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Abstract—Today, designers of network processors strive to keep
the packet reception and transmission orders identical, and there-
fore avoid any possible out-of-order transmission. However, the
development of new features in advanced network processors has
resulted in increasingly parallel architectures and increasingly
heterogeneous packet processing times, leading to large reordering
delays.

In this paper, we introduce novel scalable scheduling algorithms
for preserving flow order in parallel multi-core network processors.
We show how these algorithms can reduce reordering delay while
adapting to any load-balancing algorithm and keeping a low imple-
mentation complexity overhead. To do so, we use the observation
that all packets in a given flow have similar processing requirements
and can be described with a constant number of logical processing
phases. We further define three possible knowledge frameworks of
the time when a network processor learns about these logical phases,
and deduce appropriate algorithms for each of these frameworks.
Finally, we model our proposed algorithms and simulate them
under both synthetic traffic and real-life traces, and show that
they significantly outperform past approaches.

I. INTRODUCTION

A. Background

Network Processors (NPs) are specialized software-
programmable architectures in routers, switches and network
cards. NPs are designed to process packets at high speeds,
and especially to implement such diverse functions as
forwarding, classification, protocol conversion, DPI, SSL and
firewalling [1]–[4].

NPs are required to avoid out-of-order transmission of the
packets, because out-of-order packets can disrupt the local
pipeline logic of the router, as well as significantly decrease
the throughput of TCP flows [5], [6]. Unfortunately, in re-
cent years, two trends have made it increasingly hard for NP
designers to keep packets in order without suffering from a
large additional delay. First, NP architectures are becoming
increasingly parallel. For instance, they often rely on many
parallel processing cores (e.g., the Cavium CN68XX [7] or the
AMCC nP7310 [8]), or on a hybrid combination of parallel and
pipeline cores (e.g., the EZChip NP-4 [9] or the Netronome
NFP-32xx [10]). Second, packet processing needs are becoming
increasingly heterogeneous. NPs need to implement a growing
number of increasingly complex features, such as advanced VPN
encryption, LZS decompression, VoIP SBC, video CAC, per-
subscriber queueing, and hierarchical classification for QoS [7],
[11], [12].

As a consequence of these two trends of parallel architectures
and heterogeneous processing delays, many packets with small
processing times may be ready to leave the NP, but need to
wait for a few packets that arrived earlier and are still stuck in
heavy processing tasks. Therefore, these NPs exhibit high and
unpredictable reordering delays, which conflict with the delay
requirements that NP designers need to meet.

Current reordering algorithms typically do not handle this
heterogeneous traffic gracefully. In particular, as detailed below,
they either (a) cause a needless large reordering delay, or (b)
rely on a static load-balancing through hashing and can cause a
lower throughput.

In this paper, our goal is to provide a scalable algorithm
that reduces the reordering delay, while adapting to any load-
balancing scheme. Thus, the NP designer can keep using the
same load-balancing scheme that achieves high throughput, and
just apply our algorithm to reduce the reordering delay.

As illustrated in Figure 1, consider a network processor with
N processing elements (PEs). Assume that a packet A arrives
before a packet B, and both are sent to different PEs. Further
assume that A and B belong to different flows, and that B has
light processing requirements and is ready to leave quickly, while
A has heavy processing requirements. For instance, B only needs
forwarding, while A also needs DPI.

Today, B typically needs to wait for A, potentially incurring a
high delay. In this paper, we suggest to distinguish packets based
on their logical processing requirements. We use the observation
that packets belonging to a single flow can be defined as having
similar logical processing requirements. Therefore, if A and B
have different logical processing requirements, they belong to
different flows, and B does not need to wait for A in order to
preserve flow order. Thus, by defining ordering domains based
on logical processing requirements, we can still preserve flow
order while significantly decreasing reordering delay.

B. Our Contributions

In this paper, we present a new packet reordering algorithm
for multi-core parallel NPs. Our reordering algorithm achieves
a low reordering delay, while working with any load-balancing
scheme, thus also obtaining a maximal throughput.

We provide three core contributions in this paper. First and
foremost, we introduce a new model for NPs. In particular, we
make the observation that all the packets of a given flow can
typically be divided into an equal number of well-defined logical
processing phases, which correspond to their similar processing
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Fig. 1. Reordering example in an NP architecture. Packet B arrives after packet
A, but has smaller processing needs and finishes its processing earlier. If packets
belong to different flows, waiting for A would lead to an unnecessary reordering
delay. In this paper, we suggest to redefine logical processing requirements, such
that if A and B have different logical processing requirements, then A and B
necessarily belong to different flows, and B can leave while keeping flow order.

requirements.
Then, we also introduce three knowledge frameworks that

define the stages at which the NP learns about the number of
processing phases: either (1) as packets arrive, or (2) as they
start being processed, or (3) as they complete processing. These
stages depend on the NP design assumptions.

Next, we make an algorithmic contribution. Based on each
of these knowledge frameworks we introduce three algorithms,
called Reordering Per Processing Phase (RP 3), which leverage
this knowledge to reduce the reordering delay. We further illus-
trate how these algorithms are implemented, with an increasingly
complex implementation as this knowledge is reduced.

Last, in a more theoretical contribution, we develop mathe-
matical models that compare the total packet delay under differ-
ent reordering algorithms and different knowledge frameworks.
These models provide some intuition on why our suggested RP 3

algorithms are more efficient.
Finally, using extensive simulations based on both synthetic

traffic and real-life traces, we analyze our RP 3 algorithms and
show that their reordering delays are negligible when compared
to previously known techniques. We also illustrate how a lower
variability in the delays of the logical processing phases leads
to significant improvements in the reordering delays of our
algorithms.

C. Related Work

Recent research works have described several architectures
that aim to reduce the reordering delay. First, pipeline-based ar-
chitectures without parallelism clearly preserve the packet order.
However, they are hardly scalable, because of the heterogenous
requirements of the packets, the synchronization requirements,
and the granularity of the processing commands [13]. Thus, we
further discuss only parallel architectures.

Statically mapping each flow to a single core using hashing is
another popular way to intrinsically avoid reordering [14], [15].
However, it results in an insufficient utilization of the cores,
and therefore in a lower throughput, due to the fact that several
elephant flows may map to the same core [16]. Moreover, it is
possible to adapt the load-balancing scheme by using feedback

on the core utilization in order to increase throughput [17],
[18]. However, this can also cause packet reordering [19], and
therefore requires an ordering mechanism. In addition, all these
approaches fix the load-balancing scheme, while we would like
to adapt to any potential scheme.

The multipass network processor is a recent solution that
can reduce the reordering delay for short-processed packets by
preempting the processing of heavy-processed packets [11], [20],
[21]. However, the usage of such a capability results in possible
starvation of packets with heavy processing requirements, and
in a context switch loss, which can be associated with a sig-
nificant overhead for storing and loading the packet state, thus
reducing the overall system performance, and also impacting the
software development flexibility. In addition, the multipass NP
still requires a mechanism to preserve packet order.

