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Abstract 
Consider situations where the depth at each point in 

the scene is multi-valued, due to the presence of a virtual 
image semi-rejlected by a transparent surface. The semi- 
reflected image is linearly superimposed on the image of 
the object that is behind the transparent surface. A novel 
approach is proposed for the recovery of the 
superimposed layers. By searching for the images in 
which either of the objects (layers) is focused, the 
transparent areas are detected and an estimate of the 
depth map of each layer is obtained. As a result of the 
focusing, an initial separation of the layers is achieved. 
The separation is enhanced via mutual blurring of the 
perturbing components in the images, based on the 
depths estimate and the parameters of the imaging 
system. 

1. Introduction 

The approach of depth from focus (DFF) consists of 
obtaining image slices of the scene (imaging with 
different focus settings) from which depth is extracted by 
a search for the slice maximizing a focus criterion [ 1-61. 
DFF methods concentrated on cases in which the depth, 
at each point of the image, is single valued. However, the 
situation in which several (typically two) linearly 
superimposed contributions exist is often encountered in 
real-world scenes. For example [7], looking out of a 
room window, we see both the outside world (termed 
real object [8,9]), and a semi-reflection of the objects 
inside the room, termed virtual objects. The treatment of 
such cases is important, since the combination of several 
unrelated images may greatly degrade the ability to 
understand them and also confuses autofocusing devices. 
The detection of the phenomenon also indicates the 
presence of a transparent surface in front of the camera, 
at a distance closer than the imaged objects. 

The term transparent layers is used in the context of 
scenes semi-reflected from transparent surfaces [7,10,11] 
(in the current work we do not refer to viewing through 
an object having a variable opacity, since there the 
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superposition is not linear [12]). The image is 
decomposed into layers, each with an associated depth 
and intensity distribution. We adopt the common layer 
representation, in which within each iayer the relative 
depth variations are small compared to the inter-layer 
difference. Approaches to reconstructing the layers 
[7,8,10-131 relied mainly on motion and stereo. 

The treatment of multiple objects in the axial 
dimension has been considered in the field of 
microscopy [ 14-17]. The emphasis [ 15-17] has usually 
been put on the reconstruction of the continuous volume, 
rather than discrete layers. In [ 141 a method for DFF was 
demonstrated in a layered situation, but due to the very 
small depth of field used, the interfering layer was very 
blurred so no reconstruction process was necessary. 

In this work the phenomenon of multi-valued depth is 
first detected and the depth-map of each of the objects is 
estimated by means of an extension of the DFF 
algorithm. We assume the depth of each layer is 
approximately constant over patches Then, the limited 
depth of field is exploited to separate and reconstruct the 
intensity distribution of multiple layers. We concentrate 
on the common case of two layers. The generalization to 
a larger number of layers can be easily derived. 

2. Detection of transparency, and DFF 

The distances to the real and virtual objects are 
assumed to differ greatly. This assumption holds in many 
practical situations. Thus, if the lens aperture i s  large 
enough, only one of the objects may be in-focus. 
Imaging is first done with different focus settings, so as 
to sample the 3D viewed world into a few slices. A focus 
measure, calculated in each of these slices, is searched as 
a function of the slice-index. A new method to find the 
focus i s  presented. 

2.1. The optical system 

An imaging system telecentric on the image side [5] 
ensures a constant magnification even if the sensor plane 
is out of focus (the defocused contributions will be used 
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later for layer reconstruction). The depth scan is 
performed by moving the sensor array axially, enabling 
the efficient coverage of long object distances, up to 
infinity. A model of the system is shown in Fig. 1. 

