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Abstract

Relative Timing is introduced as an informal method
for aggressive asynchronous design. It is demonstrated on
three example circuits (C-Element, FIFO, and RAPPID Tag
Unit), facilitating transformations from speed-independent
circuits to burst-mode, relative timed, and pulse-mode cir-
cuits. Relative timing enables improved performance, area,
power and testability in all three cases.

1. Introduction

The design of RAPPID, the asynchronous instruction
length decoder, took more than two years to complete [13].
Beyond investigating whether asynchronous design could
improve performance, we also wanted to find out which de-
sign styles and circuit families are most suitable for aggres-
sive circuit design.

We started with Speed Independent (SI) and Extended
Burst Mode (XBM) specifications. However, existing syn-
thesis tools [5, 17] yielded results that were less than sat-
isfactory for critical paths. Next, we turned to timed de-
sign and employed a metric timing synthesis tool [9]. The
resulting circuits demonstrated improved performance but
were still below our expectations. Therefore, we turned to
aggressive manual design for the critical paths and man-
aged to obtain the results reported in [13]. Now we face
the question of how our method of semi-manual design can
be turned into an effective CAD methodology and tools.

In retrospect, one approach stands out as the most suc-
cessful method in that process. We employedRelative Tim-
ing (RT) assumptions to specify and argue about our cir-
cuits, applied certain transformations that preserved relative
timing, and validated that the relative timing assumptions
held in the final circuits. This approach turned out to be a
very effective method to semi-formalize the substitution of
aggressive pulse-mode, self-resetting circuits for the origi-
nal full-handshake speed-independent ones.

We propose that a new formal methodology and tools be
developed to support this method. In the absence of such

CAD tools, the method is quite inefficient for the design of
large systems. This paper presents our lessons in order to
motivate such an effort. We start with simple, contrived
examples that demonstrate basic principles, and move to
a RAPPID circuit which has been improved substantially
with relative timing.

2. Motivation and description

The design of timing in digital circuits is an extremely
difficult challenge. The conventional clocked digital design
methodology solves this problem by decomposing the cir-
cuit into cycle-free combinational logic (CL) stages and in-
terstage clocked latches; the clock cycle is simply tuned to
accommodate the worst-case propagation delay in the CL
stages. The behavior of the combinational logic can be
specified and synthesized without considering timing. De-
lay Insensitive (DI) asynchronous circuits are analogous to
clocked CL design in the sense that both types are indepen-
dent of time – the behavior will be correct for arbitrary gate
and wire delay.

High-performance circuits, both clocked and asyn-
chronous, benefit from more aggressive timing methodolo-
gies. Clocked circuits can be considerably enhanced us-
ing local self-timing [12]. Timed asynchronous circuits can
have significantly enhanced performance, but require bet-
ter understanding and modeling of circuit performance and
delay variation.

Metric timing requires the specification of propagation
times or ranges thereof [16, 9]. Unfortunately metric tim-
ing analysis can explode in complexity to the extent that the
synthesis and verification of even moderately sized timed
circuits can become intractable [1]. Metric timing typically
needs complete characterization of all device and environ-
ment delays to achieve improvements over unbounded de-
lay models. Complete characterization of environment de-
lays as well as estimation of the latencies of the circuits to
be synthesized seem awkward.

An alternative to metric timing allows the designer or
CAD algorithms to specify theeffectof delays in a circuit
in terms of assertions on relative ordering of events (e.g.a



goes high beforeb goes low). Our application of relative
timing is based on the unbounded delay model already used
by most asynchronous synthesis and verification tools. SI or
XBM specifications are easily restricted based on designer
specified assumptions of relative signal orderings of the en-
vironment. The circuits are then designed to meet the rel-
ative orderings, or verified that the restrictions are already
part of the delays in the system.

Many timing CAD tools and methodologies exist; asyn-
chronous design itself is a timing methodology. Order-
ing signals temporally is not novel. Metric and non-metric
timed automata has been considered by [1, 9, 6, 11, 2, 4].
Component databooks include waveforms showing relative
signal orderings. However, we do feel that the RT method-
ology used in RAPPID applies timing top-down in a novel
way that is intuitive, flexible, creates high performance
small low power testable circuits, and is easily supported
by CAD.

