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Abstract—Networks-on-Chip (NoCs) form an emerging
paradigm for communications within chips. In particular,
bufferless NoCs require significantly less area and power
consumption, but also pose novel major scheduling prob-
lems to achieve full capacity.

In this paper, we provide first insights on the capacity of
bufferless NoCs. In particular, we present optimal periodic
schedules for several bufferless NoCs with a complete-
exchange traffic pattern. These schedules particularly fit
distributed-programming models and network congestion-
control mechanisms. In addition, for general traffic pat-
terns, we also introduce efficient greedy scheduling al-
gorithms, that often outperform simple greedy online
algorithms and cannot have deadlocks. Finally, using
network simulations, we quantify the performance gain
of our suggested algorithms, and show how they improve
throughput by up to 35% on a torus network.

I. INTRODUCTION

A. Background

Networks-on-Chip (NoCs) form an emerging paradigm
for communications within large VLSI systems imple-
mented on a single silicon chip. In a NoC system,
modules such as processor cores, memories and spe-
cialized blocks exchange data using a network, rather
than simple shared busses as in previous systems. A
NoC is constructed from multiple point-to-point data
links interconnected by routers, such that messages can
be relayed from any source module to any destination
module over several links, by making routing decisions
at the switches.

Interestingly, despite the revolution that the NoC
paradigm is causing in computer architecture, little is
known on the capacity region of NoCs. This is espe-
cially surprising because any slight improvement in the
capacity of NoCs may have a huge impact. For instance,
NoCs are present in most personal computers currently
sold around the world [1].

There are many possible NoC topologies, as shown in
Figure 1. They include simple line and ring topologies
[2], which are widely used in optics-based networks [3]–
[5]. For instance, the Intel Sandy Bridge CPU [1], and
the IBM Cell Broadband Engine [6] use a ring-based
interconnect for their on-chip-network. The mesh and the

torus NoC topologies are also popular [7], [8]. In this
paper, we study these four main topologies: line, ring,
mesh and torus.

We are especially interested in NoCs that (a) use
bufferless switches, and (b) carry a periodic traffic. First,
bufferless NoCs are particularly interesting because they
offer a better area and power performance than those
with buffers, in exchange for an increased scheduling
complexity. In fact, NoC buffers can consume significant
dynamic and static energy, and occupy a large chip area
[9]–[12].

Second, we look at applications with a periodic traffic.
Time-critical periodic applications for embedded devices
combine ever-growing computing demands with hard-
deadline performance-guarantee requirements. These ap-
plications, such as distributed-programming models and
network congestion control mechanisms, use a periodic
pre-determined traffic pattern with tight deadlines. But
the embedded devices often cannot provide the required
hard-deadline performance-guarantees. This is because
they often rely on NoCs with best-effort communication,
which results in an unpredictable network behavior,
causing a significant application performance variability.

Our goal is to devise a periodic schedule algorithm
that can provide a capacity-optimal guaranteed service
for this traffic pattern in bufferless NoCs. We also later
compare such scheduling algorithms that use the pre-
determined nature of the periodic schedule with greedy
online algorithms that would not rely on this assumption.
We introduce a novel theoretical model of bufferless
NoC architectures, and find periodic conflict-free sched-
ules. This is illustrated in the next simple example.

Example 1. Consider a simple case presented in Figure
2, where the bufferless NoC sub-network consists of three
nodes A, B and C and two links 1 and 2 connecting
them. The traffic requirement consists of three packets
that need to be sent at each period : A → B, B → C
and A → C. The periodic schedule is created by setting
for each packet the time slot at which it is sent in each
period. Assume equal propagation times on each link,
such that each time slot is sufficient to send a packet on
a link. Assume first that the transmissions are scheduled
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Fig. 1. NoC topologies.

Fig. 2. Simple case with a three-node bufferless NoC sub-network.

TABLE I
EXAMPLE OF NON-OPTIMAL SCHEDULE

time slot link 1 link 2
1 A → B B → C
2 A → C
3 A → C

TABLE II
EXAMPLE OF OPTIMAL SCHEDULE

time slot link 1 link 2
1 A → C B → C
2 A → B A → C

online as shown in Table I. In this example, A → B is
scheduled in the first time slot. Next, packet B → C is
also scheduled in the first time slot, because link 2 is
free. Finally, A → C is scheduled in the second time
slot. It takes two slots to complete the transmission of
A → C. Therefore, the length of the total schedule is
3 time slots. As shown in Table II, the above schedule
can be optimized. In the first time slot packet A → C is
scheduled on link 1, and in the second time slot on link
2. Link 2 is free in the first time slot, therefore, packet
B → C can be scheduled. Finally, packet A → B is
scheduled in the second time slot on link 1. The links are
utilized all the time, therefore, this schedule is optimal
and reaches its full capacity. Its length is 2 time slots.

Note that if the network were buffered, then of course,
there would be no need for collision-free scheduling. The
collided packets could then be queued at the buffers.
However, the buffers would lead to significant power
and area costs.

Our suggested periodic transmission of scheduled
packets over the NoC can be complemented by best-
effort packet services at a strictly lower priority. There-
fore, our scheduling algorithms can be used to provide
a two-tier solution for both guaranteed-service and best-
effort communications in a NoC.