There are several algorithms for keeping packet order without
changing the load-balancing scheme. First, the NP can allocate a
global sequence number to every arriving packet [22], [23]. This
is illustrated in Figure 1, assuming that the sequence number
follows a global counting. Then, the ordering unit is simple
to implement based on this global numbering. However, as
explained above, this solution also incurs a high reordering delay,
because all packets are treated as a single flow, the order of
which has to be preserved. A second, ideal approach is to rely
on per-flow sequencing [23]–[26], thus providing a minimal
reordering delay. However, as explained in [16], it is not scalable
to a large number of network flows because of the large number
of needed counters. A third method to avoid packet reordering is
to keep an inter-thread signaling system between the cores [22].
However, in NPs with a high degree of parallelism and a high
clock frequency, this method can be complex to implement.

A fourth and last appealing approach is to statically aggregate
flows by hashing the flow identifier in the packet header into
several ordering domains [16]. A different sequence number
generator is then assigned for each ordering number. The flow
identifier may for instance consist of its 5-tuple and its input
interface. In each of the ordering domains, the order of the
packets is preserved. However, an unnecessary reordering delay
occurs between flows with different processing requirements that
are hashed into the same ordering domain. In particular, this
method suffers from the fact that flows in the same domain do
not necessarily have similar processing delays. By contrast, we
suggest to base reordering domains on the processing phases,
thus following natural flow properties rather than using arbitrary
hashing. Note that the two solutions can also be combined, by
simultaneously distinguishing flows based on an arbitrary hash
as well as on the number of processing phases.

More generally, the packet ordering problem in parallel sys-
tems is not new. It has been already discussed in the works
on ATM switches. For example, [27] answered the challenge
of limited sequence number field size in the packet header,
and [28] answered the problem of correct ordering with packet
loss possibility. However, those works did not try to reduce the
reordering delay.

Finally, there are also research works on packet reordering
in switches [29], [30]. However, those works assume equal
processing times for all packets, and therefore their solutions
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cannot apply to our case.
The rest of the work is organized as follows. We first define

our system model in Section II. Then we provide insights on
the impact of the phase processing delay variability in Section
III. We further present our proposed algorithms in Sections IV
and V, and discuss their possible implementation variations in
Section VIII. The theoretical model of the reordering algorithms
is provided in Section VI. Last, we present simulation results in
Section VII, before concluding in Section IX.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a network processor (NP) with N processing ele-
ments (PEs), which can also be general-purpose CPU cores. We
allow for any load-balancing scheme. Therefore, each arriving
packet can be allocated to any arbitrary PE for processing. As
commonly assumed, we consider a single stream of incoming
packets [16], [20], [24], [25], [31]. We allow arbitrary arrival
times of the packets, and assume infinite buffer sizes. Also, we
neglect the different priority levels of the flows. The management
of the packets in the NP is performed with packet descriptors,
which hold all the necessary information for packet processing,
including pointers to the packets in the main buffer.

We mandate that packets from the same flow depart in the
order of their arrival. When a packet needs to wait for another
packet to make sure that it departs in order, it experiences a
reordering delay. Our goal is to reduce the average reordering
delay, using a simple and scalable algorithm.

B. Assumptions

The main assumption in this paper is that the processing
requirements of all the packets from the same flow can be divided
into an equal number of logical processing periods, denoted as
phases (as in [20]). For instance, all the packets of a given flow
may only require forwarding, while all the packets of another
flow may need forwarding, deep packet inspection, and IPSec
processing.

This requirement is reasonable in practice because phases are
only logical, and we do not mandate that all phases correspond
to the same number of cycles. For instance, if the first and last
packets in a flow require a higher number of phases because
the network processor needs to open or close flow-based states,
then we can simply insert some empty dummy logical phases in
the other packets. Of course, a higher variability of the actual
time of each phase will adversely impact the reordering delay
of any algorithm based on this assumption. We also allow large
processing functions such as deep packet inspection to be further
subdivided into different logical phases, as long as all the packets
of a given flow experience the same subdivision. Finally, we
denote by Φ ∈ N the maximal possible number of processing
phases per packet.

In practice, the required number of processing phases can
be obtained after parsing the packet header, and comparing
its content to the user-configured rules for specific flows or
protocols. Therefore, the NP does not need to store the total
number of phases for each of the flows. For example, if the

packet includes an IPSec header, the configuration table may
indicate that the packet needs to be authenticated and forwarded.
Further, if an authentication needs ten processing phases and IP
forwarding needs one processing phase, the NP deduces that the
packet requires eleven processing phases.

In addition, if the processing cannot be subdivided into logical
phases for some specific flows, then it is still possible to treat
those flows as in current NPs. In particular, those flows can be
sent to other ordering domains by hashing the packet header as
in [16]. This type of ordering domain can coexist in parallel with
our processing-based reordering domains.

C. Knowledge Frameworks

Estimating the processing time of each packet can significantly
help in reducing the average reordering delay. Nevertheless, in
many cases such an estimation can only be realized during, or
at the end of the data processing.

In this section, we define three independent knowledge frame-
works regarding the time at which the NP knows about the
number of processing phases of each packet. In our discussions
with industry NP designers, we found that these frameworks
capture different assumptions and capabilities of NP vendors and
architectures1. Our goal is to study the impact of each knowledge
framework on the complexity of the reordering algorithm and on
the resulting reordering delay. The following three frameworks
are ordered from the framework with more knowledge to the
framework with less knowledge, and therefore are expected to
result in an increasingly high reordering delay. This is confirmed
in simulations (Section VII).

The first framework assumes that there is a header parser
before load-balancing, thus ensuring a full knowledge of the
number of the phases of each packet before it is load-balanced
among the PEs. This framework is the simplest one to analyze,
and it conveys some intuition on the problems involved. It is
often adopted in the literature [20], [31]–[35].

Framework 1: The number of processing phases of a packet
is known upon its arrival at the network processor.

In many cases, once a packet arrives at a PE, its first pro-
cessing phase includes packet classification, based on the packet
headers (including in some cases the application header) [36].
This packet classification can help us in determining the number
of remaining processing phases, leading to a second framework.

Framework 2: The total number of processing phases of a
packet is only known after its first processing phase.

In most cases, we would expect the total number of phases to
be known after the first processing phase. However, in cases
where the processing of the packet is performed recursively
without a predetermined number of iterations, as in MPLS or
PBB label encapsulation [21], it is hard to know the number
of processing phases in advance [37]. More generally, we can
introduce a third framework, in which we only know the number
of processing phases a packet has already gone through, but not
the number of remaining ones.

1During our contacts with industry, we found that different NP companies
made radically different assumptions about this knowledge. Therefore, we
introduce different frameworks to fit different NP designers. Also, note that these
different frameworks may entail different design costs.



TECHNICAL REPORT TR14-01, TECHNION, ISRAEL 4

Framework 3: The PE only knows about the number of pro-
cessing phases a packet has already gone through, but not about
the number of remaining ones. Therefore, the total number of
processing phases of a packet is known only after its processing
is completed.

III. REORDERING DELAY UNDER IDEAL AND REAL
SETTINGS

Our proposed architectures aim to reduce the average reorder-
ing delay by scheduling packets based on the current information
regarding their number of required processing phases. As men-
tioned before, we assume that packet processing can be divided
into well-defined phases, and that all the packets of a specific
flow have the same number of phases.

