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Abstract— Waves on the water surface create spatio-
temporal illumination patterns underwater. Concave regions
on the surface diverge light rays refracting into the water,
while convex regions create convergence of rays (caustics).
Therefore, the natural illumination of underwater objects is
spatially varying. Moreover, in shallow water this nonuniform
intensity distribution varies significantly in time, as the water
surface changes with the wave motion. In this paper we
present a method that attenuates these illumination patterns,
and results in an image which appears as if taken under
much more stable and uniform illumination. The method is
based on just a few consecutive frames taken of the scene.
These frames are analyzed by a non-linear algorithm which
preserves consistent image components while filtering out
fluctuations. The use of the nonlinear algorithm alleviates
the need for long acquisition periods and is therefore fast.
We demonstrate its effectiveness and efficiency in underwater
experiments.

I.  INTRODUCTION

A familiar sight in shallow water is the rapid change
of bright illumination patterns on the seabed. These spa-
tiotemporal patterns modulate the reflectance and texture
of the bottom. They may disrupt photography and human
interpretation of the scene. Moreover, this flicker may
seriously hinder computer vision, since some of those
algorithms assume consistent illumination in space and
time.

In this work we discuss a way to eliminate this visual
phenomenon. The method of our choice is inspired by a
recent computer vision algorithm for removal of shadows
in open-air (topside) scenes. It thus provides an addi-
tional demonstration of the power of computer vision in
non-acoustic underwater imaging applications [2][3][5][9]
[12][13][15][20] [23][25][26].

II.  NATURAL F LICKER

Consider a short exposure time. During this brief period,
the water surface is generally not flat, but rather wavy.
Hence, refraction of natural light through this surface is
inhomogeneous [21], as depicted in Fig. 1. Concave regions
on the surface diverge light rays refracting underwater,
while convex regions [19][21] create convergence (wave
focusing [18]). This results in three dimensional (3D)
patterns of variable irradiance in the water volume [8][17].

The refracting surface is far from being a perfect lens.
Hence, the brightest regions in this 3D pattern are not sim-
ple focus points. Rather, singularities of light intensity are
formed in caustic networks [14]. Any object surface (e.g.,
the seabed) slices through these 3D patterns. Therefore, the
object illumination is spatially varying, with bright stripes
caused by caustics [8].
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Fig. 1. D u e t o wave s o n t h e water surface, the refraction of natural
sky illumination is spatially varying. This creates 3D patterns of
variable light flux and caustics underwater, and 2D illumination
patterns on the illuminated objects. These patterns vary in time
due to the dynamics of the surface wave s .

Moreover, the water surface changes with the wave
motion [19]. Hence, the light patterns fluctuate in
time [11][22]. These temporal variations are complex.
Surface waves having long wavelengths move at different
speeds than short surface waves [6][7][10]. This affects the
caustic networks, because long surface waves focus light
deeper into the water than the focusing by short surface
waves. Moreover, the patterns do not relate linearly to the
water wave spectrum: better fit to empirical data [22] is
obtained by accounting for nonlinear interactions of light
ray refraction angles relative to the surface state. This
complexity is compounded by spatial “low pass filtering”
effects caused by water turbidity [22].

III.  THE D OMAIN OF THE P ROBLEM

Ref. [22] normalizes the amplitude (or standard devia-
tion) of irradiance fluctuations by the mean of the irradiance
at a given depth. The normalized fluctuations decay quickly
with the underwater depth at which an object is illuminated.
They decrease exponentially with the object depth, or even
faster (depending on the sea model) [22]. The effective
depth to which fluctuations are significant is scaled by
the downwelling irradiance coefficient. Thus, the scaled
intensity of the flicker is empirically and numerically [22]
found to depend on the water turbidity: the significance of
fluctuations in clear water light is maintained deeper than
in turbid water. Thus, the problem is relevant for objects in
relatively shallow depths, or in moderate depths when the
water is clear.

