer. Similarly to backscattered light, there are two
orthogonal polarizer angles corresponding to extrema of the
intensity, Imax and Imin, where

Imax = S/2+Bmax and Imin = S/2+Bmin . (11)

In consistency with our assumption that the signal polariza-
tion is insignificant, the signal makes the same contribution

to both images, as expressed in (11). These are orthogonal
polarization components, whose sum

Itotal = Imax + Imin (12)

is given by (8). Note that Imin is the image taken at
the “best state” of the polarizer, where the disturbing
backscatter is minimal [38].

These raw images become the input for the recovery
algorithm. Assume for a moment that we have an estimate
of the global parameters B∞ and p. From (9,10,11), we
estimate the veiling light as

B̂ =
Imax − Imin

p
. (13)

Inserting this estimate into (7,8,12), we recover the object
radiance

L̂effective
object =

Itotal − B̂

t̂
, (14)

where

t̂ = 1 − B̂

B∞
. (15)

Here t̂ is the estimated water transmittance, which is related
to the object distance z by

t̂ = exp(−ηz) . (16)

We process each color channel independently this way.
As mentioned above, we need estimates of the global

parameters B∞ and p. These are intrinsic parameters of the
water and lighting. We obtain these estimates by measuring
pixels corresponding to objects “at infinity”, i.e., which are
so distant inside the water, that their signals are negligible
due to attenuation. The visibility range underwater is very
short. Therefore, there are usually plenty of horizontal
viewing directions in which no object is visible.

We should note that there are several additional details
related to the method. These include regularization of the
results and color correction. While they are not the core of
the method, they are important for obtaining good results.
The reader is thus directed to [28] for further details.

We have conducted several experiments in the sea,
and obtained significant improvements. In the following,
we concentrate on one of these experiments. Additional
underwater experiments are shown in [27]. The raw images
in Fig. 3 were taken at a depth of 26 meters in Eilat
(the Red-Sea), during the day. The raw images have a
very low contrast. The result of the full scene recovery
algorithm is shown on the right part of Fig. 4. Compare this
result to the left part of Fig. 4, in which a simple white-
balancing operation was performed. The image recovered
by our method has a much improved contrast and color. The
recovered image shows details unseen in the input images,
especially in areas corresponding to far objects.

IV. COMPARISON TO PRIOR PASSIVE METHODS

A. Standard Image Processing

In this section we compare our results to prior methods
that rely on natural illumination. Here we discuss standard
image processing procedures. First, consider standard im-
age sharpening, as obtained by the unsharp masking [18]
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Fig. 3. Images were taken using horizontal and vertical polarizer
orientations. Both color images are contrast stretched, yet their
visibility is poor.

best polarization state recovered image

best polarization state recovered image

Fig. 4. [Left] A white-balanced version of the best raw image.
The colors and visibility quickly degrade as objects become
more distant. [Right] In the image recovered by our polarization-
based method, image colors and contrast are recovered to large
distances.

operation. The result of this method is shown in Fig. 5. This
method sharpens the images, but only slightly improves
the long-range visibility, relative to the unrecovered image
shown on the left part of Fig. 4. A by-product (as typical in
sharpening operations) is amplification of high frequency
noise.

Next, consider the operation of histogram equalization.
The result of this method is shown in Fig. 6. It slightly
improved the areas corresponding to distant objects, but
the visibility of close objects deteriorated due to saturation.
Moreover, histogram equalization of color images is ill
defined, and therefore colors are generally distorted by
this operation. For this reason, we display the histogram-
equalized image in grayscale. The method does not recover
the proper relation between the different colors.

As previously described, underwater the contrast loss is
strongly affected by the distance and is therefore spatially
varying (in the image plane). However, most image pro-
cessing methods (as histogram equalization and unsharp

unsharp masking

Fig. 5. The sharpened image, without the recovery process.

best polarized gray image

histogram equalized image

saturation

some visibility
improvment

Fig. 6. [Top] The image Imin in grayscale. [Bottom] The result of
histogram equalization. While visibility has improved somewhat
in areas corresponding to distant objects, it has become worse in
areas corresponding to objects at close distance.

masking) are space invariant, and do not account for the
distance dependencies. For this reason, the effectiveness of
the standard image processing methods is limited.
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Fig. 7. Results of past methods for polarization-based enhance-
ment. The DOP is displayed at the top, while the PDI is displayed
on the bottom. Those results are not helpful for visibility recovery.
In some places the visibility is ruined.