In the paper, we allow the processing time of each phase to be
variable. The processing time of a given phase can significantly
vary in different runs, even for the same processing requirement
and in the same processing unit. There are several reasons for
such variability. On the one hand, using the cache for some data
from an external resource can decrease the processing time of
the specific code segment. On the other hand, access to a shared
resource may extend the processing time, as the PE waits for its
turn to use the shared resource.

However, the intuition in our proposed architectures is that
when the variability in the processing time of each phase is
limited, we can reduce the reordering delay and benefit more
significantly from the knowledge on the number of phases of
each packet. The next theorem justifies this intuition by showing
thatif there were no phase processing delay variability, we
could also potentially achieve zero reordering delay. Clearly, this
assumption is only theoretical, and it is restricted to this theorem.

Theorem 1 (Ideal settings): Under Framework 1, assume that
there is no phase processing delay variability, and therefore
that all packets of a given flow experience the exact same
processing delay. Further assume that there is perfect load-
balancing between the PEs. Finally, assume that the set of all
packets with a given delay is assigned its own ordering domain.
Then no reordering delay will occur.

Proof: Assume by contradiction that reordering delay is not
always zero. Consider then the first packet B that experiences a
positive reordering delay, i.e. assume that there is another packet
A such that A arrives before B at the NP while B later waits for
A to depart the NP. Packets from different flows use different
SN generators, and therefore do not cause reordering delay to
each other. Thus, necessarily A and B have equal processing
delays dA = dB = d, and use the SN generator for all packets
of delay d.

In addition, assume that packet A arrived at the NP at time
tarr,A, and packet B at time tarr,B > tarr,A. The buffering delay
of the packets is denoted as ∆buf,A and ∆buf,B , respectively.
Finally their transmission times (at which they depart the NP)
are denoted as ttr,A and ttr,B , respectively. The perfect load-
balancing guarantees that the later packet B cannot bypass the
earlier packet A in the queues, i.e.

tarr,A + ∆buf,A < tarr,B + ∆buf,B . (1)

Fig. 2. RP 3 Algorithm under Framework 1. Packets with a different number of
phases belong to different flows. Thus, they will not affect the reordering delay
of each other.

By assumption, there is a constant processing time for each phase
in the PEs, therefore the processing delay of both packets A and
B is equal, hence

tarr,A + ∆buf,A + d < tarr,B + ∆buf,B + d ≤ ttr,B . (2)

Since we assumed that packet A cannot experience a reordering
delay, it means that necessarily

ttr,A = tarr,A + ∆buf,A + d,

i.e.
ttr,A ≤ ttr,B .

Therefore, packet A will be transmitted before packet B, and no
reordering delay will occur, hence contradiction.

IV. RP 3 ALGORITHM UNDER FRAMEWORK 1

In this section, we present our proposed order-preserving
RP 3 (Reordering Per Processing Phase) algorithms that work
under Frameworks 1 and 2. Since Framework 1 provides full
knowledge of the number of phases, the resulting algorithm
is relatively simple, and will provide some intuition on the
mechanism before describing more complex algorithms under
later frameworks with limited knowledge.

Intuitively, the algorithm divides all the flows into subsets of
flows that require the same number of processing phases. The
goal is to avoid a case in which a packet belonging to a flow
with many processing phases blocks a packet belonging to a flow
with few processing phases at the reordering unit, as illustrated
in the Introduction. By reducing the amount of such blocking,
the algorithm decreases the reordering delay.

A. RP 3 Algorithm under Framework 1

Figure 2 presents the RP 3 algorithm under Framework 1. The
algorithm relies on an architecture that includes Φ sequence-
number (SN) generators, and Φ ordering units (OUs). The φ-th
SN generator assigns the next SN for packets with φ processing
phases. The φ-th ordering unit tracks the latest released packet
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with φ processing phases. Each ordering unit has N input
buffers, one per PE. Note that while the ordering units are
presented as separate for intuition, in practice they may be
implemented on a single core.

First, each packet is immediately assigned an SN upon arrival,
as shown in step (1) of Figure 2. In Framework 1, the number
of required processing phases φ of the packet is known as soon
as it arrives. Therefore, the SN of the packet is assigned by the
φ-th SN generator (step (2) in Figure 2), which also increments
its last assigned SN.

Next, the packet descriptor is sent by the load balancer to
some PE i. After finishing the processing in PE i, the packet
descriptor is placed in buffer i of ordering unit φ (step (3)). The
ordering unit can only release in-order packets. To do so, each
ordering unit φ checks if one of the N head-of-line packets in
its buffers has an SN equal to the next expected SN, i.e. to the
SN of the oldest packet in the NP with φ phases (step (4)). If
the condition is met, the packet can depart, and the expected SN
is incremented (step (5)). Else, the packets keep waiting for the
next expected packet.

Each ordering unit φ preserves the order of the packets that
require φ processing phases. Thus, reordering delay can only
occur within those packets. For instance, assume that packets A
and B belong to two different flows with the same number of
logical processing phases, and A arrives to the NP before B, but
B has completed its processing earlier. Then B will wait for A
in order to depart, even though they belong to different flows,
because they have the same number of phases. As we will show
in simulations (Section VII), this reordering algorithm achieves
a significantly low reordering delay, and this is especially true
when the variability in the delay of each processing phase is low.

B. RP 3 Algorithm under Framework 2

Under Framework 2 the required number of processing phases
of a packet is unknown upon arrival. It only gets known as it
arrives to the PE and begins getting processed. Therefore, under
Framework 2, the algorithm for Framework 1 cannot be directly
used, since a phi-based SN cannot be assigned upon arrival, and
the algorithm needs to be adapted.

Figure 3 illustrates the RP 3 algorithm under Framework 2.
The algorithm relies on an architecture that includes a single
sequence number (SN) generator, an array of Φ + 1 linked lists,
and Φ ordering units (OUs). Each ordering unit has N input
buffers, one per PE. Each linked list observes an order of packets
with the same number of processing phases. An additional linked
list is added for the packet SNs with an unknown number of
processing phases. A packet is assigned an SN upon arrival (step
1 in Figure 3). Its number of required processing phases φ is still
unknown, according to Framework 2. Thus, the SN is added to
the tail of the list of packets with an unknown number of phases
(step 2 in Figure 3). The packet descriptor is then queued by a
load balancer in the buffer of one of the PEs. When the packet
arrives to its PE, its exact total number of processing phases φ is
known after the first processing phase. Then, its SN is removed
from the list of packets with an unknown number of phases and
added to list φ (step 3 in Figure 3). After finishing the processing
in PE i, the packet descriptor is placed in buffer i of the ordering

Fig. 3. RP 3 Algorithm under Framework 2. Each packet arrives with an
initially-unknown amount of required processing. Therefore, it is queued in the
unknown-phases list (shaded box). After the first processing phase in the PE, the
total number of phases becomes known, and the packet is queued in one of the
lists with a known number of phases.

unit φ (step 4 in Figure 3). Ordering unit φ checks if one of the
N head-of-line packets in its buffer has SN equal to the first
(oldest) SN in the list φ and whether it is larger than the first
(oldest) SN in the list of packets with an unknown number of
phases. If the two conditions are met, the packet departs and its
SN is removed from the list φ (step 5 in Figure 3).