The object points u1 and u2 are focused at points v i  
and v 2 ,  respectively, which are two of the axial positions 
of the sensor of the camera. Point u1 is defocused when 
the sensor is at v 2 .  The radius of the support 1191 of the 
geometrical 2D blur PSF is 

r2 = ( a  / F)Av , (1) 

where AV =I v 2  - v1  I , The same relation is obtained for 
the blur-radius of the image of u 2 ,  when the sensor plane 
is at v I  . Thus, the marginal rays emanating from axial 
points in the object space are parallel to each other when 
emerging in the image space (Fig. 1). Hence, the 2D 
point spread function (PSF) does not depend on the 
position of the sensor array, but only on the distance 
between the focused-image plane and the sensor plane. 
We adopt the standard assumption, that the properties of 
the imaging system are invariant to transversal shift. We 
thus conclude that the imaging is a 3D space-invariant 
operation [18] at the image space ( X , j , v ) ,  where the 
transversal coordinates in this space are related by 
(2, v) = [l -- U / F]-’ (x, y )  to the object coordinates, and 
(1/ v ) =  (1/ F ) -  ( I /  U ) .  Recall that for a single 2D 
image, different points of the scene are blurred 
differently - according to their depth. However, the entire 
3D effect of the telecentric system is space invariant in 
image space, regardless of the scene. 

2.2. Depth sampling 

In some of the previous work [2,4,6,14], the axial 
movement between consecutive slices corresponded to a 
single step of the step-motor or was arbitrarily chosen. 
We suggest that, by more careful planning, the depth 
sampling may be sparser. Let the axial sampling 
positions of the sensor be at v z ,  where z is the slice 
Index. Consider an on-axis object point for which the 

Aperture-stop “””A w- 
V 

V,  ~ V2 

U1 F-, W position 

Fig. 1 The telecentric imaging system model. Only the lower 
marginal rays are shown. a is the radius of the stop F is the 
focal length. 

c 

corresponding image point is at v 1  < v v 2  (see Fig. 1) 

The 2D PSF over the plane at V ,  has radius 
rz =alv  - v z I / F .  Suppose that F is the radius of the 
smallest blur kernel that leads to detectable defocus. By 
requiring that r2,  r, < F and rz l Z z 2 ,  > 7 , we obtain two 

slices that seem almost equally focused, while the others 
are blurred. This bounds the depth estimation (after the 
geometrical transformation) to be between v I  and v 2 .  
Sampling the depth more densely will give multiple 
sharp images of the same object points, but not tighten 
the bounds. Thus, we require r2 I = 7 .  The radius 7 is 
related to the transverse (2D) sampling period, h-, of 
the sensor array. Assuming F = A?, and substituting it 
into Eq. (l), leads to the axial sampling period 

A v = F A T l a .  (2) 
Taking the first sample at v=F to enable focusing on 
infinity, the axial sampling positions are 

(3) 

and the number of slices is K = 1 + Fa/[A.F(umln - F ) ]  , 

where U,,, is the minimal viewed depth. 
A more rigorous derivation is based on 3D spatial 

frequency considerations, as we showed in [19].  Eq. (2) 
is associated with the 3D Nyquist rate, based on the 
characteristics [17] of the geometrical PSF, while it is 
four times denser than required by physical optics [ 191 
(when the imaging system is diffraction limited). 

2.3. Detection of layers, and depth recovery 

v I  = F + ( z  - 1)Fk- /  a , where z = 1,2,3 ,... K , 

A conventional focus-measure is first calculated in 
each slice. Common criteria [1,3,6,14] are sensitive to 
2D variations in the slice (for example, calculating the 
gradient response). This is done on each slice, leading to 
“slices of local focuymeasure”, FOCUS(X, j, z )  ~ where 
z is the slice index. We assume for simplicity that the 
scene can be divided into patches in which the objects 
have a roughly constant depth. In the sequel we continue 
the analysis separately in each patch. 

Naively, one might suggest to average 
FOCUS(Y,j ,z)  over the patch to obtain FOCUS(z). 
Ideally, in the presence of several layers, each of the 
layers would lead to a main peak in FOCUS(z). 
However, mutual interference may shift the peaks off 
their original positions, and even lead to the appearance 
of only a single peak in some ”average” position (see 
Fig. 2). For this reason transparent scenes confuse 
conventional autofocusing devices. 