3. RAPPID relative timing design

Once the RAPPID architecture was complete the chal-
lenge of circuit mapping began. Initial specifications were
synthesized using full-handshake circuits. We began study-
ing the environment of many of the critical circuits to see if
timing could be employed to reduce the number of logic lev-
els in each controller. The system architecture created en-
vironmental signal relations where the fastest arrival delays
are large compared to the local controllers (as in the ring
example in Sections 4.3 and 4.4). Signal orderings were
also enforced by design. The latency of many circuits in
RAPPID was reduced by a factor of as much as 3� through
such timing transformations. These transformations modi-
fied many behavioral aspects of the specifications, concur-
rency in particularly. However, the essential functionality of
the controllers – synchronization and ordering – remained.

Most of the RT circuits in RAPPID were designed by
hand. This effort, while time consuming, helped us bet-
ter understand timing, timed technology mapping, and what
types of transformations appeared most beneficial. We in-
vestigated various forms of handshaking, including proto-
cols without direct handshaking. These pulse-based proto-
cols can at times significantly improve the simplicity and
latency of asynchronous circuits.

Most of our implementations were mapped onto domino
library cells. Domino circuits are a restricted class of gen-
eralized C-Elements where only a single term exists in the
reset function. The combination of state-holding and low
transition latency of the domino gates made them the best
circuit alternative we investigated.

A key aspect to the correct operation of the silicon was
the verification of these timed circuits. The timing verifi-
cation tool Analyze [15] was enhanced to support relative

timing verification. The verifier was also used to generate
a complete set of RT constraints from the critical races in
a circuit. These constraints enforce a particular resolution
of the races that guarantee correct operation of a circuit.
This is shown in Section 4.2.1, where the hidden timing
assumptions of burst-mode are explicitly derived. Timing
assumptions in this paper are labeled RTA, whereas critical
races that are discovered through verification and must be
ordered for the circuit to operate correctly are labeled RTC.

Some of the hand designed RT circuits were checked for
validity through ATACS. However, the environmental and
local path delays in the RT assumptions were typically val-
idated with SPICE simulations.

We feel that relative timing had significant impact on the
throughput (3� improvement), latency (2� improvement),
and area (15% bloat) over similar logic in a commercial syn-
chronous implementation. Although harder to quantify, we
feel that relative timing was key in achieving the 95% stuck-
at testability in RAPPID through removing redundancies
that naturally result through fixed signal orderings induced
by timing.

The lack of synthesis support was a serious productiv-
ity limitation once our methodology was in place. Part of
this aspect has been successfully addressed in joint research
with the Petrify team by creating integrated algorithms that
support RAPPID-style automatic RT synthesis. Many of
the key RT controllers, including the one presented in Sec-
tion 4.4, can now be directly synthesized in Petrify.

A significant weakness in RAPPID validation was tim-
ing analysis support in the back-end. Henrik Hulgaard veri-
fied the timing of the RAPPID FIFO. A relative timing flow
that automatically generates all essential RT constraints,
calculates the best and worst case paths necessary for the
constraint to hold, and completes the timing analysis for
these paths is research yet to be completed.

We encourage researchers to further develop CAD for
RT design.

4. Examples

4.1. Notation and terminology

Table 1 shows some notations used in this paper. For
CCS [7], ‘.’ is the sequential operator, ‘+’ is the nonde-
terministic choice operator, ‘j’ is parallel composition, and
‘nfag’ is the restriction operator applied to signala.

All simulations have been made using standard library
cell device sizes driving six standard inverters as a load.
They were simulated in SPICE using the MOSIS 0.5� pro-
cess parameters. A more complete modeling of some of
these circuits and parameters can be found in [14].

The circuit examples in this paper are all based on non-
clocked domino gates employing a single pMOS device.



Signal Description Example
input signal underline input
output signal output
inverted (asserted low) over-bar z
rising transition up arrow a"
falling transition down arrow b#

Table 1. Notation conventions

Asynchronous tools such as 3D [17], ATACS [8] and Pet-
rify [5] can typically synthesize set-reset flops and the ap-
propriate functions (Figure 1(a)). We apply technology
mapping into single-variable reset (equivalently set) func-
tions, and implement them using standard footed domino
gates as in Figure 1(b). When the reset variable is not used
in the set function, an unfooted domino gate is used instead
(Figure 1(c)).
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Figure 1. (a) Set-Reset flop and functions.
(b) Footed domino gate (symbol and circuit)
implementing a Set-Reset flop with fr = x,
fs = x� a� (b + c). (c) Unfooted domino gate
implementing fr = x, fs = a� (b + c).