The above algorithms are run-to-completion, i.e. the packet
processing is not preempted at any stage, and only a trigger
is sent to the data structure in order to update the link list. The
required number of processing phases for a packet is determined
during the first phase in the PE.

C. Correctness of the RP 3 Algorithms under Frameworks 1 and
2

Theorem 2: The RP 3 algorithm under Frameworks 1 and 2
preserves the order of the packets in each flow.

Proof: Consider packets A and B from the same flow.
Assume packet A arrived before packet B to the NP (tarr,A <
tarr,B , as defined in the proof of Theorem 1). The SN gen-
erator will assign SNA to packet A and SNB to packet B
(SNA < SNB). Assume that packet B finishes its processing
in the PE and is placed in the OU. All possible cases can be
divided into the following possibilities for packet A:
Case 1: Packet A is waiting in the PE input buffer. Its processing
has not started, thus its number of required processing phases
is unknown. Therefore, min(SNu) ≤ SNA < SNB , and hence
packet B will not depart.
Case 2: Packet A is currently processed in the PE. Its number of
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required processing phases φ is known. Therefore, min(SNφ) ≤
SNA < SNB and hence packet B will not depart.
Case 3: Packet A finished its processing but is preempted from
transmission because of an earlier packet C. Packet B will
not be transmitted because it is also preempted by packet C:
(min(SNu) ≤ SNC < SNB or min(SNφ) ≤ SNC < SNB).
Case 4: Packet A finished its processing and has departed. Packet
B is not preempted for departure because of packet A.

V. RP 3 ALGORITHM UNDER FRAMEWORK 3

A. Overview

Under Framework 3, the PEs only know the number of
processing phases a packet has already gone through, but not
the number of remaining ones.

Intuitively, the problem in Framework 3 is that a packet that
has completed its processing by going through φ processing
phases is blocked from departing the NP by all the packets
that have arrived earlier, have completed less than φ processing
phases, and are still in some PE. This is because all these other
packets may, or may not, eventually complete with exactly φ
processing phases, and therefore potentially belong to the same
flow. So the algorithm needs to monitor all these other packets
to determine whether the packet is free to go. This intrinsically
introduces three new problems in the RP 3 algorithm:

First, each packet now needs to go through several sequence-
number (SN) generators, since it doesn’t know its SN generator
in advance. For instance, assume a packet needs to complete φ
processing phases. Since it doesn’t know it before completion, it
will first ask for the first SN generator; then, for the second SN
generator, and so on, gradually discovering how many phases it
has.

A second new problem is that when a packet requests a
new SN, it cannot get it automatically anymore. Consider the
following example, which we later extend in Figure 5. Assume
that incoming packet A is assigned SN = 1 by the first SN
generator, and the next incoming packet B is assigned SN = 2
by the same first SN generator. Now, assume that packet B
completes its first processing phase, but packet A hasn’t yet. If
B needs to go through a second processing phase and requests
an SN from the second SN generator, which one should it get?
We do not know yet whether A will also request an SN from the
second SN generator, and therefore do not know if the second
SN for B should equal 1 or 2. Therefore, A blocks the SN-
granting process for B. More generally, the algorithm preserves
flow order by making sure to only increase the SN of the oldest
packet in the current sequence phase.

A third new problem is that we want to design our algorithm
so that each PE is work-conserving, i.e. each packet on each PE
can run-to-completion independently of the sequencing scheme.
As a consequence, the packet processing continues even if the
new SN is not granted yet. This makes the processing phases and
sequencing phases distinct. For instance, a packet may be in the
middle of the processing of phase 4, but its sequence number
may still belong to phase 2. While this makes the algorithm
more efficient, it also makes it significantly more complex to
understand.

Fig. 4. RP 3 Algorithm under Framework 3. Each packet with φ required
processing phases also passes through φ sequencing phases. In each sequencing
phase, a request token is sent to the SN generator, and a grant token is received.
The SN generator sends a grant token only when the requested SN is equal to
the oldest SN counter. The generated grant token includes the next SN from the
next SN generator. The packet order is preserved for the packets in the same
sequencing phase.

We further denote as a sequence phase the time between
receiving two consecutive SN grants. Note that the final number
of sequence phases for a packet is equal to its total number of
required processing phases.

Let’s now formally describe the algorithm before providing a
clarifying example.

B. Algorithm Description

Figure 4 illustrates the RP 3 Algorithm under Framework 3.
Assume that the maximum possible number of processing phases
per packet is Φ. The architecture includes Φ SN generators, and
Φ ordering units (OUs) with N + 1 input queues, numbered 0
through N . The φ-th SN generator is responsible for preserving
the order of all the packets that are currently in the φ-th sequence
phase. The φ-th ordering unit holds the packets that have finished
processing and are currently within the φ-th sequence phase. A
packet sequence number is defined by the pair (φ : SNφ), where
the SN generator that assigns the sequence number is the φ-th
SN, and the sequence number that it assigns is SNφ.

Upon arrival, a packet is assigned a sequence number SN1

by the SN generator 1 (step (1) in Figure 4). It then joins the
queue of one of the PEs, as determined by the load-balancer.
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After finishing the φ-th processing phase of the packet in the
PE, a request token with SNφ is sent to SN generator φ (step (2)
in Figure 4). The SN generator φ checks if the sequence number
SNφ of the request token is the minimal one, i.e. the oldest
sequence number of the packets in sequence phase φ. When the
condition is met, SNφ+1 is retrieved from SN generator φ + 1
and SNφ is released. A grant token with SNφ+1 is sent, and the
sequence number of the packet is updated (step (3)).

This completes a single sequence phase. When PE i finishes
processing the packet, the packet descriptor is sent to the input
queue i of the ordering unit φ, where φ is the number of passed
packet sequence phases (step (4)).

At this point, as mentioned, the current number of sequence
phases of the packet, i.e. the number of SN re-assignments of
the packet, may be smaller than the total number of processing
phases it needs to achieve. This is because the packet is waiting
for some SN grant token, due to some earlier-arrived packet that
has not yet completed processing. As we stated before, the final
number of sequence phases has to be equal to the total number
of processing phases. Thus, the packet will complete the needed
sequence phases in the ordering unit. (Such a case is further
illustrated in the example below with packet D.)

For each of the head-of-line packets in its input queues,
ordering unit φ will send a request token to SN generator φ.
After receiving the grant token SNφ+1, the packet is pushed
to the input queue numbered 0 of ordering unit φ + 1. More
generally, input queue 0 is reserved for packets that completed
their sequence phase in another ordering unit, while input queues
1 to N are reserved for the packets that were pushed from the
PEs.

Finally, when the number of passed sequence phases is equal
to the total number of processing phases, the packet departs and
its sequence number is released (step (5)).

The next example illustrates and clarifies how the RP 3

algorithm works under Framework 3.
Example 1: Figure 5 shows an example of sequence number

assignment and the in-order transmission of the packets. Packets
A, B, C and D arrive to the NP in this order, and are processed
in parallel. Packets A and C require one processing phase
(φA = φC = 1), and may belong to the same flow. Packet
B requires three processing phases (φB = 3), and therefore
belongs to a different flow. Packet D requires two processing
phases (φD = 2), and belongs to yet another flow. Of course,
in Framework 3, the number of processing phases required by
each packet is unknown to the NP until packet processing is
completed. The rectangles in the figure present the completion
time of each processing phase. For instance, tA,1, tB,1 and tC,1
are the completion times of the first processing phase of packets
A, B and C, respectively.