Since the layers are generally unrelated, the chance 
that a brightness edge in one of them will appear in the 
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same spot as an edge of the other is small. Since edges 
(and other feature-dense regions) are dominant 
contributors to the focus criterion, it would be wise not to 
mix them by brute averaging over the entire patch. If 
point (? ,J)  is on an edge in one layer, while on an 
ordinary, smooth region in the other layer, then the peak 
of the edge in FOCUS(X,J,z) will not be greatly 
affected by the contribution of the other layer. So, we 
suggest to rely on feature-dense regions to extract depth 
information and associate it with the entire patch. 

For a specific pixel (X,y) in the slices, the focus 
measure is analyzed as a function of the slice index. For 
each pixel the local maxima of this function are found. 
The result is expressed as a binary vector of local 
maxima positions. For example, if the focus measure has 
local maxima at the 1st and 5th slice (out of 6), the 
vector is (l,O,O,O,l,O). A vote table is formed by 
summing the "hits" in each slice-index over all pixels in 
the patch. Each vote is given a weight that depends 
monotonically on its value FOCUS(?, 7, z) , to enhance 
the contribution of high focus-measure values, such as 
those arising from edges, while reducing the random 
contribution of featureless areas. The vote table 
eventually is as seen in Fig. 2. The number of layers in 
the scene is equal to the number of significant values. 
Assuming a-priori that the maximum number of layers is 
two (as in most cases), the two highest values are used. 
The patches in which the transparency was detected are 
segmented. Via Eq. (3) the distances of the layers from 
the camera correspond, roughly, to the slice indices that 
received the highest number of votes. 

"t.,' 0 

E 

2 4 6 8 10 12 14 16 
Slice index 

Fig. 2. [Dashed line]: The conventional focus measure of an 
experimental scene, as a function of the slice index. It 
mistakenly detects a single focused state at the 6th slice. [Solid 
line]: The locations histogram of detected local maxima of the 
focus measure (the same scene). The highest numbers of votes 
(positions of lochitmaxima) are correctly accumulated at the 4th 
and 7th slices - where the layers would individually be focused 

3. Layer reconstruction 

Following the detection of the slices in which either 
of the layers is in focus, we have estimates of the 
distance of each layer from the lens. The imaging system 
is under our control, and we assume that its parameters 
are known. We can thus calculate the blur kernel of each 
layer, when the camera is focused on the other one. 

Let layer f ,  be superimposed on layer f ,  . Consider 
the slices g,, and gh, in which either layer f ,  or layer 
f 2  , respectively, is in focus. The other layer is blurred 

where * denotes convolution. Due to the telecentricity, 
h,, = ha = h ,  where h is the common blur kernel. 

The reconstruction of the layers may be visualized in 
the frequency domain, where Eqs. (4) take the form of 
two linear constraints (see Fig. 3). The solution, which 
corresponds to their intersection, uniquely exists for 
H # I .  The slopes of the lines representing the 

constraints are reciprocal to each other. As the frequency 
response H approaches 1 (that is, at low frequencies), the 
slopes of the two lines become similar, hence the 
solution is more sensitive to noise in Go and G, . When 
H=l (i.e., for the DC component), the constraints 
coincide into a single line implying infinite number of 
solutions in the noiseless case; in the presence of noise in 
the input images the lines become parallel (no solution). 
Due to energy conservation, the average gray level is not 
affected by defocusing. We can only limit this 
component to satisfy 

H 

Fig. 3. Visualization of the convergence of the suggested 
iterative algorithm in the transversal frequency domain. For 
each frequency, the constraints take the form of straight lines. 
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where and j2 are the estimations of ,f, and f,, 
respectively. On the other hand, the problem is well 
posed and stable at the high frequencies. 

This behavior is quite opposite to many typical 
reconstruction problems. However, it is not unique to 
this algorithm of transparency separation, but also seen 
in the results obtained using motion. In [lo], the 
reconstructions of semi-reflected scenes are clearly 
highpass filtered versions of the superimposing 
components. In [ I  11, one of the objects is "dominant". 
As the dominant object is faded out in the reconstruction, 
it leaves considerable low-frequency contamination. In 
regions of translational motion the spatiotemporal energy 
of each layer resides on a plane [7,12] in the 
spatiotemporal frequency domain, which passes through 
the origin. Any two of these frequency planes have a 
common frequency line passing through the origin (the 
DC), whose components are thus generally inseparable. 