Next, we need to know how fast the patterns vary.
Temporally, the patterns are wide-band. Their spectral
bandwidth is several Hz, while their peak frequency is
in the order of 1Hz. Theoretic models [22] supported by
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Fig. 2. [Top] The reflectance of a simulated seabed. [Bottom] Simulated consecutive raw frames.

empirical evidence show that the peak frequency behaves
as

ωmax ∝ 1√
z

, (1)

where z is the object’s depth under the water surface. For
objects less than 2 meters deep, the peak frequency [22]
of the illumination fluctuations is typically 1-3 Hz. When
the objects are deeper, the fluctuations are slower, with an
effective period of several seconds for the dominant spectral
features of the fluctuations.

It follows from these orders of magnitude, that spa-
tiotemporal patterns can be wiped out if the camera expo-
sure time is set to several seconds. If images are extracted
from a video stream, their exposure time is O(30ms). Thus,
if images of such a stream are averaged over an equivalent
period of several seconds, then the spatial illumination
patterns can be attenuated. However, such a brute force
approach is slow. It requires the scene and camera to be
stationary for seconds. This diminishes the usefulness of
video cameras. It also greatly narrows the scope of dynamic
scenes (e.g., of animals) that can be studied.

Thus, the domain of the problem is in cases where the
temporal resolution should be at O(0.1seconds), i.e., with
the use of just a few quick frames. It is in this domain that
a non-trivial algorithm is needed for attenuating the natural
spatio-temporal illumination patterns.

IV. FAILURE OF TRIVIAL METHODS

Following the motivation given in Sec. III, we con-
centrate on cases where just a few consecutive frames
are taken of the scene, at short intervals. In this section,
we demonstrate scenarios in which trivial methods, such
as averaging of frames, provide insufficient results. Let
Lt(x, y) be consecutive raw frames, where t is the temporal
(frame) index, while x and y are the spatial coordinates.

Two trivial processing methods are temporal averaging and
temporal median filtering. In the first method, the calculated
image is

Lmean(x, y) =
T∑

t=1

Lt(x, y) , (2)

where T is the number of raw frames. The second method
calculates the median temporal value of each individual
pixel1, independent of its neighbors:

Lmedian(x, y) = median
t

Lt(x, y) . (3)

The latter method is more robust to spurious lighting
conditions, since median filtering ignores outliers. It thus
forces the output to rely on the intensity values that are
most temporally consistent.

To illustrate the limitations of those methods, we first
performed a simulation. The top of Fig. 2 depicts the
reflectance distribution on a surface (a simulated seabed)
made of a bright patch and a dark patch. Had the illu-
mination been uniform and constant, the acquired images
Lt(x, y) should have been proportional to this reflectance
distribution. However, we are interested in simulating spa-
tiotemporal variations of illumination. This is illustrated in
the simulated raw frames2 shown on the bottom of Fig. 2.
The illumination is not uniform, and includes two bright
features (caustics). Bright feature A appears briefly in only
one of the frames. On the other hand, bright feature B
moves and evolves between consecutive frames.

1No spatial median filtering is performed.
2For clarity of display, the brightness of all the displayed pictures in

this paper underwent the same standard contrast enhancement (stretching).
This applies to derivative-images as well. When displaying color images,
their hue and color saturation components were untouched. The recovery
algorithms, of course, used the raw (not brightness enhanced) images.
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Fig. 3. The mean of the raw images shown in Fig. 2 and the
median these images. Both results are not good, and do not
recover the reflectance distribution shown on the top of Fig. 2.

The time interval between frames is small, thus the
motion is slow. Hence, the bright and dark illumination
patterns do not have enough time to get smeared all over
the field of view. For this reason, the result of (2) is poor, as
shown on the left of Fig. 3. The result of (3) is somewhat
better, because feature A has been eliminated. This occurred
since it was inconsistent in most frames. Nevertheless, as
seen on the right of Fig. 3, the temporal median failed
to eliminate the non-uniformity of the illumination, since
evidence of feature B are still dominant. This occurs
because for this feature the movement between frames is
small relative to the support of the feature.