B. Polarization Difference

Some studies had suggested image analysis of polar-
ization filtered images. Most of them have been based
either on a simple subtraction of the raw images that are
differently polarization filtered [13], or displaying [26][33]
the degree of polarization (DOP) of the sensed light. The
polarization difference image (PDI) is defined as

PDI ≡ Imax − Imin . (17)

while the DOP of the detected light is

DOP ≡ Imax − Imin

Itotal
. (18)

Implicitly, those methods assume that polarization is as-
sociated with the object radiation (and thus the signal),
rather than with the veiling light. This is in contrast to our
assumptions, mentioned in Sec. II-C.

Fig. 7 shows the results of those methods, as applied to
the raw data. These images indicate that those methods
failed to recover the scene visibility, especially at long
distances. It may even appear that the results are less
comprehendible than the raw images.

The problem that undermines those methods is the
assumption that signal polarization is significant. This as-
sumption becomes invalid as distances increase [22], [30].
Thus, those methods become ineffective there.

Fig. 8. Result of the method suggested by [5].

C. Polarization Association to Backscatter

Recently, an independent study [5] has also associated
the polarization of light with underwater veiling light.
However, that method is different from ours in the way
the images are processed. Ref. [5] has an insight about
the relation between polarization and backscatter, but the
eventual image processing appears arbitrary. It is done by
calculating a measure termed E, given by

E ≡ (m − DOP)
(
Itotal − n

)
, (19)

where the DOP was defined in (18). Here n is the intensity
value of the dimmest image pixel, while m is the DOP of
the most polarized image pixel.

When applied to the raw images we took in the ocean,
the method of [5] yields the result given in Fig. 8. This
image is in grayscale, because that method was not for-
mulated for color. The result does not appear to recover a
good visibility of the scene, particularly at long distances.

V. RECOVERING 3D STRUCTURE

The method we propose recovers the three dimensional
structure of the scene. This is a major advantage, because
none of the above mentioned methods has this capability.
Based on (16), the distance z is estimated as a function of
(x, y) up to a global scale factor η . It is given by

η̂z(x, y) = − ln

[
1 − B̂(x, y)

B∞

]
. (20)

If we know the distance to a single point, we can set the
scale of the relative distance map.

The recovered range map can be used to render the
scene from viewpoints other than the ones used during
acquisition. We used the estimated range map to create
a 3D surface, and changed the viewpoint. To emphasize
the difference between the viewpoints, we inserted virtual
objects into the scene (four colored spheres) as in Fig. 9.



Fig. 9. We use the recovered 3d scene, to render an image
showing the scene as if seen from a viewpoint different than the
one used during acquisition. This novel image contains virtual
objects (colored spheres) into the 3D scene, to illustrate occlusion
effects.

VI. COMPARISON TO ACTIVE METHODS

To complete the description of the context of this ap-
proach, we now refer to active optical methods. In these
methods, light is radiated into the scene by the system.
They include optical time gating [13][14][19][32], time
gated fluorescence [31], confocal illumination [20], and
synchronous (stripe) scan [16][17][19]. Some of these
active methods provide range information. Other methods
rely on polarized light sources [11][13][36]. How does our
method compete with those?

To begin with, we should state the current limitations
of our method. The most obvious limitation is that it
requires daylight. In addition, it is currently formulated
for horizontal photography. The reason is that we assume
homogenous illumination along the LOS, and we also
assume polarization induced by this illumination. Both of
these assumption are met when viewing horizontally, as the
natural illumination irradiates the LOS from a favorable
direction. In addition, the method assumes that hydrosols
help in polarizing the veiling light, rather than depolarizing
it. This may not always happen. The active optical methods
mentioned above do not suffer from these limitations, and
thus possess strong advantages.

Nevertheless, these active methods have shortcomings.
Light has to go through the medium all the way to the
object - and back. Therefore, the object irradiance decreases
exponentially with distance due to attenuation, beyond the
1/z2 falloff of free space propagation. This limits the work-
ing range of active sensors. This problem often requires
such systems to be highly power consuming, complex,
and very expensive. In contrast, natural illumination, when
available, exists all over the scene, alleviating much of this
problem in our method.

In addition, some of the active sensors are based on

scanning, either strips or transversal planes. This scan may
require a long time to complete, in contrast a method which
is simply based on a couple of images taken through a
polarizer.

VII. CONCLUSIONS

The method we presented is simple, both with respect
to the acquisition hardware, and with respect to the image
analysis algorithm. Thanks to its reliance on the physical
models of image formation, it enables a very effective
recovery of the scene, i.e., clear visibility and 3D structure.
As discussed in Sec. VI, the current formulation is tailored
to horizontal photography in daylight. Nevertheless, our
plans are focused on extending the formulation to active
illumination and oblique photography. Link to [27] for
additional results and experiments.
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