B. Applications

Many applications and parallel computation models
rely on a predetermined periodic traffic. We focus in
this paper on a periodic uniform complete-exchange
communication pattern and on its optimal schedule in
different topologies. This uniform complete-exchange
pattern, also known as all-to-all personalized communi-
cation, or scatter-gather pattern, is a type of collective
communication pattern for Message Passing Interface
(MPI) [13], in which all processors need to communi-
cate with all other processors. In this communication
pattern, each of the N processors in the network has
a distinct, but equal-size, message to send to each of
the remaining N − 1 processors. It is thus a highly
dense communication pattern that can result in many
link contentions [14]–[19]. This simple communication
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pattern enables many numerical parallel algorithms. For
example, it includes an increasingly large class of par-
allel algorithms, such as neural networks, large FFT
(Fast Fourier Transform) computations, parallel quick-
sort, matrix transpose, array redistribution, distributed
table lookup and bitonic sort [20]. More generally, any
multi-round algorithm where updates are sent to many
randomly-chosen processing elements can be enabled
using a topology that allows uniform communications
with updates sent to all other processing elements.

It is interesting to note that numerous applications
have been shown to allow restructuring that completely
separates the computation logic from the communication
module. Such structure complies to a well-established
programming model called Bulk Synchronous Parallel
(BSP) [21]. In BSP, programs are represented as a series
of two super-steps: first, a computation super-step, then,
a communication super-step. BSP has gained popularity
for its ability to enable predictable performance on
a variety of parallel and distributed platforms, from
super-computers to CMPs. Compilers can apply profile-
based or static code analysis to determine the pattern
in the communication super-step of a BSP application,
precompute the communication schedule for a given
NoC topology, and augment the compiled code with this
information to allow its use at runtime.

The uniform complete-exchange communication pat-
tern could also fit many end-to-end congestion control
mechanisms in which all nodes exchange information
at regular intervals. Such mechanisms can include the
estimation of network delays and/or losses in the best-
effort network; the periodic acknowledgment of received
packets; a generalized hot-spot rate and fairness manage-
ment; as well as a source-destination queue management
[22].

C. Contributions

The main contribution of this paper is the introduction
of capacity-optimal periodic schedules for uniform traffic
over bufferless NoCs, under several topologies.

The optimality of the schedule is on the capacity
utilization of the links, or in other words, the length
of the period. We also leverage the fact that the traffic
pattern is fixed to compute the schedule only once offline
(for instance just after the application compilation).
Therefore, by using an optimal offline schedule, we aim
to provide a higher capacity utilization, or a shorter
period, and hence transmit the same traffic demands with
higher throughput using the same bufferless NoC archi-
tecture. Using this optimization framework, we prove the
existence of several optimal scheduling algorithms on
different NoC topologies.

First, we present an algorithm, named Algorithm
DTNS (Degree-Two NoC Scheduling), for complete-
exchange communication in degree-two networks, e.g.,

line and ring NoC topologies. We prove its optimality
and also provide several results on its period length.

Second, we present an algorithm, named Algorithm
TNS (Torus NoC Scheduling), for complete-exchange in
N × N torus NoC topologies, and prove its optimal-
ity. We later provide lower and upper bounds on the
performance of any minimal schedule in the mesh NoC
topology. We also provide a constant bound on the ratio
between the performance of the TNS algorithm in a mesh
and its optimal performance in a torus.

In addition, we introduce a greedy latency-based
scheduling algorithm for a general traffic pattern. In this
case the input to our scheduling mechanism is the set
of flows with their bandwidths and pre-computed routes
[23]–[25]. Then our algorithm allocates the time-slots
to the flows in order to minimize the length of the
schedule period. This schedule provides both guaranteed
throughput and guaranteed latency while using bufferless
routers. Note that it could also be used in congestion-
free NoCs like optical NoCs; this is, however, beyond the
scope of the paper. Finally, using simulations, we show
that the proposed schedules outperform approximations
of previously-known online algorithms, typically by over
20% in the ring and torus topologies, and 5-15% in the
mesh topologies, depending on the number of nodes.

The rest of the work is organized as follows. We
first define the problem in Section III. Then we analyze
degree-two topologies in Section IV. We present our pro-
posed algorithm for the torus topology in Section V. In
Sections VI and VII we analyze the mesh topology and
suggest greedy scheduling algorithms. Last, we present
simulation results in Section VIII, before concluding in
Section IX.

II. RELATED WORK

The periodic traffic pattern enables us to rely on a
bufferless NoC. Providing guaranteed service using a
bufferless NoC requires finding a periodic conflict-free
schedule. Note that not all bufferless NoC designs meet
the required real-time guarantee. For example, bufferless
NoCs with deflection routing [26], [27] or dropping [28],
[29] are often characterized by a highly-unpredictable
network behavior that does not fit our requirements. In
fact, [27] shows that buffered VC NoCs have a better
performance, lower cost and complexity than buffer-
less NoCs with deflection. However, in this paper, we
consider periodic collision-free scheduling that is pre-
determined and offline, and therefore, does not waste re-
sources on longer routes as in deflection routing. Recent
work [30] identified the importance of congestion control
in bufferless NoCs and presented source throttling-based
mechanism to reduce congestions. A bufferless NoC
architecture that provides guaranteed service was intro-
duced in Aethereal [31]–[33]. The Aethereal architecture
relies on a greedy resource-reservation algorithm that is
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designed to adapt to changing traffic patterns. In particu-
lar, the UMARS algorithm relies on an offline scheduling
by ordering the flows by their bandwidth requirements
prior to scheduling them greedily by shortest and less
contented route [23]. Other works suggest algorithms
for route optimization with multiple paths and shortest
latency by keeping in-order arrivals in offline [24], [34]
and online [25], [35] modes. However, all these works
do not explicitly attempt to achieve the network capacity
and do not provide an optimal solution for the period
length. These papers can nicely extend our work on
non-uniform traffic by providing efficient algorithms for
routing and mapping, which we do not consider in this
paper.