To bypass similar problems [15], an iterative 
approach has been used. The method suggested here, 
which iteratively applies the constraints of Eq. (4), is 
visualized as alternating vectors parallel to the axes of 
Fig. 3. For H<I it converges to the solution from any 
initial hypothesis. As H decreases (roughly speaking, as 
the frequency increases), the lines approach 
perpendicularity, thus convergence is faster. 

The slices g,, and g,  may be taken as the initial 

hypotheses for f; and j2, respectively. With these 
initial conditions, we obtain (in the 2D spatial frequency 
domain) at the m'th iteration 

= ?,,,(Go - G,H)+ Hn'+'Gh 

k2,n, = Tn,(Gh - G,H)+ H""'G, (6) 

for even m, where 
mi2 F,,, = H2'  (7) 

~ 

i =n  

Eq. (7) is a geometrical series, converging to the inverse 
filter as m -+ C O ,  for H < 1 . According to Eq. (6), T,, 
has a major effect on the amplification of noise added to 
the raw images g ,  and g,. At high transversal spatial 
frequencies, H -+ 0 , so the amplification of additive 
noise is negligible. 

The more iterations done, the unknown surroundings 
affect larger portions of the image. In the spatial domain, 
Eq. (7) turns into a convolution kernel t,, . 
Approximating the blur and reconstructing kernels by 
their discrete versions, the spatial support of t,, is 

(2rm+ 1) pixels long, where r is the radius of the 
support of h. For an image N pixels wide, the rwmber of 
iterations m is chosen to satisfy 2rm + 1 < EN where E 

is a small fraction. 
The above result suggests the possible existence of a 

basic limit to the ability to separate layers. If r is very 
large, only few iterations can be done, if at all, and we 
cannot improve the image much. However, the initial 
slices already show a good separation of the individual 
layers, since the defocused layer is very blurred and thus 
is hardly disturbing. On the other hand, if r is small, 
confusing images are initially created but a large number 
of iterations can be carried out. 

The reconstruction kernel can be calculated a-priori 
to a length of about EN . Yet, this approach has a greater 
complexity than the iterative one, unless the blur kernel 
is separable. If it is, the complexity turns out to be 
similar. However, this approach may be very efficient, if 
convolution is implemented by the FFT algorithm. 
Nevertheless, in an iterative process, the dynamic range 
constraints (5b) can be conveniently imposed [16]. 

Reconstruction may also be achieved using a single 
focused slice and a pinhole image [19]. The axial 
positions of the system components are the same for both 
images, hence no geometrical distortions are present. 
This relaxes the telecentricity requirement, previously 
needed for the reconstruction stage. 

In practice, the imaging PSF will be slightly different 
than the one used in the reconstruction. This may be due 
to inaccurate prior modeling or calibration of the 
imaging PSF. This is also a consequence of error in 
depth estimation. Our analysis [19] showed that the 
overall effect of this error and the reconstruction 
operation is to slightly contaminate the reconstruction 
with the low and middle frequency components of both 
layers (assuming the error in depLh estimation is small). 

4. Examples 

4.1 Simulation 

A simulated scene consists of a "bridge" layer at a 
depth of 10m. The other layer ("astronaut") was given a 
variable depth in the range of 0.8-lm. Fig. 4 is the 
combined scene as imaged via a pinhole camera. (the 
images in this example are shown in full contrast). The 
dimensions of the imaging system are of order of 
magnitude of common macroscopic systems [ 191. 