4.2. C-Element

A simple two-input generalized C-Element C= (a j
b):z :C (as defined in CCS [7]) and its CMOS implementa-
tion are shown in Figure 2(a). Let’s assume that we know

that the environment always produces transitions ona be-
fore transitions onb, and we feel this knowledge might
simplify our circuit. This relative timing assumption is ex-
pressed as a follows:

RTA1: a � b

The C-Element is reduced to a buffer: C= b:z :C using
this assumption. If the assumption is limited to the falling
edges,

RTA2: a# � b#

the reset function contains onlyb#, and the C-Element can
be implemented as a footed domino gate (Figure 2(b)): C=
(a" j b"):z":a#:b#:z#:C: With a similar assumption on the
positive edges,

RTA3: a" � b"

the circuit can be mapped to the domino gate in Figure 2(c)
by inverting the inputs and employing the non-bufferedz
output. Alternatively, the output can be buffered for high
loads. A “wobbly” C-Element C= a:b:z :C+ b:(a:z :C+
b:C), that is unsafe because inputb may toggle and with-
draw, can also be verified and synthesized as above.
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Figure 2. Generalized C-Elements: (a) gC, (b)
GC-RT for a# � b# (c) for a" � b"

Let’s consider the static C-Element (SC) in Figure 3(a).
This circuit is not speed-independent, but is safe provided



the environment is sufficiently slow. Alternatively, Pet-
rify [5] synthesizes the static complex gate circuit shown
in Figure 3(c). Timing assumptions RTA2 or RTA3 lead to
the simpler static circuits of Figure 3(d) and 3(e), respec-
tively. Note that these two circuits are actually subcircuits
of the speed-independent one.
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Figure 3. Static C-Elements: (a) C-Element
with hazards, (b) locally timed, (c) Speed-
Independent, (d) with RT assumption a# � b#,
(e) with RT assumption a" � b"

4.2.1. Relative timing verification

The SC circuit in Figure 3(a) is implicitly hazard-free under
the fundamental mode assumption. Relative timing allows
this assumption to be made explicitly. If, for instance, the
environment responds quickly,b# may immediately follow
z", before nodeaz rises. This race shows up as a failure
when verifying the circuit against the specification. Verifi-
cation engines can be enhanced to support relative timing
by generating a set of RT constraints from these verifica-
tion failure states. The following two explicit relative timing
constraints on the burst-mode implementation were gener-
ated by an enhanced version of Analyze1 [15]:

RTC4: bz" � a#

RTC5: az" � b#

Valid sets of RT constraints are not necessarily unique. The
following is another set of RT constraints that are less re-
strictive because they do not require circuit stability:

RTC6: bz" � ab#

RTC7: az" � ab#

1Analyze is a bisimulation verifier. Only hazards that affect the outputs
are reported.

These sets of RT constraints rely on delay paths through
the environment becauseaz", bz", a#, andb# are all en-
abled fromz". One possible implementation that can guar-
antee that these constraints hold independent of environ-
ment delays is shown in Figure 3(b), where a buffer is added
at the output. All constraints can be made local to the cir-
cuit because the AND gates and the buffer are enabled by
signalc . Constraints RTC4 and RTC5 can be modified to
bc" � z" andac" � z", which hold if the delay through
the buffer is larger than through the AND gates.

4.2.2. C-Element summary

Table 2 summarizes the five alternative designs. Except
for the static C-Element (SC), all implementations are
hazard-free in their respective environments. The speed-
independent circuit (SIC) is slower than all others. The
relative timing assumption (SIC-RT), which leads to a half
size circuit, also enhances performance by 30%. The static
SC requires the largest circuit but it is also relatively fast.
The reduced domino C-Element (GC-RT) is 15% faster to
rise (having only a single pull-up transistor), but is actu-
ally slower than the gC on the falling edge. The speed-
independent circuits require considerably higher switching
energy even when applying RT assumptions. The static
implementation without relative timing shows comparative
power to the simpler GC and GC-RT circuits largely due
to the short circuit current through the keepers as the GC
circuits switch. The GC-RT circuit shows higher power
consumption than the GC circuit because the removal of
the pMOS device results in an additional short-circuit cur-
rent whenb" follows a". The table shows that the static
and SI circuits are fully testable for exhaustive patterns,
but not when timing reduces signal interleavings (in col-
umn RTA2). The RT optimized versions of these circuits
are fully testable.