Notice first that the first increment of the sequence number of
packet B happens only after incrementing the sequence number
of packet A (tA,1), and not immediately after finishing its first
processing phase (tB,1). This is because the SN generator cannot
assign the next SN to packet B as long as it does not know that
packet A will not need it.

In addition, once the processing of packet C completes after
one processing phase, it still needs to wait for tA,1 and tB,1 in

Fig. 5. Sequence Numbering Example. Rectangles present the processing
phases, and double arrows illustrate the SN generators and values. A packet
sequence number is defined by the pair (φ : SNφ), where the SN generator
that assigns the sequence number is the φth SN, and the sequence number that
it assigns is SNφ. Packets A, B, C and D are processed in parallel. Packet C
can be transmitted only after A and B complete their first sequencing phase at
tA,1 and tB,1. The reordering delay in this case is equal to tA,1− tC,1. Packet
D completed its processing phases before completing its sequencing phases, and
waits for B to complete its second sequencing phase at tB,2.

order to leave the NP. The reason is that as long as A and B do
not complete their first phase, the NP does not know whether A
and B need only one processing phase, in which case they may
belong to the same flow, or more processing phases, in which
case they definitely do not belong to the same flow. Of course,
packet C does not need to wait for tD,1, because packet D arrived
after packet C.

In this case, the reordering delay of packet C is equal to tA,1−
tC,1. Note that with previously-known reordering algorithms, the
reordering delay of C could have been larger and equal to tB,3−
tC,1, since C would have waited for the processing completion of
B. Also note that packet processing is never preempted, even if
the next sequence number cannot be received, i.e. the suggested
algorithm does not pause packet processing in any case.

Finally, packet D finishes both its processing phases before
the increment of its sequence number, and is buffered in the
ordering unit. It can be transmitted only after packet B finishes
its second sequencing phase at time tB,2.

C. Correctness of the RP 3 Algorithm under Framework 3

The next theorem proves the correctness of the RP 3 algorithm
under Framework 3.

Theorem 3: The RP 3 algorithm under Framework 3 pre-
serves the order of the packets from the same flow.

Proof: Consider packets A and B from the same flow.
Packet A arrived before packet B to NP (tarr,A < tarr,B).
By assumption, both packets will go through an equal number
of total phases Φ. Therefore, their total number of sequence
phases is also Φ. If the current sequence phase of packet A is
larger or equal to the sequence phase of packet B, packet B will
not be transmitted before packet A. Assume at some stage that
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both packets completed the same number of sequence phases i,
therefore SNi,A < SNi,B . Now if packet B tries to advance to
the next sequence phase by sending a request token, it will not
receive a grant token because minSNi ≤ SNi,A < SNi,B . At
the last sequence phase Φ: SNΦ,A < SNΦ,B , therefore packet
A will be transmitted before packet B, and the flow order will
be preserved.

VI. PERFORMANCE ANALYSIS MODEL

To provide more intuition on the efficiency of our RP 3

algorithm, we now analyze its reordering delay and total delay
as functions of the traffic arrival pattern and the processing delay
distribution. Specifically, we want to compare the RP 3 algorithm
against two baseline architectures:

Single SN algorithm: As illustrated in Figure 1, a commonly-
implemented and straightforward way to preserve packet order
is to use a single global sequence number (SN) generator. Each
arriving packet is simply stamped with an incremented sequence
number. Then, the reordering unit at the output link transmits
only packets with the oldest sequence number. Other packets
keep waiting. We will also later show that while this simple
architecture is easy to implement, it can cause high reordering
delays, because packets of one flow may need to wait for a long
time for late packets of a different flow.

Hashed SN algorithm [16]: As discussed in the related work,
it is also possible to statically aggregate flows into ordering
domains using hashing. We will use this algorithm as our second
baseline algorithm, and denote it as Hashed SN.

We start by defining the potential reordering delay of a
packet as the difference between its arrival time, and the latest
departure time of a previously-arrived packet that requires order
preservation. For example, consider two packets A and B, such
that their order needs to be preserved. Assume that B arrives at
tarr,B, and A departs at tdep,A. Then the potential reordering delay
of packet B is defined as max(tdep,A − tarr,B, 0).

Our goal is to present the cumulative distribution function
of the total delay TT , given the distributions of the processing
delay (Tproc) and of the potential reordering delay (TRO). We
make several simplifying assumptions. First, we assume that
the processing delay includes both the processing time and
the buffering time. We also assume that we can neglect the
transmission delay of the packets at the output. We further
assume that the processing delay and the potential reordering
delay follow independent distributions, and that the processing
delays of different packets are independent as well. Finally, we
assume a common slotted-time model [29].

The following lemma first describes a general delay model
that will be used in the later theorems.

Lemma 1: The distribution of the total packet delay can be
modeled as:

Pr(TT ≤ i) = Pr(Tproc ≤ i) · Pr(TRO ≤ i), (3)

where Pr(TRO ≤ i) depends on the arrival traffic pattern and on
the scheduling algorithm.

Proof: A packet B that completes processing at some time
t can depart iff there is no earlier packet A preventing it from

leaving at t; and if there is such a packet, it can only depart
when the last such bottleneck-packet A departs. In other words,
the actual departure time of B will be max(tdep,A, tdep,B) (where
tdep,B is the depature time of B when no reordering delay occurs,
i.e. end of processing of B). As mentioned, we neglect the
transmission delay of packet B at the output. Therefore, its total
time in the NP will be

TT = max(tdep,A, tdep,B)− tarr,B

= max(max(tdep,A − tarr,B, 0), Tproc)

= max(TRO, Tproc),

where the second max in the second line is of course superfluous.
Therefore, the independence of the random variables TRO and
Tproc yields the result.

The next theorems model the behavior of the algorithms under
Bernoulli arrivals with a probability p of packet arrival per time-
slot and Poisson arrivals of rate λ. We first analyze the behavior
of the Hashed SN algorithm, with m buckets in the hash table.
The behavior of the Single SN algorithm is easily derived using
m = 1.

Theorem 4: Under a Bernoulli-distributed traffic arrivals with
a probability p of packet arrival per time-slot, the total packet
delay distribution under the Hashed SN reordering algorithm
satisfies:

Pr(TT ≤ i) = Pr(Tproc ≤ i)·
∞∏
j=1

(
1− p

m
· (1− Pr(Tproc ≤ i+ j))

)
.

(4)

Proof: Following the previous theorem (Lemma 1), an
earlier packet arrives at slot (t − j) with probability p, and
in that case is only delayed beyond t + i with probability
(1 − Pr(Tproc ≤ i + j)). The results follows by multiplying all
the probabilities that there is no late packet from slot (t−j) over
all such possible slots. In addition, due to m uniformly hashed
ordering domains, only the packets within the same ordering
domain (same hash bucket) will prevent a packet from leaving
with probability 1

m .
Theorem 5: Under Poisson-distributed traffic arrivals with to-

tal arrival rate of λ packets per time-slot, the total packet delay
distribution under the Hashed SN reordering algorithm satisfies:

Pr(TT ≤ i) = Pr(Tproc ≤ i) · exp
(
− λ
m

∞∑
j=1

(Pr(Tproc > i+ j))
)
.