V. EFFECTIVE NON-UNIFORMITY ATTENUATION

The problem described above resembles problems of
inhomogeneous illumination in open-air (topside) scenes.
There, the cause is not refraction by the environmental
medium, but simply shadows created by occlusion of light
sources. In those scenarios, the nonuniform illumination
varies very slowly in time, with the daily motion of the
sun and clouds across the sky. A very effective “shadow
removal” method has recently been proposed [16][24] for
those cases. We thus propose to exploit it for our purposes.

Assume for the moment that veiling light (backscatter) is
not a significant component in the range of object distances
from the camera. In that case, the scene radiance is the
product3 of the spatiotemporal irradiance on the objects
It(x, y) and the temporally constant reflectance R(x, y)

Lt(x, y) = It(x, y) · R(x, y) . (4)

Taking the natural log of (4),

lt(x, y) = it(x, y) + r(x, y) , (5)

where
l ≡ ln(L) , (6)

while i ≡ ln(I) and r ≡ ln(R). This operation enables the
application of linear filtering, as convolution, to the illu-
mination and the reflectance. Now, denote the derivatives
along the x and y image coordinates as ∂xlt and ∂ylt,
respectively:

∂xlt(x, y) = ∂xit(x, y) + ∂xr(x, y) , (7)

3There is a proportion factor between the scene radiance and image
irradiance that depends on the imaging system, but does not depend on
the illumination conditions. For this reason we leave this factor out.
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Fig. 4. [Top] The x-derivative applied to the raw images shown
in Fig. 2. The results are sparse, as most pixels have low absolute
values. [Bottom] Result of the algorithm performing a temporal
median over spatial derivatives. The result is consistent with the
derivative of the reflectance distribution function shown on the
top of Fig. 2.

∂ylt(x, y) = ∂yit(x, y) + ∂yr(x, y) . (8)

The assumption made by [16][24] is that image
derivatives associated with cast shadows are sparse, i.e.,
∂xit(x, y) and ∂yit(x, y) have very small values for most
image pixels. We make an analogous assumption here. The
spatial support of image regions having a high value of
|∂xit(x, y)| or |∂yit(x, y)| is small. Thus, in contrast to
Sec. IV, even a small motion of caustic features is large
relative to the small support of the derivative features.

To see this, we applied (7) to the raw images shown in
Fig. 2. To return to the intensity derivative range from the
log domain, define L̃∂x

t ≡ exp(∂xlt). The top images in
Fig. 4 show the resulting L̃∂x

t for all frames t = 1 . . . 4. In
these images, dark pixels indicate highly negative values
of ∂xlt while bright pixels indicate highly positive values.
It is clear from these images, that high absolute values of
image derivatives are confined to small areas.

Thanks to this sparsity, temporal median filtering of
these fields is very effective in eliminating the inconsis-
tent illumination-derivative features, while maintaining the



temporally constant derivatives of the reflectance. We wish
to estimate the log-reflectance used in (5). The estimate of
its derivatives is thus

[∂xr̂(x, y)]median = median
t

∂xlt(x, y) , (9)

[∂y r̂(x, y)]median = median
t

∂ylt(x, y) . (10)

To demonstrate how effective this method is, define
R̃∂x

median ≡ exp ([∂xr̂]median). The result is shown in the
bottom of Fig. 4. Indeed, the features associated with
the spatiotemporal illumination patterns have been mostly
eliminated. On the other hand, the method maintained the
derivative associated with the reflectance edge shown on
the top of Fig. 2.