In addition, there have been other works on providing
guaranteed service in buffered NoCs. Most suggested
architectures, like Nostrum, have relied on router buffers
to provide guaranteed service, for instance by using
temporally-disjoint networks [36], [37]. Slot allocation
in a TDM network-on-chip was introduced in [38]. How-
ever it assumes the existence of buffers and virtual chan-
nels in the routers, and does not attempt to provide an
optimal scheduling. Another common approach relies on
bounding the traffic rate using a leaky-bucket framework,
while still relying on wormhole routing [39]. The packet
injection into the network is controlled and bounded to
preserve quality-of-service. Additional papers also focus
on collective communication patterns in the NoCs [40]–
[42]. However, they all assume wormhole routing and
buffered NoC. Finally, it is also possible to provide
statistical instead of deterministic guarantees [43].

An alternative to TDM is SDM, which divides the
links by space and not by time. [44] proposes a commu-
nication scheme by dividing the resources of a traditional
packet-switched NoC between a packet-switched and a
circuit-switched sub-networks. Another way to construct
congestion-free network is to use simple structures such
as rings. [45] presents a network design that is based on
the construction of multiple virtual rings and provides
scalable aggregate throughput and absence of packet
loss. Further, [46] introduces design principles of a ring
network with spatial bandwidth reuse.

From the theory perspective, bufferless routing was
intensively studied under various of names and models.
For example, Direct Routing [47] defines the problem
such that for a given set of packets with corresponding
source and destination, the objective is to schedule the
injections times of the packets. In different versions of
the problem the specified path can be given as an input to
the algorithm or defined as another output. The solution
requirement is to avoid collisions, and to minimize
the schedule period time. [47] presents a randomized
O(d2 log2 n)-approximation algorithm for d-dimensional
Mesh for general traffic pattern. They show that finding
an optimal Direct Routing is NP-hard, and for general

networks, they show that this problem cannot be eas-
ily approximated. Also, in unbuffered optical networks,
[48] considers how to schedule packets optimally given
several wavelengths.

Another related problem is hot-potato-routing studied
in [49]–[51], where for a given set of packets, where
each packet consists of a source vertex, a destination
vertex and an injection time. However, the packets are
deflected from their shortest route, therefore the provided
solution is not optimal. In addition, packet scheduling
in bufferless linear networks was investigated before
in offline [52] and online [53] versions. However, no
assumption on uniformity or periodicity of the traffic was
considered, therefore they could not provide an optimal
solution. The baked potato routing algorithm [54] was
also among the first to consider switch scheduling in a
bufferless network for periodic traffic. However, it only
provided a solution for a spanning tree network.

III. PROBLEM DEFINITION

In the paper we investigate a bufferless network-on-
chip architecture in which the traffic is produced under
some periodic traffic demand pattern. The objective is to
find a periodic schedule ∆ with minimal period length
S needed to service traffic pattern λ, i.e. to maximize
the capacity utilization. The periodic schedule ∆ has
to provide congestion-free routing, so that each packet
reaches its destination using a shortest route.

Formally, consider a network of n nodes. Each node
is composed of a router connected to up to 4 neigh-
bor nodes and to a single local module (traffic pro-
ducer/consumer unit). The nodes do not buffer, drop or
deflect packets.

Assume that the traffic is produced under some pe-
riodic traffic demand pattern. Denote as uniform or
complete exchange a traffic pattern in which each local
module of a node, during each period, injects exactly
one packet destined to each local module of other
nodes in the network. In other words, the normalized
traffic demand pattern is λi→j = 1,∀i, j, where i and
j are nodes in the network. Further assume that all
link capacities are equal to a normalized unit capacity,
equivalent to sending one unit-sized packet per time-slot,
and denote by Ctot the total link capacity, i.e. the number
of links in the network.

Note that larger packets can be subdivided into the
unit-size packets that we consider, and which are also
sometimes called flits. Then, multi-flit packets can be
sent over several schedule periods. These flits can be
queued in the nodes before being injected into the
network, but once they enter the network, they are not
queued in any router before reaching their destination.
In the paper, we will use the generic term of packets to
denote these unit-sized flits.

At each time slot, each router can send a single packet
to each adjacent router or to its associated module.
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Therefore, each router can receive up to 5 packets (from
the up-to 4 adjacent routers and the module), and must
forward them immediately at the next slot. Note that
since the schedule is periodic and pre-determined, there
are no deadlocks and no livelocks. Finally, we say that
an algorithm A is optimal, if A produces a minimal
period length schedule for the complete-exchange traffic
requirements.

IV. OPTIMAL ALGORITHM FOR COMPLETE
EXCHANGE IN DEGREE-TWO NOCS

A degree-two NoC is a NoC topology in which all
nodes have a degree of either one or two. There are two
types of degree-two NoCs. We denote by n-Line a NoC
consisting of n nodes connected by n− 1 bi-directional
links in a line topology, as illustrated in Figure 1(a); and
by n-Ring a NoC consisting of n nodes connected by n
bi-directional links in a ring topology, as illustrated in
Figure 1(b).