4.3. Timing evolution in a ring

In this section we trace the development of a simple
FIFO cell, a simplified abstraction of a part of the RAP-
PID design [13], following closely the actual steps we have
made. We begin with a speed-independent design, and re-
view a succession of progressively simpler circuits, enabled
through careful application of relative timing assumptions.

4.3.1. Speed-independent FIFO cell

A simple FIFO cell can be specified in CCS as follows.

LEFT = li ":c :lo ":li #:lo #:LEFT
RIGHT = c :ro ":ri ":ro #:ri #:RIGHT
FIFO = (LEFT j RIGHT)nfcg

(1)



Has HF Fall Rise Switching Area Exhaustive RTA2 Environment
Circuit Circuit Delay Delay Energy # Transistors Testability Testability
SIC Yes 1170pS 1190pS 20.2pJ 16 100% 90%
SIC-RT Yes 735pS 785pS 14.0pJ 8 n/a 100%
SC No 700pS 545pS 11.6pJ 18 100% 92%
GC Yes 640pS 585pS 11.1pJ 10 100% 100%
GC-RT Yes 530pS 600pS 11.6pJ 9 n/a 100%

Table 2. Comparison of C-Element implementations. Energy is for a complete cycle (rise and fall).
Test columns show COSMOS stuck-at fault coverage, with reduced patterns in RTA2 column due to
environment restrictions.

The specification in Equation (1) consists of two handshake
processes, LEFT and RIGHT. Thec signal synchronizes the
two processes so thatri must go low andli must rise be-
fore both processes may proceed. This process-based spec-
ification can easily be mapped to the equivalent Petri-net of
Figure 4.
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Figure 4. FIFO specification Petri-net

The circuit definition, shown in Figure 5, can be synthe-
sized from this specification using Petrify [5]. This circuit
definition uses the complex gate assumptions where the in-
verters are zero-delay or are combined with the complex
gates. This definition, as well as a physical circuit imple-
mentation that includes discrete inverters, can be proven to
conform to the specification of the FIFO in Equation (1).
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Figure 5. Speed-independent FIFO cell

4.3.2. Burst-mode FIFO cell

The circuit definition of Figure 5 pays a considerable delay
penalty to achieve speed independence. Note thatlo " is
produced after three complex gate delays, andro " in four.
Perhaps the performance can be improved if the circuit can

ensure that concurrent outputs are generated faster than they
can be acknowledged by the environment. This assumption
can be formulated as follows:

RTA8: lo " � ri "
RTA9: ro " � li #
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Figure 6. FIFO specification Petri-net with RT
constraints RTA8 and RTA9 represented as
dashed arcs

A new specification is generated by adding these two rel-
ative timing assumptions to the specification. The specifi-
cation can be represented as

FIFO ^ lo " � ri " ^ ro " � li # (2)

where FIFO is the specification from Equation (1). This can
be represented in the Petri-net of Figure 6 where the dashed
arrows are relative timing constraints.

Note that the two relative timing constraints in RTA8 and
RTA9 are in a form where outputs precede inputs. You can
also note from the specification that the outputs are enabled
concurrently from a pair of inputs. This is exactly a burst-
mode constraint [3] where the input burst isfli " ri #g
and the output burst isflo " ro "g. This burst-mode tim-
ing, shown in Figure 7, assumes that the variance in the
generation of the concurrent outputs is always less than the
response time of the environment2.

Incorporating the RT assumptions RTA8 and RTA9
directly into Specification (1) produce the Mealy state ma-
chine of Figure 8. This new form is suitable for synthesis:

2Applying burst-mode constraints on the signalsfli # ri "g as well
results in a C-Element – the micropipelines implementation.
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The circuit of Figure 9 was synthesized by 3D. The 3D
specification is not identical to Figure 7 due to the implied
mutex transitions betweenli # andri ". However, the syn-
thesized circuit does not require mutual exclusion and im-
plements the Petri-net behavior.