The algorithm successfully detected the layers as 
described in Sec. 2 .  The significance of the secondary 
maximum of the voting counts was determined using 
thresholds. The depth maps of the objects were correctly 
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Fig. 4. The scene as seen through a pinhole camera 

estimated within the depth of field of the system, except 
for a few marginal patches estimated at the some mid- 
distance between the layers Some patches were detected 
as single-layered, since there are large textureless parts 
of the “astronaut” layer that do not indicate the presence 
of any depth-layer. The focused slices are shown in the 
top of Fig. 5. Even though some layer separation is 
obtained, significant crosstalk is seen. The reconstructed 
layers, after 7 iterations, are shown in the bottom. 

Fig. 5. Simulation results. The image patches where 
transparency was detected are segmented and shown. The rest 
are darkened, [Upper-left]: The slice in which the far layer is in 
focus. [Upper-right]: A composition of slice patches, in each of 
which a region of the close layer is in focus, creating an overall 
focused image of the layer. [Lower row]: Reconstructed layers. 
A few marginal patches were detected at t8e wrong distance 
and introduce local disturbance. 

4.2 Experiment 

The experimental setup consisted of a “vase” picture 
that was partly-reflected from the glass-cover of a “crab” 
picture situated at a distance of 2.8m from the lens, 
making a total optical distance of 5.3m from the lens. 
The imaging system consisted of a 75” triplet lens, a 
CCD sensor array mounted on a linear step motor, and an 
aperture stop. Using laser beams, the system was aligned 
to be telecentric, as in Fig. 1. We set the diameter of the 
stop to be 2a=15mm, for which our calculation showed 
that vignetting is well avoided within the field of view. 
The depth variations of these objects were negligible 
with respect to the depth of field. A 256 x 256 part of 
each of the images was cropped and used. An image of 
the scene as viewed through a pinhole camera (mimicked 
using a 3.75” aperture stop) is shown in Fig. 6. 

According to geometric considerations (2), the axial 
sampling period should b̂ e about 0.13”. However, 
calibration showed that the standard deviation of the PSF 
is about 1 pixel at the focused state, and increases about 
3 times slower than expected, as a function of defocusing 
(probably due to electronic and optical blur). This leads 
to an increase of about the same factor in the sampling 
period. This was consistent with our subjective sensation 
of minimum detectable defocus. We thus sampled the 
axial position of the CCD in a period of 0.338mm, 
corresponding to 266 steps of the motor. This 
demonstrates that acquiring images at minimal detectable 
defocus intervals, as suggested in Sec. 2.2, significantly 
reduces the number of images that need to be taken. 

gl 
on each slice g. The distances between rows and between 
columns of the CCD are l3p and 17p , respectively. 
Thus, these factors correct the “digital” gradient to be 
consistent with the physical one. We treated the image as 
a single patch. The results of the focus search are shown 
in Fig. 2. The mean of the focus measure failed to detect 
the layers. However, the vote table clearly succeeded to 
find the layers (the weight of each vote is equal to the 
square of the value of its corresponding focus measure). 
The depths deduced by this method are correct, within 
the uncertainty imposed by the empirical depth of field 
of the system. The slices in which either of the layers is 
focused are shown in the top of Fig. 7. 

We used the PSF estimated by calibration, rather than 
a theoretical model, for the reconstruction of the layers. 
The PSF when the sensor array was in front of the plane 
of best focus turned out to be quite different than the PSF 
on the opposite side. In this example we imposed 
constraints (5b) within the iterations by the method used 
in [16]. The results after 11 iterations are shown in the 
bottom of Fig. 7. 

We used the focus measure 1 71 V gl+ 131 V 
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Figure 6: T h e  scene viewed through a small aper ture  sys- 
tem focused at infinity. T h e  image is enhanced t o  par t ly  
compensate  for t h e  effects caused b y  t h e  low light input .  

To conclude, the new DFF algorithm combined 
with the axial sampling criterion demonstrated suc- 
cessful detection and depth estimation of transpar- 
ent layers. The layer separation achieved via focus- 
ing was enhanced by a reconstruction algorithm. The 
suggested technique, though simple, provides valuable 
guidelines and a basis for better algorithms. 