(5)

Proof: Similarly to Theorem 4, while now an arrival of
several packets per time slot is allowed according to the Poisson
distribution:
Pr(TT ≤ i) = Pr(Tproc ≤ i)·

∞∏
j=1

(
1− e−λ/m

∞∑
k=1

(λ/m)k

k!
(1− (Pr(Tproc ≤ i+ j))k)

)
,

(6)

where (λ/m)ke−λ/m/k! is the Poisson-distributed probability
for the arrival of k packets in a time slot given a total arrival
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rate of λ/m. Using Taylor series function ex =
∑∞
n=0

xn

n! we
get:

Pr(TT ≤ i) = Pr(Tproc ≤ i)·
∞∏
j=1

(
1− e−λ/m(eλ/m − eλ/m·Pr(Tproc≤i+j))

)
.

(7)

Then,

Pr(TT ≤ i) = Pr(Tproc ≤ i)·
∞∏
j=1

exp
(
− λ

m
(1− Pr(Tproc ≤ i+ j))

)
.

(8)

Finally,

Pr(TT ≤ i) = Pr(Tproc ≤ i)·

exp
(
− λ

m

∞∑
j=1

(1− Pr(Tproc ≤ i+ j))
) (9)

and hence the result.
We now want to model the total delay in the RP 3 algorithm.

To do so, we denote T ′proc(φ) as the sum of the processing delays
of the first φ processing phases of a packet.

Theorem 6: Under a Bernoulli-distributed traffic arrivals with
a probability p of packet arrival per time-slot, the distribution of
the total packet delay under the RP 3 reordering algorithm under
Framework 1 satisfies:

Pr(TT ≤ i) =
∑
φ0

Pr(φ = φ0) · Pr(T ′proc(φ0) ≤ i)· (10)

∞∏
j=1

(
1− p · Pr(φ′ = φ0) · (Pr(T ′proc(φ0) > i+ j))

)
.

Proof: The distribution of the total packet delay follows:

Pr(TT ≤ i) =
∑
φ0

Pr(TT ≤ i|φ = φ0) · Pr(φ = φ0),

where we denote Pr(φ = φ0) as the probability of the packet
to be processed for exactly φ0 processing phases. Thus we are
reduced to the same problem, but knowing the number φ0 of
processing phases. Then the proof is very similar to that of
Theorem 4, but now only the packets with the same number
of processing phases will prevent a packet from leaving. The
probability of such packets occurring is Pr(φ′ = φ0) instead of
1
m .

Theorem 7: Under a Poisson-distributed traffic arrivals with
total arrival rate of λ packets per time-slot, the distribution of
the total packet delay with the RP 3 reordering algorithm under
Framework 1 can be modeled as:

Pr(TT ≤ i) =
∑
φ0

Pr(φ = φ0) · Pr(T ′proc(φ0) ≤ i)·

exp
(
− λ

∞∑
j=1

Pr(T ′proc(φ0) > i+ j)
)
, (11)

Proof: Similarly to Theorem 6, while now an arrival of
several packets per time slot is allowed according to the Poisson

distribution. Next, knowing the number φ0 of processing phases,
the proof is very similar to that of Theorem 5

Comparing Equations (4) versus (10) and (9) versus (11)
reveals the key difference between the previous Hashed-SN
approach and our RP 3 approach. While in the former, the packet
can be delayed by an arbitrary previously-arrived packet only
if it is hashed to the same ordering domain with probability
1
m , in the RP 3 approach the packet can be delayed only by a
previously-arrived packet with similar processing requirements,
with a probability Pr(φ′ = φ0).

Finally, we derive the following model for the RP 3 algorithm
under Framework 3. Given that the examined packet consists of
a total of φ0 processing phases, for each of the earlier packets,
the reordering delay occurs if the actual processing of the first
φ0 processing phases of one of the earlier packets will last after
the completion of the actual processing of the examined packet.

Theorem 8: Under Bernoulli-distributed traffic arrivals with a
probability p of packet arrival per time-slot, the total packet delay
distribution under RP 3 for Framework 3 satisfies:

Pr(TT ≤ i) =
∑
φ0

Pr(φ = φ0) · Pr(T ′proc(φ0) ≤ i)·

∞∏
j=1

(
1− p · (1−

∞∑
φ′=1

(Pr(φj = φ′) ·

Pr(T ′proc(min(φ0, φ
′)) ≤ i+ j)))

)
. (12)

Proof: The distribution of the total packet delay follows:

Pr(TT ≤ i) =
∑
φ0

Pr(TT ≤ i|φ = φ0) · Pr(φ = φ0),

where we denote Pr(φ = φ0) as the probability of the packet
to be processed for exactly φ0 processing phases. Thus we are
reduced to the same problem, but knowing the number φ0 of
processing phases. Following Lemma 1, the packet with φ0

processing phases that arrives at slot t can be delayed due to
reordering by an earlier packet that arrives at slot (t − j) with
probability p, if the processing of the first φ0 phases of the earlier
packet last beyond t + i. Note that it is possible that the total
number φ′ of processing phases of the earlier packet is less than
φ0, therefore we consider min(φ0, φ

′)) of the first processing
phases of the earlier packet. The result follows by multiplying
all the probabilities that there is no delaying packet from previous
slot (t− j) over all such possible slots.

Theorem 9: Under Poisson-distributed traffic arrivals with a
total arrival rate of λ packets per time-slot, the total packet delay
distribution under RP 3 for Framework 3 satisfies:

Pr(TT ≤ i) =
∑
φ0

Pr(φ = φ0) · Pr(T ′proc(φ0) ≤ i)·

e
−λ

∑∞
j=1

(
1−

∑∞
φ′=1

Pr(φj=φ
′)·Pr(T ′

proc(min(φ0,φ
′))≤i+j)

)
.

Proof: Similarly to Theorem 8, while now an arrival of
several packets per time slot is allowed according to the Poisson
distribution. Using Taylor series function ex =

∑∞
n=0

xn

n! we get
the result.
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Incidentally, note that the presented expressions in this section
contain infinite products, but all of them converge in practice. In
particular, the Poisson probabilities decrease exponentially fast
for large k, and the number of phases is typically bounded.

VII. SIMULATIONS

A. Simulation Settings

To evaluate our suggested algorithms, we simulate a parallel
network processor with N = 16 cores. The NP provides a
pull-based I/O interface in which incoming packets are stored
in a shared input queue serving all the PEs, thus achieving an
efficient load-balancing. Related architectures are reported to be
implemented in the Cisco QuantumFlow [11] and EZChip NP-4
[9].

We implement our RP 3 algorithm under the three frame-
works. We further compare it against our two baseline algo-
rithms, Single SN and Hashed SN. We also compute a reordering
delay lower-bound, achieved using an idealized algorithm that
would keep a per-flow sequence numbering mechanism. Time is
continuous, and reordering delay is measured in time units.