Unbounded delays in the inverters result in critical races
which can cause the physical implementation to fail to con-
form to the specification. However, this circuit can still
be a valid implementation for some actual device delays.
RT verification by Analyze extracts the critical races in the
physical circuit and creates an ordering that must hold for
the circuit to operate correctly:

RTC10: y" � li "
RTC11: y � ri
RTC12: li # � ro "

�



�



�
�

�
�

li

lo

ro

rir r HH��alibHH��ar rHH��arri

b ��HH a rb

y b

Figure 9. Relative timed burst-mode FIFO

The burst-mode implementation achieves a 2.8� average
speedup over the SI circuit. Constraints RTC10–RTC12 ap-
ply only to the physical implementation and must be vali-
dated by a timing verifier.

4.3.3. Right before left

Assume that we connect the circuit of Specification (2) into
a ring with a single token. The token will always arrive at
an idle cell due to circuit delays if the ring is sufficiently
large. Hence the handshake in process RIGHT will always
complete before a new handshake in process LEFT. The SI
or BM circuits can safely be used in a large ring. How-
ever, if one takes advantage of the timing of the system, an
improved circuit (in terms of power, performance, area and
testability) can be derived. RTA13 expresses ordering due
to timing in a large ring:

RTA13: ri # � li "

This assumption can be graphically represented as
shown in Figure 10, where the dashed arc is the relative
timing relation RTA13.
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Figure 10. Net representing addition of RT as-
sumptions ri # � li"

The dashed arc is not acausalarc; ri must go low be-
fore the li can rise butri cannot delayli . This rep-
resents a major change in the operation of the circuit; the
LEFT process is no longer synchronized directly with the
RIGHT process except through system timing. The design
must guarantee that the token appears on the dashed arc be-
fore lo #.

The circuit in Figure 11 can be synthesized with 3D from
Specification (2) using assumption RTA13. The rising edge
of signal li must be delayed sufficiently throughlo and
the buffer to ensure that the domino AND gate is not dis-
abled before it is fully set. This results in a number of RT
constraints on critical races in the circuit that can be derived
as was done for RTC4–RTC7 in the SC circuit. This circuit
shows 1.7� and 3.6� improvement in worst case perfor-
mance over the burst-mode and SI circuits respectively, and
energy is also improved by 1.8� and 2.1�.

4.3.4. Pulse-mode FIFO cell

RTA13 now constrains the specification sufficiently to de-
rive a pulse-mode circuit. Note that through transitivity,
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Figure 11. Aggressive relative timed FIFO

ro # must also precedeli ". We can use this weaker con-
straint to discardri , the backward handshake signal, al-
together. We show how this can be accomplished through
transformations on the circuit of Figure 11.
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Figure 12. Aggressive relative timed FIFOs
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Figure 13. Shuffled aggressive relative timed
FIFO cell

Three elements of the ring are shown in Figure 12. Ob-
serve that thelo signal is nothing more than a delayed ver-
sion of theli signal. Shuffling thelo devices and bubbles
results in the circuit of Figure 13, that has only forward-
moving signals without any inter-cellular feedback. The
shuffling that removes acknowledgment is directly based on
RTA13 that dissociates the LEFT process from the RIGHT.
This shuffling turns outputlo and inputri into local sig-
nals.

Note that signalli in Figure 13 is justli inverted. A
transitionli " creates a short period when bothli andli
are high, which will set the output of the domino AND gate.
The duration of both inputs to the domino AND gate being
high depends on the delay in theli path. This signal pair
can be combined into a single wireli if the signal on this
wire operates as a pulse. The final circuit derivation can be
seen in Figure 14.