References 
R. Jarvis, “A perspective on range-finding techniques for 
computer vision,” IEEE, Trans. Patt. Anal. Machine. Intell, 
vol. PAMI-3, pp. 122-139, 1983. 

T. Darrell and K. Wohn, “Pyramid based depth from fo- 
cus,” Proc. CVPR, pp. 504-509, 1988. 

S. K.  Nayar, “Shape from focus system” Proc. CVPR, pp. 
302-308, 1992. 

Y. Xiong and S. A. Shafer, “Depth from focusing and de- 
focusing,” Proc. C V P R ,  pp. 68-73, 1993. 

S. K. Nayar, M. Walanabe and M. Nogouchi, “Real time 
focus range sensor,” Proc. ICCV,  pp. 995-1001, 1995. 

T. T. E .  Yeo, S .  H. Ong, Jayasooriah and R. Sinniah, “Aut- 
ofocusing for tissue microscopy,” Image and, Vision Comp. 
vol. 11, pp. 629-639, 1993. 

T. Darrell and E.  Simoncelli, “Separation of transparent 
motion into layers using velocity-tuned mechanisms,” TR- 
244, Media-Lab, MIT, 1993. 

M. Oren and S. K. Nayar, “A theory of specular surface 
geometry,” Proc. ICCV, pp. 740-747, 1995. 

N. Ohnishi, K .  Kumaki, T. Yamamura and T. Tanaka, 
“Separating real and virtual objects from their overlapping 
images,” Proc. ECCV, vol. 2, pp. 636-646, 1996. 

[lo] J .  R. Bergen, P. J. Burt, R. Hingorani and S. Peleg, “Com- 
puting two motions from three frames,” Proc. ICCV, pp. 
27-32, 1990. 

[Ill M Irani, B. Rousso and S .  Peleg, “Computing occluding 
and transparent motions,” Int. J .  Comp. Vas., vol. 12, pp. 
5-16, 1994. 

1066 

Figure 7: [Upper  row]: T h e  slices in  which either of t h e  
t ransparent  layers is focused. [Lower-left]: T h e  recon- 
s t ruc ted  “crab” layer. T h e  image is much improved. in  
particular, t h e  dark  silhouette of t h e  “vase” was most ly  
filled a n d  is less noticeable. [Lower-right]: The recon- 
s t ruc ted  “vase” layer has  some leftovers from the other  
layer, b u t  details of the “vase” are be t te r  seen. 

[12] M. Shizawa and K .  Mase, “Simultaneous multiple optical 
flow estimation,” Proc. ICPR, pp. 274-278, 1990. 

[13] M. Shizawa, “On visual ambiguities due to  transparency 
in motion and stereo,” Proc. ECCV, pp. 411-419, 1992. 

[14] K.  Itoh, A. Hayashi and Y .  Ichioka, “Digitized optical mi- 
croscopy with extended depth of field,” A p p .  Opt. vol. 28, 
pp. 3487-3493, 1989. 

[15] D. A. Agard and J. W. Sedat, “Three-dimensional struc- 
ture of a polytene nucleus,” Nature, vol. 302, pp. 676-681, 
1983. 

[16] J. A. Conchello and E. W. Hansen, “Enhanced 3-D recon- 
struction from confocal scanning microscope images. I: De- 
terministic and maximum likelihood reconstructions,” App. 
Opt., vol. 29, pp. 3795-3804, 1990. 

1171 F. Marcia-Garza, A. C. Bovik, K. R.  Diller, S .  J. Aggar- 
wal-and J. K. Aggarwal, “The missing cone problem and 
low-pass distortion in optical serial sectioning microscopy,” 
Proc. ICASSP, vol. 2 ,  pp. 890-893, 1988. 

[18] D. N. Sitter and W. T .  Rhodes, “Three dimensional imag- 
ing: a space invariant model for space variant systems,” 
App. Opt., vol. 29, pp. 3789-3794, 1990. 

[19] Y .  Y .  Schechner, N .  Kiryati and R. Basri, “Separation of 
transparent layers using focus,” EE-PUB-1086, Technion - 
Israel Institute of Technology, 1997. 