A. DTNS Scheduling Algorithm

We start by designing a collision-free scheduling al-
gorithm for complete-exchange in degree-two networks,
called DTNS (Degree-Two NoC Scheduling). Define a ℓ-
hopped packet as a packet whose source-to-destination
distance in the shortest route is ℓ links. The algorithm
is built in the following way. Each node i at each time
slot t operates according to the scheme:

• If in time slot t− 1 the node receives a packet for
forwarding, then it forwards it at time t.

• Otherwise, it starts transmitting an ℓmax -hopped
packet, where ℓmax is the largest number of hops
ℓ of all packets left with the node i as their source
node.

As an example, note that DTNS for n = 3 produces
the schedule presented in Table II. We obtain the fol-
lowing properties of the DTNS algorithm on degree-two
networks.

Property 1 (n-Line). Given an n-Line of n nodes,
the schedule period length SL(n) of the DTNS-based
schedule is:

SL(n) =

{
n2

4 if n is even;
n2−1

4 if n is odd.
(1)

Proof: The traffic in the n-Line network can be
separated into two distinct groups, one for each direction.
Therefore, for simplicity, we consider only a single
direction in the analysis. By the rules of a DTNS
algorithm the packet from node 1 to node n (1 → n),
as presented in Figure 1(a), with propagation time n−1
slots is transmitted first. It is easy to see that during its
transmission, all the packets 1 → a and a → n, where
a = 2, . . . , n−1 are transmitted. Next, packet 2 → n−1
is transmitted in n − 3 time slots, during which all the

packets 2 → a and a → n−1 where a = 3, . . . , n−2 are
transmitted. Summing over all successive packets times,
we directly obtain the following schedule length:

SL(n) =

{∑n
2 −1
i=0 (n− 2i− 1) = n2

4 if n is even;∑n−1
2 −1

i=0 (n− 2i− 1) = n2−1
4 if n is odd.

Property 2 (n-Ring). Given an n-Ring of n nodes,
the schedule period length SR(n) of the DTNS-based
schedule is

SR(n) =

{
n2

8 if n is even;
(n−1)(n+1)

8 if n is odd.
(2)

Proof Outline: The proof is very similar to the
proof of Property 1, and consists of summing over all
successive packet times. We then obtain:

SR(n) =

{∑n
2 −1
i=1 i+ n

4 = n2

8 if n is even;∑n−1
2

i=1 i = (n−1)(n+1)
8 if n is odd.

Note that the above property assumes that consecutive
periods might overlap. In other words, the transmissions
of a new period can be started before the last period
was ended. Otherwise, if overlapping is forbidden, we
obtain a worse result for even n’s. This is because over-
lapping enables an alternate routing of n

2 -hop packets:
one period in clockwise direction, and the next period in
counterclockwise direction. Without overlap, we obtain
the following result:

Property 3 (n-Ring without overlap). Given an n-Ring
of n nodes in which period overlapping is forbidden,
the schedule period length SR,no(n) of the DTNS-based
schedule is

SR,no(n) =

{
n(n+2)

8 if n is even;
(n−1)(n+1)

8 if n is odd.
(3)

Proof Outline: The proof is similar again to the
proofs above, and simply consists of summing over all
successive packet times. We then obtain:

SR,no(n) =

{∑n
2
i=1 i =

n(n+2)
8 if n is even;∑n−1

2
i=1 i = (n−1)(n+1)

8 if n is odd.

The DTNS algorithm gives a higher priority to the
retransmitted packets over new packets at each node,
and thus avoids congestions on several types of NoC
topologies, as formulated in the next theorem.

Theorem 4. The DTNS algorithm is optimal on n-Lines
and n-Rings with complete-exchange traffic.

Proof: The proof is based on the fact that the
bottleneck links are always utilized in the N-Line, and



TECHNICAL REPORT TR12-06, TECHNION, ISRAEL 6

likewise that all the links are always utilized in the n-
Ring (they are all bottleneck links). As a consequence,
no other schedule can be more efficient using a smaller
period length S.

First we prove optimality on the n-Line. We consider
two cases.

Case 1: n = 2k + 1 is odd. Let lmid = (k, k + 1) be
the directed link that connects between node k and node
k + 1. It is easy to verify that lmid requires to deliver
k · (k + 1) = n2−1

4 packets, which is clearly a lower
bound of the period length.

Case 2: n = 2k is even. The number of packets that
lmid requires to deliver is (k/2)2 = n2/4.

Next, we prove optimality on the n-Ring. Again, we
consider two cases.

Case 1: n = 2k + 1 is odd. It is easy to see that
each link transmits i times i-hopped packet, when i =
1, . . . , k. Summing the transmission of all the packets we
get the length of the optimal period S(n) = (n−1)(n+1)

8
which is equal to the result in Equations (2) and (3).

Case 2: n = 2k is even. The k-hopped packets have
two shortest paths. Therefore, in each period k-hopped
packets are transmitted only in one direction, while
the links on the another direction are idle. Therefore
the length of the period consists of the time for the
transmission of i-hopped packets (i = 1, . . . , k − 1),
which is equal to

∑k−1
i=1 i time slots, and the time for

the the transition of the k-hopped packets, which is
equal to k time slots. Summing above, we get the result
in Equation (3). Of course, this result is not optimal,
because of the idle links. If overlapping of the scheduling
between the two adjacent periods is allowed, then the
idle links can used to transmit the k-hopped packets of
the next period, and thus the average number of time
slots to schedule the k-hopped packets is equal to k

2 .
Thus, we get the result in Equation (2).