The following specification removes the direct hand-
shake signalslo and ri of Specification (1) and adds
RTA13:

LEFTP = li ":c :li #:LEFTP
RIGHTP = c :ro ":ro #:RIGHTP
PULSE = (LEFTP j RIGHTP)nfcg

ro # � li "

(3)
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Figure 14. Relative timed pulse-mode FIFO

Designing reliable pulse-mode circuits is very diffi-
cult [10]. We can observe some of the constraints of pulse
circuits by understanding how we have derived the pulse-
mode circuit in this example. Figure 15 shows a four-phase
request-acknowledge handshake. Constraints 1 through 4
are causal with speed-independent signaling. By removing
the acknowledgment signal (lo andri in this case), we are
left with only the request signal that requires constraints 2p
and 4p. These constraints contain both minimum and max-
imum metric bounds. However, the actual requirements for
the size of these bounds can be represented with relative
timing arcs. Interestingly, these arcs correspond to a proto-
col very similar to the standard request acknowledge hand-
shaking.
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Figure 15. Four cycle and pulse handshake
protocol constraints

The pulse onli of Figure 14 causes the output pulse
ro , as required by specification (3). If we mapreq to li
andack to ro in Figure 15, we see that arc 1 is causal.
However, this circuit can fail if the pulse is so short that
the ro (ack ) pulse does not occur. We can therefore im-
pose an RT constraint that requiresro " (ack ") beforeli #
(req #). This makes arc 2 in Figure 15 an RT constraint,
and slightly restricts the specification. (It may be possible
to not restrict the specification if an internal signal toggles
which ensures the domino gate has changed state.) The cir-
cuit will also fail if the li (req ) pulse is too long. Ifro #
(ack #) andy" have occurred beforeli # (req #) then an
additional pulse onro might be generated. Therefore, arc 3
in Figure 15 is a necessary RT constraint for the circuit to
work. Finally, arc 4 is assumed to hold from RTA13 which
drove this example. We therefore have a system of causal
and relative timing relations that must hold in the pulse-
mode circuit which directly mimic a four-phase handshake.



Has HF Worst Average Switching Area SI Env. RTA13 Environment Pulse-Mode
Circuit Circuit Delay Delay Energy # Trans. Testability Testability Testability
SI Yes 2160pS 1560pS 37.6pJ 39 98% 91% n/a
RT-BM No 1020pS 550pS 32.2pJ 40 95% 74% n/a
RT-Agr No 595pS 390pS 18.2pJ 20 n/a 100% n/a
Pulse No 350pS 350pS 16.2pJ 17 n/a n/a 100%

Table 3. Comparison of FIFO implementations. Energy accounts for a complete four-phase cycle.
Synchronous testing in COSMOS required extra test gate for pulse circuit.

4.3.5. Ring summary

Some consequences of evolving a simple FIFO-like con-
troller from a speed-independent to a pulse-mode circuit are
summarized in Table 3. The different circuits are character-
ized in terms of robustness, performance, power, area, and
testability. The latency of the SI circuit is from three to five
times longer than the circuits that use timing. The circuit is
not fully testable, and the testability degrades as the circuit
is placed in an environment where concurrency is restricted.
The more aggressive timing assumptions tend to increase
the performance of the circuits, reduce the area and power,
and generally increase the testability. Note that the most
significant improvements in performance, area and power
have all been achieved by the burst-mode and aggressive RT
transformations. The additional savings awarded by going
to pulse mode are much less pronounced. Indeed, the ’ag-
gressive’ RT controller may already be considered a pulse
mode circuit. We feel that testability is increased using rel-
ative timing because many of the redundant coverings are
removed when the circuits are optimized for time.

4.4. Tag Unit example

The FIFO ring is a simplified example used for illustra-
tion. Typically, such an application would have synchro-
nizations coming from multiple paths. The Tag Unit exam-
ple from RAPPID [13] shows how relative timing can be
employed to generate extremely high performance pulse-
mode implementations.

Decoding of variable length instructions is inherently a
serial process, since the length of any instruction directly
depends on the lengths of all previous instructions since the
last branch. The performance of decoding variable length
instructions directly depends on how fast this serial process
operates [13]. A critical component in RAPPID is the Tag
Unit, which synchronizes the serial ordering of instructions.
The tagging control signals interconnect the Tag Units to
form a 4�16 torus.