To analyze the performance of our algorithms, we start by
using a synthetic traffic arrival pattern. We assume that packet
arrivals follow a Poisson distribution. Packets are distributed
across 300 flows. The distribution of the flows is assumed to
follow a power law (Zipf-distributed with exponent s = 1)
[38]. For each flow, the number of logical processing phases
for all of its packets is chosen uniformly over the [1, 10]
interval. Moreover, for a fair comparison, when implementing
the Hashed-SN algorithm, the flows are hashed into 10 hash
buckets. Note that we use a real hash function implementation
[39], and not simply a random number generator.

B. No Phase Processing Delay Variability

First we check the performance of our algorithm under ideal
settings, without any phase processing delay variability in the
PEs. In such an environment all processing phases are equal.
Figure 6 illustrates the reordering delay as a function of the load.
Our RP 3 algorithms outperform both the baseline algorithms
under all three Frameworks. Moreover, the reordering delay is
equal to 0, which supports the findings of Theorem 1.

C. Considering Phase Processing Delay Variability

Next we want to verify the impact of the delay variability
of the logical processing phases on the performance of our
RP 3 algorithms. Intuitively, we would expect our algorithms
to perform better when delay variability is low. We add to our
simulations a lower bound delay graph, which is the reordering
delay obtained by a perfect reordering algorithm in which a
packet can endure a reordering delay due to other packet of the
same flow only. In our simulations, we use two different delay
variability models, while keeping the mean processing time for
each phase at 100 time units:

Phase Variability: In this model, we assume that the process-
ing time for each phase is uniformly distributed over some inter-
val. Specifically, we define the phase processing delay variability

Fig. 6. Impact of load on reordering delay under no processing delay variability.
The reordering delay of the RP 3 algorithm is equal to 0 under any load and
any framework.

as the ratio between the maximal and minimal processing time
for a single phase. Each processing phase delay is then uniformly
distributed between the minimum and the maximum values, with
an average of 100 time units. For instance, a phase processing
delay variability of 3 corresponds to a factor of 3 between the
minimum and the maximum, i.e. the minimum is 50 and the
maximum is 150. A packet with two phases would consecutively
draw two such uniformly-distributed random variables.

Packet Variability [40]: This model is based on the mea-
surements of [40]. Figure 9 in [40] presents the measured data,
and shows a variation that is constant for packets with different
lengths. In other words, while in our initial model there is more
variability for packets with more processing phases, under this
new model, the variability is constant. This new model may ap-
ply, for instance, if variability essentially results from the initial
packet buffering delay, and not from the processing itself. We
formalize these measurement results of [40] by defining a packet-
processing-delay variability model of variability parameter a,
where the total processing delay is uniformly distributed in the
range [mean− a,mean+ a].

D. Traffic Load

Figures 7 and 8 illustrate the impact of traffic load on
reordering delay under the two variability models.

First, in Figure 7, we use a phase variability model with phase
processing delay variabilities of 1.22, 2 and 10.. As shown, the
proposed RP 3 algorithms outperform both baseline algorithms.
In particular, the RP 3 algorithms reduce the reordering delay by
at least an order of magnitude compared to Hashed SN. Note that
the results for RP 3 for Framework 1 and Framework 2 appear
near-identical throughout the simulations, and therefore they are
presented as a unique algorithm. Finally, the lower bound gets
positive values due to the phase processing variability.

Next, Figure 8 illustrates the results under a packet variability
model. The packet processing delay variability is set equal to
a = 100. Results are relatively similar. The out-performance of
RP 3 appears to hold in the same way under this different model.
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(a) Phase variability model with variability of 1.22
(i.e. phase delay in (90, 110)

(b) Phase variability model with variability of 2 (i.e.
phase delay in (67, 133))

(c) Phase variability model with variability of 10
(i.e. phase delay in (18, 182))

Fig. 7. Impact of load on reordering delay under phase delay variability model.

Fig. 8. Packet variability model with variability of 100 time units (model based
on the measurements of [40]).

Fig. 9. Impact of delay variability under a load of 90% in the phase variability
model.

E. Phase Processing Delay Variability

We then check the performance of the RP 3 algorithms under
increasing processing delay variability, using the phase variabil-
ity model (the results using the packet variability model appear
similar). As shown in Figure 9, we vary the phase processing
delay variability value from 1x to 10x under a traffic load of 90%.
As mentioned before, the correctness of our proposed algorithms
is not affected by these variations. However, it is clear that their
relative performance is reduced as the variability increases. Still,
even with a 10x variability and the unfavourable Framework 3,
our RP 3 algorithm interestingly keeps yielding a better result

Fig. 10. Impact of number of cores under a load of 90% in the phase variability
model with variability of 2.

than the two baseline algorithms.

F. Scaling the Number of Cores

Figure 10 presents the increase of the reordering delay with
the number of cores, under the phase variability model (again,
the results under the packet variability model appear similar). In
the simulation the traffic load is kept at 90% for each number
of cores, and the phase processing delay variability is set to
2. Obviously, larger numbers of cores induce more parallel
processing and therefore a higher reordering delay. Still, the
relative performances of the various algorithms seem insensitive
to the degree of parallelism. More generally, note that the scale
is logarithmic in all these results, and therefore the improvement
is substantial.

G. Real-life Trace Simulations

We next run a set of simulations using a real-life traffic trace
from CAIDA [41]. In order to evaluate the processing delay for
each packet we assume that each packet is being processed for
IP forwarding. We use results from Figure 9 in [40] in order to
predict the processing delay of the IP forwarding as a function of
packet length. We extrapolate the delay measurements presented
in [40] as:

Delay[ms] = 0.266 · length[bytes] + 200 (13)
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We use the two variability models. In the phase variability model,
the PE variation is chosen according to Figures 3(a), (c) and (e)
in [40] as approximately equal to 1.22x. Also, following Figure
9 in [40], we use a packet variability model with a = 100. The
mean delay follows Equation (13).

Note that in the trace the lengths of all the packets of the
same flow are approximately equal, and therefore by Equation
(13) also their processing delays. Thus, when grouping packets
by their processing delays, the packets of given flows naturally
belonged to the same ordering domains in the simulation, without
any need for adding dummy phases. This nicely matched our
assumptions without any need for additional tweaks.

Figure 11 presents the simulation results for the average
reordering delay as a function of the load, under a phase
variability model (Figure 11(a)) and a packet variability model
(Figure 11(b)). Figure 11(c) presents the simulation results with
no variability in the processing delay. In this case our RP 3

algorithm performs perfectly under all 3 frameworks and all
loads. In all simulations our RP 3 algorithm outperforms the
compared Single-SN and Hashed-SN algorithms. The similarity
between all the plots in spite of the different models suggests a
relative robustness of our algorithms.

Using these real-life traces, we next study the impact of chang-
ing the phase delay variability and of scaling the number of cores
in the phase variability model, under a fixed load of 90%. First,
Figure 12 shows the effect of varying the phase processing delay
variability. As with Poisson traffic, the performance of RP 3

algorithms is reduced as processing delay variability increases. In
particular, the out-performance of RP 3 under Framework 3 over
Hashed SN disappears for extremely high variability, because
classifying flows by the number of processing phases carries
significantly less information.