V. OPTIMAL ALGORITHM FOR COMPLETE
EXCHANGE IN TORUS NOCS

In this section, we present an algorithm, named TNS
(Torus NoC Scheduling), which is designed to provide a
periodic schedule over the Torus NoC topology (Figure
1(c)) for the complete-exchange traffic pattern. We will
demonstrate that TNS is guaranteed to achieve the net-
work capacity in an N×N Torus network with n = N2

nodes, using the same setting assumptions of uniform
traffic and unit capacities.

The TNS algorithm provides the injection time to the
network and the minimal-length route for each packet
within the period, based on the source and destination
of the packet. It also guarantees that there are no packet
collisions. Therefore, the TNS algorithm does not rely
on buffering or dropping packets, and it also has no
deadlocks.

A. TNS Algorithm Description

Consider an N × N torus network with n = N2

nodes, and total allowed capacity Ctot for all links in the
network. Each node is composed of a router connected
to up to 4 neighbor nodes and to a single local module
(traffic producer/consumer unit). Denote the nodes as a
set of tuples {(x, y) | x, y ∈ {1, ..., N}}, where the first
entity refers to the rows on the torus and the second
entity refers to the columns on the torus. Denote by
DIST (a, b) = min{ |a−b| , N−|a−b| }, the distance
between a and b, for every a, b ∈ {1, ..., N}.

We now present the TNS algorithm in detail. Intu-
itively, TNS decomposes the period of length S into
several phases of unequal lengths. In each phase, it trans-
mits all the packets between all source-destination pairs
that have the same maximum distance across dimensions.
TNS further decomposes each phase into several sub-
phases called epochs. In each epoch, it connects nodes
that are not only at the same maximum distance, but
that also follow a given pattern. We now define the TNS
algorithm more formally.

Phases — The schedule period is divided into ⌊N/2⌋
phases. A packet belongs to the envelop of a square of
nodes (i+1)× (i+1), if the maximum distance across
all dimensions between its source and its destination is
equal to i. In phase i, packets in all the envelops of
squares of size (i + 1) × (i + 1) are scheduled to be
transmitted.

Epochs — Phase i consists of 2i epochs for 1 < i <
N/2. If N is even, phase N/2 consists of i+1 epochs.
On epoch j ∈ {0, 1, ..., 2i − 1} of phase i, each node
transmits four packets to four different destinations by
crossing exactly i+ j′ links, where j′ = j, if j ≤ i and
otherwise, j′ = j−i. First i links in one direction and the
other j′ links in the perpendicular direction, as explained
below. The destinations are given by the following three
steps, for each of the four packets, one for each direction,
as illustrated in Fig. 3:

1) First, the packet follows a direct traversal walk on
i links;

2) Then, in epoch 0 it stops; in the epoch
(j|0 < j ≤ i), it “turns right” in a clockwise di-
rection; in the epoch (j|i < j < 2i), it “turns left”
in counter-clockwise direction.

3) Finally, there is another direct traversal walk
through j′ additional links.

Thus, epoch j of phase i takes i + j′ time-slots. Fi-
nally, after completing all the N/2 phases, all the pairs
of nodes in the Torus have been connected and have
transmitted a packet exactly once.

Now that we have formally defined TNS, we show in
which epoch each packet is transmitted. First, for a given
source node (a, b) and destination node (c, d), denote by
(a, b) → (c, b) → (c, d) a shorter path that goes from
(a, b) to (c, d) via (c, b). If DIST (a, c) ≥ DIST (b, d),
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Fig. 3. Two epochs in phase i = 3. (a) illustrates epoch j = 1, with
the traversal walk and a turn in a clockwise direction. (b) illustrates
epoch j = 3+1 = 4, with the traversal walk and a turn in a counter-
clockwise direction.

then we say that this path is a long-then-short shorter
path. (Note that the TNS algorithm uses only long-then-
short shorter paths.) The algorithm sets a unique phase
i and epoch j for each source-destination pair, denoted
by the pair (i, j). For instance, consider a packet from
source node (a, b) to destination node (c, d). The phase
i in which the packet is transmitted is given by:

i = max {DIST (a, c), DIST (b, d)} .

Moreover, the epoch in which the packet is transmitted
is either j = j∗ or j = j∗ + i, where

j∗ = min {DIST (a, c), DIST (b, d)} .

The exact epoch is decided by the direction (clock-
wise or counter-clockwise) of the traversal walk of a
long-then-short shorter path between source node (a, b)
and destination node (c, d). If there exist two different
long-then-short shorter paths (i.e., for the case where
DIST (a, b) = DIST (c, d), that is i = N/2 for even
N ), then the packet is delivered on epoch j = j∗.

Lemma 1 (TNS length). Given an n = N ×N Torus,
the length of the schedule period ST (n = N × N) of
the TNS-based schedule is:

ST (n = N ×N) =

⌊N/2⌋∑
i=1

2

2i∑
j=i

j − 3i


=

N3 −N

8
=

n
√
n−

√
n

8
, (4)

for odd N and

ST (n = N ×N) =
N3 + 2N

8
=

n
√
n+ 2

√
n

8

for even N . Furthermore, when overlap is forbidden, the
result for even N becomes

ST (n = N ×N) =
N3

8
+N =

n
√
n

8
+

√
n

Proof: Consider an odd N . For N × N Torus, all
connections between all the nodes are covered within
⌊N/2⌋ phases. It is the maximum distance across all

dimensions between the sources and the destinations of
all the packets.