Assume that the simplified interfaces of Figure 16
are all speed-independent interfaces. This requires re-
quest/acknowledge handshakes; a four-phase protocol is

used. The three behaviors in the boxes are specified as
follows:

PA = r ":sr ":sa":(sr #:sa# j a":r #):a#:PA
PB = sr ":sa":(sr #:sa# j r ":a"):r #:a#:PB
C4 = (go0 j go1 j go2 j go3 ):sa :C4

The two PA active processes synchronize the four-phase
handshake afterr requests are received, while the two PB
processes are passive and synchronize before handshaking.
Therefore, when theirdy and ti requests arrive and the
bufreq andto cycles have completed, theti andirdy
signals will be acknowledged and theto and bufreq
cycles will start. This is accomplished in the specification
by renaming the signals and composing the processes as
follows:

IRDY = PA[irdy =r ; irdyack =a; go0=sr ]
TAGIN = PA[ti =r ; tia =a; go1=sr ]
TAGOUT = PB[to =r ; toa =a; go3=sr ]
BUFREQ = PB[bufreq =r ; bufack =a; go2=sr ]
TAGUNIT = (IRDY j TAGIN j TAGOUT j BUFREQ

j C4)nfgo0 ; go1 ; go2 ; go3 ; sag
(4)

The implementation of these processes using ATACS is
shown in Figure 17. Processes PA and PB result in very
efficient implementations. However, the large OR gates, C-
Elements, and the necessity of passing through three state
machines from the input to output of the tag path create
significant latency in this implementation.
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Figure 17. Speed-independent Tag Unit cir-
cuits: (a) PA (b) PB (c) C4

The circuit used in RAPPID is shown in Figure 18. This
efficient circuit is very similar to the simplified FIFO de-
rived in Section 4.3, with the extra gates being used to steer
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the tag paths based on the instruction length. The back-
ward handshake signals in the tag path have been removed,
and the forward-going signals are pulses. The request and
acknowledge protocols on theirdy and bufreq paths
are combinations of four-phase and pulse-mode signaling
– irdyack andbufreq being pulses.
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Figure 18. Simplified RAPPID Tag Unit

The specification for the RAPPID tag circuitry is shown
in Equation 5. The processes are behavioral pulse-based
specifications without timing. For example, the lowering
edge of the pulse signalti # and the output pulseto are
concurrent. The timing assumptions necessary to create the
circuit can be classified by type according to Figure 15. The
type 4 assumptions on theti andto signals are encoded
into the specification since the TAGIN and TAGOUT pro-
cesses have been combined. The synchronization signals
c1 and c2 in the specification encode the causal transi-
tions of type 1. RTA14–RTA16 encode the type 2p transi-
tions – minimum pulse-widths constraints onto , bufreq ,
and irdyack . (When multiple signals precede another
we can include them as a set in one constraint.) Assump-
tions RTA17–RTA19 are type 3 constraints, ensuring that
the input pulse lowers before the output pulse. RTA20 and
RTA21 are type 4 assumptions which require the pulses re-
turn to the stable state before the next tagin arrives. As-
sumptions RTA22 and RTA23 simply constrain the ordering

of the pulsed handshake signals. (Such constraints could
have easily been placed in the specification, but have been
included as RT assumptions because they are guaranteed by
timing rather than by a causal relation.)

2p RTA14: fbufreq "; irdyack "g � to #
2p RTA15: fto "; irdyack "g � bufreq #
2p RTA16: fto "; bufreq "g � irdyack #
3 RTA17: ti # � to #
3 RTA18: ti # � bufreq #
3 RTA19: ti # � irdyack #
4 RTA20: fbufreq ; bufack "; irdyack ; irdy #g

� ti "
4 RTA21: fto ; bufreq ; bufack "; ba#g � irdy "

RTA22: irdyack # � irdy #
RTA23: bufreq # � bufack #

TAGS = b1 :ti ":c1 :(ti # j c2 :to ":to #):TAGS
BUF = c1 :c2 :bufreq

:(bufreq j bufack :bufack ):BUF
IRDY = irdy :(b2 :c2 :irdyack

:(irdyack : j irdy ):IRDY
+ nott :irdy :nott :IRDY)

MUTEX = (b1 :b2 + nott :nott ):MUTEX
TAG = (TAGS j BUF j IRDY j MUTEX)

nfc1 ; c2 ; b1; b2 ; nott g
^ RTA14� RTA23

(5)
Equation (6) shows the complete set of RT constraints

placed on the circuit and system for the simplified RAP-
PID implementation to be valid. These constraints were
generated and verified through Analyze [15]. RTC24 and
RTC25 are the type 2 constraints, RTC26–RTC28 are type 3
(the same as RTA17–RTA19 in the specification), RTC29–
RTC32 the type 4 constraints, and type 4p RTC33–RTC34
constraints. Note that a single delay path constraint may
include several RT constraints as we have used them here.