In addition, Figure 13 presents the increase of the reordering
delay with the number of cores. Again, the larger number
of cores induces a higher reordering delay, yet the relative
performances of the various algorithms seems insensitive to the
degree of parallelism.

H. Model Evaluation

We also run simulations in order to evaluate our models. The
models are checked by simulations with Poisson traffic of arrival
rate λ = 1. The number of phases per packet is assumed to be
distributed uniformly and geometrically (with p = 0.5) between
1 and 5. In the Hashed SN and the RP 3 algorithms, the flows
are distributed among 5 buckets. We validate our models given a
phase variability model. We set the phase processing variability
to a factor of 3x (phase delay in (50,150)).

Figures 14, 15 and 16 compare the model and the simulation
results for the Single SN, Hashed SN, RP 3 for Framework 1
and RP 3 for Framework 3 algorithms, respectively. The model
fits simulations well in all cases. The simulations present some
difference with the model due to the fact that in the simulations
the arrivals use a continuous time, while the model relies on
a discrete-time approximation, as well as due to the model
assumptions. Note that the buffering delay appeared negligible
in the simulations.

(a) Phase variability model with delay variability of
2 (phase length in (67,133))

(b) Packet variability model with delay variability
of 100 time units (based on [40])

(c) Phase variability model with delay variability of
1. The reordering delay of RP 3 is equal to 0.

Fig. 11. Real-life trace: Impact of load on reordering delay.

VIII. IMPLEMENTATION DISCUSSION

A. Complexity of RP 3 Algorithms

We now want to evaluate the additional complexity in our
algorithms by comparing them to the baseline Single SN and
Hashed SN algorithms, which were described in Section VI.

Table I illustrates the complexity comparison. We assume a
network processor with N cores and Φ buckets in the hashing
table.

For the Hashed SN algorithm, we consider an implementation
that uses a single SN generator with Φ linked lists, similarly to
RP 3 under Framework 1 (as illustrated on Figure 2).

For the RP 3 algorithms under Frameworks 1 and 2, the
memory complexity is composed of the ordering units with
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Fig. 12. Real-life trace: Reordering delay vs. phase processing delay variability
with load of 90%.

Fig. 13. Real-life trace: Impact of number of cores under a load of 90% in the
phase variability model.

(a) Poisson arrivals, geometric pro-
cessing delay distribution.

(b) Poisson arrivals, uniform process-
ing delay distribution.

Fig. 14. Model vs. Simulation. PDF/histogram of the delay under Hashed SN

(a) Poisson arrivals, geometric pro-
cessing delay distribution.

(b) Poisson arrivals, uniform process-
ing delay distribution.

Fig. 15. Model vs. Simulation. PDF/histogram of the delay under RP 3 for
Framework 1

O(Φ × N) input buffers, and a data structure of O(Φ) linked
lists. Each packet requires O(1) SN generator updates. The
additional control bandwidth for a packet is as follows. Assume

(a) Poisson arrivals, geometric pro-
cessing delay distribution.

(b) Poisson arrivals, uniform process-
ing delay distribution.

Fig. 16. Model vs. Simulation. PDF/histogram of the delay under RP 3 for
Framework 3

Num.
of SN
gener-
ators

Buffers
in OU

SN
up-
dates
per
packet

Additional
complexity

Internal commu-
nication updates
per packet (PE-
OU) (see text for
assumptions)

Single SN 1 N 1
Hashed SN
[16]

Φ Φ×N 1

RP 3 frame-
work 1

Φ Φ×N 1 40 bits

RP 3 frame-
work 2

1 Φ×N 1 Φ linked
lists

60 bits

RP 3 frame-
work 3

Φ Φ×N O(Φ) Φ SN gen-
erators

Φ ∗ 20 bits

TABLE I. COMPLEXITY COMPARISON OF THE REORDERING
ALGORITHMS

a 16-bit sequence number length and a 4-bit phase identifier.
Under Framework 1, the sequence number and phase identifier
are transmitted to the data structure twice: For the first time,
to assign a SN to the phase list, and for the second time, to
release the SN from the list when finally transmitting the packet.
Therefore, approximately 20 ∗ 2 = 40 bits for additional control
bandwidth are needed, which is negligible compared to the
packet size. Under Framework 2, an additional control bandwidth
is required to assign a SN to the unknown-phases list. Therefore,
approximately 20 ∗ 3 = 60 bit of additional control bandwidth
is required.

For the RP 3 algorithm under Framework 3, the memory
complexity is composed of the ordering units with O(Φ × N)
input buffers and the data structure of O(Φ) SN generators. Each
packet with φ processing phases requires O(φ) SN generator
updates. The additional control bandwidth for each packet is
as follows. Assume a 16-bit sequence number length and a 4-
bit phase identifier. The sequence number is updated at each
sequence phase. Assuming an average of 8 sequence phases
for each packet, 8 ∗ 20 = 160 bits are necessary for additional
control bandwidth. Again, this quantity of additional bandwidth
is negligible compared to the packet size.

As can be seen in the table, our RP 3 algorithms do not
incur significant additional complexity under Frameworks 1 and
2 when compared to the existing Hashed SN algorithm. The
complexity overhead increases however under Framework 3, in
which there is no a priori processing knowledge that can be
readily exploited.

It is important to mention that in our proposed algorithms,
only packet descriptors with the SNs move between the buffers,
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and not the full packets with the whole data. Moreover, the phase
completion trigger is simple to implement and it do not requires
any context switch or process preempting.

B. Combining Hashed SN Algorithm with RP 3 Algorithms

One may notice that the advantages of our approach are
reduced for homogeneous traffic, where most of the traffic has
similar requirements, and the number of phases for all the flows
is equal. This is a limitation of our algorithms. In such cases, our
algorithms can be combined with the Hashed SN approach [16].
Thus, the flow partition will be based not only on processing
requirements, but also on the flow identifiers.

C. Reducing the Number of SN Generators and Linked Lists

The number of processing phases may vary over a large range
of numbers. Thus a large number of linked lists has to be
maintained for the algorithm, one for each number of phases.
However, in this case, an intuitive improvement is to divide the
total potential range of numbers of processing phases into a finite
number of smaller ranges. For example, all packets that require
a total of φ processing phases may be queued in the list of index
dlog2(φ)e.

IX. CONCLUSION

In this paper, we introduced novel reordering algorithms for
parallel multi-core network processors that reduce reordering
delays without any meaningful additional cost of implementa-
tion. The algorithms are scalable and can be implemented over
general-purpose processors. We relied on the fact that all packets
of a given flow have similar required processing functions, and
therefore that we can divide these into an equal number of
logical processing phases. We then introduced three frameworks
that define the stages at which the NP learns about the number
of processing phases: as packets arrive, or as they start being
processed, or as they complete processing. In each framework,
we introduced a specific reordering algorithm and provided a
theoretical model. Finally, we analyzed these algorithms using
NP simulations, and found that reordering delays are negligible,
both under synthetic traffic and real-life traces. We also showed
how a lower variability in the delays of the logical processing
phases leads to significant improvements in the performance of
our algorithms.
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