The shortest epoch in the phase i is the one that
transmits packets in one dimension, i.e., c = a or
d = b. Its length is i time slots, because packets with
latency of i hops are scheduled within it. The longest
epoch in the phase i is the one that transmits packets
between the corners of the (i + 1) × (i + 1) square
(DIST (a, c) = DIST (b, d)). Its length is 2i time
slots. Other epochs are scheduled twice, one for each
direction. Therefore, phase i consists of one epoch for
one-dimensional packets, one epoch for corner packets
and two epochs for other packets, one in each direction.
Thus, the length of phase i is

ST,i(n = N ×N) = 2

2i∑
j=i

j − 3i = 3i 2 (5)

time slots, for every i < N/2. For even N , the last
phase (phase N/2) has only N/2 + 1 epochs that takes∑N

j=N/2 j time slots. It is simply counted differently
whether or not there is overlap.

Theorem 5. The TNS algorithm is optimal on Torus
NoCs topology with complete-exchange traffic.

Proof: Depending on whether N is odd or even.
These two cases are considered separately.

Case 1: N is odd: Denote L(i,j)→(k,l) as the
minimum number of hops that a packet passes from node
(i, j) to node (k, l) (i, j, k, l ∈ {1, ..., N}), and it is given
as the sum of the distances on both axes:

L(i,j)→(k,l) = DIST (i, k) +DIST (j, l). (6)

For the uniform traffic, the total number of hops for all
packets in a period St(N) is given by:

Lt =

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

L(i,j)→(k,l) =
N3(N2 − 1)

2
. (7)

Divide Lt by ST using Equation (4), and get

Ctot = Lt/ST = 4N2, (8)

where Ctot is the capacity of the torus, i.e., the total
number of available links in the network. It indicates
that by this scheduling algorithm, all the links are always
utilized during the transmission. Thus, the algorithm is
optimal.

Case 2: N is even: Denote edge packets as the packets
that have two paths with equal distances of N/2 in one
of the dimensions, for a shortest routing from source
node to the destination node. For example, if the equal
distance is in the X axis, the source node is (i, k),
then the destination node is ((i + N/2) (mod N), l).
We first consider the case when overlapping is allowed
and calculate the transmission of the edge packets in
this period twice on account of their transmission in
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the next period. The duration of transmission of the
packets that are not the edge packets is the duration of
the transmission of phases 1 to N/2− 1:

St,N/2−1 =

N/2−1∑
i=1

2
2i∑
j=i

j − 3i


=

N(N − 1)(N − 2)

8
(9)

time slots. The sum of latencies of the packets that are
not the edge packets is:

Lt, non-edge =

= 2N(N − 1)
∑
i

∑
k ̸=(i+N/2) mod N

DIST (i, k) =

=
N3(N − 1)(N − 2)

2
. (10)

When dividing the sum of latencies Lt, non-edge by the
time slots St,N/2−1, we get 4N2, which is equal to the
total capacity of the links Ctot, and indicates that all links
are utilized all the time during the transmission. Thus,
for the transmission of non-edge packets, the scheduling
algorithm is optimal. The edge packets are transmitted in
the phase N/2. As we seen before, the edge packets have
two shortest paths. Therefore, they can be transmitted
twice during a single phase, each on the one of the two
shortest paths. Therefore, the duration of transmission of
the edge packets twice is the duration of phase N/2:

SN/2 =

2
2i∑
j=i

j − 3i

∣∣∣∣∣
i=N/2

= 2
2i∑
j=i

j−3N

2
=

3N2

4
.

(11)
By considering all possible cases, we find that the sum

of the latencies of the edge packets is:

Lt,edge =

= 2N2
∑
i

∑
k=(i+N/2) mod N

DIST (i, k) +

+2N
∑
i

∑
k

DIST (i, k) =

= 2N2 ·N ·N/2 + 2N

N

N/2−1∑
d=1

2d+N/2

 =

= N4 +N4/2 =
3N4

2
. (12)

Therefore, the following equality holds:

Ctot = 4N2 =
2Lt,edge

SN/2
,

which means that transmitting the edge packets twice
during the phase N/2 maximally utilizes the links. One
can consider the second transmission of the edge packets
for the next schedule period. We showed that with
uniform traffic and unit link capacities, the links in the

Torus are always utilized, hence the algorithm is optimal.

VI. SCHEDULING BOUNDS FOR COMPLETE
EXCHANGE IN MESH

We now want to provide some intuition on the sched-
ule period in a NoC Mesh topology (Figure 1(d)).
In such a topology, the TNS algorithm is not optimal
anymore, and we have not found any characterization
of a generally optimal algorithm. Therefore, we will
provide instead lower- and upper-bounds on the schedule
period, and compare it with the torus schedule period.

A. Lower Bound for Mesh Schedule Length

We now establish a lower bound on the period length
in the Mesh NoC topology.

Theorem 6. Given an n = N × N Mesh, the period
length SM (n = N ×N) of any schedule for complete-
exchange traffic satisfies{
SM (n = N ×N) ≥ N3

4 = n
√
n

4 if N is even,
SM (n = N ×N) ≥ N3−N

4 = n
√
n−

√
n

4 if N is odd.
(13)

Proof: As previously, the proof relies on computing
the load on the bottleneck links, and using this load
for the lower-bound on the period length. In the proof
we assume XY routing, and calculate the load on the
link that transmits the largest number of packets (the
bottleneck link). The lower bound of the period length
is the time which is taken to transmit the packets over
the bottleneck link.