Tag Cycle Cycle Area RAPPID
Circuit Latency Time Energy # Trans. Testability
SI 4.75nS 9.68nS 255pJ 294 n/a
RAPPID 1.27nS 2.61nS 63pJ 85 98.6%

Table 4. Comparison of RAPPID Tag Unit with the SI version. Area is the number of transistors,
testability refers to the complete RAPPID Tag Unit and steering logic.

2 RTC24: to " � taglocal #
2 RTC25: firdyack "; to "; tl #g � rdy #
3 RTC26: ti # � to #
3 RTC27: ti # � br #
3 RTC28: ti # � irdyack #
4 RTC29: rdy # � taglocal "
4 RTC30: rdy # � ba"
4 RTC31: ftaglocal #; tl "g � ti "
4 RTC32: taglocal # � rdy "
4p RTC33: fba"; ba#g � irdy "
4p RTC34: taglocal # � tl "

(6)

We feel that attaching many, if not all, of the timing con-
straints as RT predicates make the specification more per-
spicuous as well as explicitly annotating the timing require-
ments. Each process represents an interface with a sim-
ple definition, which is refined by timing assumptions as
predicates. Incorporating the assumptions into the specifi-
cation removes much of the clarity of the required synchro-
nizations and orderings. Representing the complete behav-
ior constraints or timing constraints as a Petri-net, as was
shown in Section 4.3, can be illucidating for understanding
small examples, but can be confusing and impractical for
larger, real-world examples such as the Tag Unit in RAP-
PID. This is particularly the case for pulse-based implemen-
tations where the set of timing constraints can be quite large.

A comparison of the two implementations is made in
Table 4. The RT circuit shows a 3.5� area, 4� power,
and 3.7� improvement in latency and throughput over the
speed-independent circuit. Since this circuitry is in the crit-
ical path of the RAPPID length decoder, the improvements
in this example can fairly directly map to improvements in
RAPPID [13]. While the area of this controller is a fraction
of RAPPID, the area impact on RAPPID from the RT circuit
is arguably much higher than the size of the controller. The
RAPPID architecture can be scaled to reach a higher perfor-
mance. If slow parts are used, higher scaling factors must
be employed to meet the target performance. If the slower
SI tag unit had been used in RAPPID, the area would have
ballooned significantly through scaling if the performance
goals were to be met. The area savings in terms of the 50%
reduction in wire count is also significant. Since RAPPID
tagging uses point-to-point signaling connected in a torus,

removing the backward acknowledgment path resulted in a
savings of 14 wires per tag unit. This reduced the network
bisection of the tag logic by a total of 224 tag wires.

5. Conclusion

The development of circuits requires correct operation
in two domains - behavioral and temporal. Our experiments
indicate that the design, synthesis, and verification of cir-
cuits can be significantly enhanced if both temporal and
behavioral domains can be merged. Relative timing is a
means of combining behavioral and temporal information.
The statespace of the untimed circuit is reduced by remov-
ing unreachable relative signal orderings that are induced
through time constraints.

Relative timing is a useful way of reasoning about de-
signs. The waveforms in databooks are presented in such
a way as to highlight the relation between signals and tran-
sitions. One can use relative timing to architect systems,
as well as synthesize controllers and verify the correctness
of systems. Synthesis and verification algorithms can be
designed to directly support this concept where time is rep-
resented as a relationship similar to a behavioral or causal
relation.

RT can be applied as aggressively or conservatively as
desired. In a restricted form races in speed-independent
implementations due to inverter delays can be discovered,
and shown to not be critical, through relative timing. Burst-
mode constraints are an example of conservative implicit
application of RT. Relative timing does not preclude met-
ric or absolute timing. Metric timing must eventually be
applied in the implementation against the RT constraints to
prove that they hold. Further, many of the RT constraints
require a certain amount of slack, or setup and hold times,
in the precedence relations. The robustness and reliability
of the circuits can depend directly on the amount of slack
on the RT constraints.

Relative timing was a large factor in the quality of the
RAPPID results in terms of throughput, power, area, testa-
bility, and latency [13]. The benefit is shown through ap-
plying relative timing to the examples in this text.
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