Now that we have “clean” derivative fields in x and y,
they should be integrated to yield an estimated r̂(x, y),
leading subsequently to the reflectance image R̂(x, y). Note
that for N pixels, we have 2N constraints, as expressed
by (9,10). A solution in the least-squares sense is obtained
by a pseudo-inverse [24]. It is given by the following
process. First calculate the term D(x, y)

D(x, y) = [∂xr̂(x, y)] ∗ drev
x + [∂y r̂(x, y)] ∗ drev

y , (11)

where ∗ denotes convolution. Here drev
x and drev

y are
the reversed derivative kernels, e.g., if the derivative
kernel ∂x is implemented using by convolution kernel
∂x ≡ [1 0 − 1]/2, then drev

x = [−1 0 1]/2. Then, the
estimate we seek is

r̂(x, y) = W ∗ D(x, y) , (12)

where the linear operator W is the one which solves

W ∗ [drev
x ∗ ∂x + drev

y ∗ ∂y] = δ(x, y) , (13)

while δ is the delta-function. Note that W is independent of
the image sequence, and is thus pre-computed. For ease of
implementation, expressions (12,13) are calculated in the
frequency domain [24]. Finally, the estimated reflectance
is

R̂(x, y) = exp [r̂(x, y)] . (14)

VI. ADDITIONAL ASPECTS

A. Stability

The definition of W in (13) is problematic. The Fourier
transforms of derivative operators have a zero value at
the zero-frequency (DC) component. Hence, the definition
of this component of W is ill posed. To stabilize this
numerical calculation, the value of this component should
be set to an arbitrary finite value, e.g., 1.

A consequence of this issue is that the DC component
of r̂(x, y) cannot be determined, if recovery is based solely
on (9)-(13). We will further deal with this issue in the next
sections.

As typical in inverse filtering approaches, the Fourier
transform of W has very high values near a spectral
singularity, as appears here in the DC component. Thus (12)
greatly amplifies the low frequency components of D(x, y).
One may suspect that this leads to amplified noise in
r̂(x, y). Fortunately, however, this is not the case. Thanks
to the temporal median filtering, the signals ∂xr̂(x, y) and

∂y r̂(x, y) defined in (9,10) have less noise than the deriva-
tives of the original signals lt(x, y). Thus the integration
of the filtered derivatives as realized by (11,12) results in
lower noise.

B. Boundary Conditions

The method (11,12) essentially seeks a solution to a set
of partial differential equations: we need to find r̂(x, y)
that satisfies equations dealing with its derivatives, given
by (9,10). As in any differential equation problem, there
is a need to set boundary conditions in order to obtain a
unique solution. This is achieved by the following recipe.

1) For each raw frame t, calculate lt(x, y) as in (6).
2) Pad lt(x, y) from all sides by a margin of pixels

having a value of zero. The width of these margins
is at least as large as the support of the convolution
kernels used subsequently. This sets the boundary
condition prior to spatial filtering.

3) Operate (7)-(9) on the padded frames.
4) Perform the recovery (11,12).
5) Crop the margin pixels.

The convolution (11) in step 4 above is an ordinary
convolution, which implicitly uses zeros as boundary values
for the image. It thus enforces the original boundary values
on the output.

C. Processing of Color

The method is based on image derivative operations as
in (7,8). The derivative operation erases any information
about the mean value (DC) of the log-images, consequently
leading to an ill posed value for this component in the
estimated log-reflectance. This implies an ambiguous scale
factor in the estimated reflectance (14).

There is a need to disambiguate the solution for the
following reasons. If the images are in gray-scale and in-
tended solely for display, then the recovery of the intensity
scale is not critical, since the contrast of the display can
be stretched at will. The situation is different, however,
in color. The method described in Sec. V is applied to
each color channel independently. It is then important to
recover the energy of each color channel, so that the colors
of the scene will not be distorted. For example, the green
channel should not be amplified or biased relative to the
blue channel. Moreover, even in grayscale images, a proper
estimate of the intensity scale is important for image-based
photometric calculations [20].

We determine the scale factor of (14) based simply on
the total amount of light detected in the raw images. For
example, for the red channel, define

ered
t =

∑

x,y

Lred
t (x, y) Ered =

1
T

T∑

t=1

ered
t . (15)

Then, take the result Rred(x, y) obtained by (14) and
correct it by scaling:

R̂red
corrected(x, y) = αredRred(x, y) , (16)

where

αred =
Ered

∑
x,y R̂red(x, y)

. (17)



Analogous operations are performed over each color chan-
nel.