According to the properties of the XY routing, each
horizontal link ((i, j) → (i + 1, j)) transmits packets
from j nodes ((i, 1), (i, 2), . . . , (i, j)) to N · (N − j)
nodes (k, l), where k = 1, . . . , N and l = i+ 1, . . . , N .

Thus, the number of packets Pi,j→i+1,j that are trans-
mitted on link ((i, j) → (i + 1, j))(N) in each period
is:

Pi,j→i+1,j(N) = j ·N · (N − j) (14)

Similar calculations can be obtained for the vertical
links.

Equation (14) is maximized on links where j = N
2

when N is even and j = (N − 1)/2 when N is
odd, therefore the most utilized link transmits Pmax(N)
packets:

Pmax(N) =

{
N3

4 if N is even;
N
4

(
N2 − 1

)
if N is odd.

Therefore,

SM (n = N ×N) = Pmax

and the result stands.
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B. Upper Bound for Mesh Schedule Length Using TNS

We now want to provide an upper bound on the
period length in a mesh. The application of the TNS
algorithm in a mesh topology is as follows. Consider
an instance of the TNS algorithm on a 2N × 2N torus.
The N ×N mesh is embedded in a 2N × 2N torus by
an N ×N subgraph combined from nodes (i, j), where
N/2 < i, j ≤ 3N/2. Using the TNS algorithm on the
2N × 2N torus, the shortest paths between the nodes in
this subgraph are routed within the subgraph (contrary
to some other shortest paths outside this subgraph that
are routed through the boundaries of the torus). For
the above N × N mesh subgraph we use the TNS
scheduling of the full 2N × 2N torus, transmitting only
the packets between the nodes of the N × N mesh
subgraph, and leaving empty the scheduling slots for
the packets outside the subgraph. We can now prove the
following result:

Theorem 7. Let SM (n = N × N) denote the minimal
schedule length in an n = N × N Mesh, and ST (n =
N ×N) denote the minimal schedule length in an n =
N ×N Torus. Then SM (n = N ×N) satisfies:

SM (n) ≤ ST (4n) (15)

Proof: From Lemma 1, we know the schedule
length ST (n) of TNS in an N × N torus. It is easy to
see that ST (n = N×N) grows as O(N3), i.e. increases
by a factor of 8, for doubling N . Moreover, we showed
that we can schedule an N × N mesh using the TNS
algorithm applied in a 2N × 2N torus. The length of
this schedule is ST (4n = 2N × 2N). Therefore, the
upper bound of SM (n) is ST (4n).

The results of Theorems 6 and 7 provide an asymptotic
ratio of at most 4 between the upper-bound and the
lower-bound, because

n
√
n

4
≤ SM (n = N ×N)

≤ ST (4n = 2N × 2N) =
8n

√
n+ 4

√
n

8
.

Therefore, we are able to determine the growth rate of
the periodic schedule length within a 4 + 2

n - constant
approximation.

VII. GREEDY SCHEDULING ALGORITHMS FOR
GENERAL PERIODIC TRAFFIC PATTERN

The generalized scheduling problem of non-uniform
traffic is NP-hard [47]. Therefore, we want to design
an efficient heuristic algorithm to schedule an arbitrary
traffic pattern in a general NoC topology with a general
traffic demand pattern.
Algorithm Overview: Next, we introduce the Latency-
based Scheduling Algorithm. The input of the algorithm
is a periodic flow requirement that is given together with
a predefined routing. The algorithm outputs a schedule

that guarantees periodic service of the traffic without any
collisions.

Before defining the algorithm formally, let’s first pro-
vide some intuition. The algorithm runs offline. It relies
on a centralized scheduler that uses given traffic demands
and routes to provide a schedule. Its goal is to make
the schedule period as small as possible. Intuitively, the
packets that are hardest to schedule are those that take
the most delay in their transmission, since they occupy
more slots and therefore can experience more conflicts.
Therefore, to minimize conflicts, in the latency-based
algorithm, we first schedule the packets with the longest
latencies.

Note that in the example of Figure 2, the latency-based
scheduling will always produce the optimal schedule that
is shown in Table II, while a random greedy scheduling
can produce either of the two schedules. We will show
in simulations below that latency-based heuristics also
often work better in more complex cases as well.
Algorithm Description: Let’s now formally introduce
the latency-based scheduling algorithm. We first consider
the given list of traffic demands, and sort all traffic
demands by latencies in a decreasing order. Specifically,
denote by l(di) the latency of a flow demand i. It is
defined as the length of its predefined route between the
source and the destination nodes. Assuming for n flow
demands that l(d1) ≥ l(d2) ≥ . . . ≥ l(dn), then the
ordered set is (d1, d2, . . . , dn).

The scheduler considers an empty slot table consisting
of links on one axis and time slots on the second axis,
for the switching schedule [31] (as illustrated in Tables I
and II), and successively attempts to fill it. To do so, the
algorithm iterates over the set of unallocated flows, and
each time picks a flow demand with the largest latency,
which is defined by the number of hops in the flow route.
It then attempts to schedule the flow demand by placing
it in the earliest available time-slots. Specifically, given
the set of flow demands ordered by the latency, from the
largest to the smallest, (d1, d2, . . . , dn), the scheduler
picks demand d1 and removes it from the set. For all of
the node routers on the flow route, it allocates the earliest
available time-slots. The injection time of the flow is the
allocated time-slot in its first node router on the route
(as also described in [23]). When the flow demand set is
empty, all the flows are allocated. The period length is
set as the latest allocated time-slot on all the routers. For
example, the period lengths of the schedules in Tables I
and II are 3 and 2, respectively.