We note that et for each color channel (as in 15) has
only a slight dependence on t. The different surface states
of the water at different times t hardly change the overall
light energy penetrating into the water. This occurs despite
the temporal changes of the spatial distribution of light.
Therefore, the image resulting from this scaling operation
represents well the scene under the illumination conditions
existing during acquisition, excluding the flicker. This is
contrary to topside shadows, for which this algorithm had
originally been developed. In open-air shadows, there may
significant temporal variations of the total amount of the
light falling on the scene in the field of view, as well as
variations of the illumination color [4].

D. Veiling Light

The image formation model in (4) suits imaging through
clear media, as air. Underwater, however, there exists
backscatter B(x, y) of the natural illumination into the line
of sight (veiling light) [20]. A more accurate model of the
scene radiance is

Lt(x, y) = St(x, y) + Bt(x, y) , (18)

where
St(x, y) = It(x, y) · R(x, y) , (19)

is the signal coming from the object. The backscatter
varies in time since it is directly related to the illumination
patterns in the 3D water volume. These variations are
weak, because backscatter integrates the illumination dis-
tribution along the line of sight, thus smoothing out spatial
illumination fluctuations along this path. This is contrary
to St(x, y) whose values depend on the illumination at
particular points in space. The backscatter increases with
the distance of the objects from the camera [9][20].

As before, we applied (6) to the raw images. Due to
Bt(x, y), this operation does not turn reflectance and irradi-
ance into additive quantities, contrary to (5). Nevertheless,
when we applied the method (9)-(17) in real underwater
scenarios, the results were visually pleasing, as we will
show in the next section. Apparently, the method is robust
to such deviations. However, we should now note that the
image we obtain in the end is not an estimate of the
reflectance R(x, y), since the backscatter still influences
the result. What we indeed derive is an estimate of the
scene’s appearance L(x, y), including veiling light effects,
yet attenuating the spatiotemporal illumination patterns.

VII. EXPERIMENTS

We performed several experiments, both at sea and in
a swimming pool. We took the images using the Nikon-
D100 camera, since it has a linear radiometric response.
The camera was placed in a housing, such that all of the
images were taken underwater. Seven photographs of a
pool bottom were taken in shallow water. Samples of these
frames are shown in Fig. 5. The algorithm described in
sections V and VI significantly improves the uniformity,
as shown in Fig. 6. This result is superior to the mean
image and the median image shown in Fig. 7.

Fig. 5. Raw images of a swimming pool bottom. They exhibit
spatiotemporal illumination patterns (caustic network). They are
the result of due to light refraction effects caused by waves on
the water surface.

Fig. 6. The spatiotemporal patterns are greatly attenuated using
the algorithm that is based on temporal median filtering of spatial
derivatives.



Fig. 7. Trivial processing of the raw images shown in Fig. 5. The
result of averaging frames [Top] or taking their temporal median
[Bottom] has only a limited success.

We then performed a similar experiment in the sea. Three
raw images were acquired, shown in Fig. 8. The result of
the algorithm described in sections V and VI is shown in
Fig. 9. The result appears as if taken under a flat water
surface or using a very long exposure, despite the fact that
only three short-exposures were used.

VIII. CONCLUSIONS

The method we propose for attenuating natural flicker
patterns proved effective in several experiments. There is
still a place for additional experiments and a study of the
limitations of this method. Perhaps even better solutions
will come up. We believe that this method can add up
to existing enhancement tools for underwater photogra-
phy [1][3][15][20], with applications to marine biology re-
search, systems for search and rescue [13], and autonomous
vehicles operating in shallow water.
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Fig. 8. The raw images taken in the sea at shallow water.
They exhibit spatiotemporal illumination patterns, due to light
refraction effects caused by waves on the water surface.

Fig. 9. The spatiotemporal patterns are practically eliminated
using the algorithm based on temporal median filtering of spatial
derivatives. The image looks as if taken under a flat water surface.
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