VIII. SIMULATIONS

A. Baseline Random-Greedy Algorithm

We first define the random-greedy algorithm as a
baseline in our simulations. Our goal is to approximate
the typical algorithms that consider traffic pattern de-
mands in an online fashion, even though we compute
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our schedule only once at the start in an offline way.
To approximate online computations, we consider the
demands of the traffic pattern in a random order. To do
so, we run a random permutation of all the demands, and
then consider them one after the other. In other words,
unlike in our latency-based scheduling algorithm, we do
not order flows by latency before scheduling them. We
skip the ordering by latency step of our latency-based
scheduling algorithm. Therefore, the scheduler iterates
over a set of unallocated flows, randomly picks one and
attempts to schedule it in a greedy manner, by placing
it in the earliest available slots.

While the online random-greedy algorithm obtains a
single schedule, we can obtain a better result in our
offline setting. To do so, we run the algorithm many
times using different random permutations of the demand
order, and obtain the schedule with the lowest period
length out of all runs. In our simulations graphs we de-
note the best simulation run by random-greedy offline. In
the figures 4 we show the distribution of the performance
of the different runs of the algorithm.

B. Period Length with Complete Exchange Traffic

We simulate three NoC architectures: Ring, Torus and
Mesh. We assume a complete exchange traffic pattern
with a unit-sized packet to send in each period from
each source to each destination. The simulations are
written in Matlab. Fig. 4 plots the distribution of the
period length S in each of the three NoC topologies,
given several algorithms. First, Fig. 4(a) plots the period
length distribution in an N-Ring topology with N = 16.
It compares the performances of the random-greedy and
latency-based greedy algorithms, described in Section
VII, together with the optimal TNS algorithm. We re-
mind that random-greedy is meant to approximate the
performance of an online algorithm that would service
traffic requests in their random order of arrival. On the
other hand, the other algorithms attempt to benefit from
the fact that the entire traffic demand pattern is known in
advance. To obtain an approximate practical distribution,
each of the greedy algorithms is run 100 times.

We can see that TNS manages to schedule all packets
within 33 slots; while the random-greedy algorithm
needs between 39 and 47 slots with an average of
41.93, and the latency-based algorithm improves upon
the random-greedy algorithm by reaching between 35
and 42 slots with an average of 37.94. Next, Fig. 4(b)
plots the period length distribution in an N ×N Torus
topology with N = 8, i.e. N2 = 64 nodes. Again,
we can see that TNS, the optimal algorithm, performs
significantly better than the greedy algorithms, with a
meaningful difference with even the best greedy result
out of 100 runs. Last, Fig. 4(c) plots the period length
distribution in an N × N Mesh topology with N = 8,
i.e. N2 = 64 nodes. This time, we do not know the

optimal algorithm. Yet we see that the distributions of the
random-greedy and the latency-based greedy algorithms
are disjoint after 100 runs, indicating that latency-based
significantly outperforms random-greedy in this topol-
ogy.

C. Scaling

We now want to study how scaling N impacts the
results. We define speedup as the performance ratio
of a specific algorithm versus the average performance
of the basic random-greedy algorithm. The higher the
speedup, the better the performance gain. Fig. 5 shows
the speedup gained by several algorithms described
versus the average performance of the random-greedy
algorithm achieved in our simulations. The three sub-
figures illustrate the three different NoC topologies: the
Ring with N nodes, the N ×N Torus, and the N ×N
Mesh. In all the sub-figures, N varies from 2 to 10. For
each N we run 100 iterations of random greedy and
latency-based algorithms.

In all sub-figures, we show the best speedup result
for the random-greedy algorithm (when compared to its
average result). We also only show the best result for
the latency-based algorithm, since it is run in offline
mode, and the developer can run several iterations in
order to use the best result. For the Ring and Torus
we also compare with the optimal TNS algorithm. In
all topologies, we can see that the variances tend to
decrease as N is scaled. We can also notice successive
improvements when going from online to offline mode,
by considering the speedup of the best random-greedy
run vs. its average run. Next, we can see a further
improvement given the best latency-based run compared
to the best random-greedy run. Finally, the optimal
algorithm clearly outperforms the greedy algorithms in
most cases.

D. Non-uniform Traffic

Next, we compare the algorithms using non-uniform
traffic. We rely on the permutation synthetic pattern.
The permutation pattern is a random traffic pattern
where each node sends exactly one packet to exactly
one random node, and receives exactly one packet from
exactly one random node. Fig. 6 shows the distribution
of the simulation results with the random-greedy and
latency-based algorithms on the 8 × 8 Torus and 8 × 8
Mesh topologies for the permutation traffic pattern. It
is generated using several random simulation runs. In
all cases the latency-based algorithm achieves a better
distribution.

E. Analytical Evaluation

We now want to study the tradeoff between the
additional capacity needed in the Torus NoC topology
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Fig. 4. Period length distribution for different topologies (smaller is better). The latency-based algorithm clearly outperforms the baseline
random-greedy algorithm in all topologies. In addition, none of these algorithms can yield the same performance as our optimal DTNS and
TNS algorithms in Ring and Torus.
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Fig. 5. Speedup for different topologies when compared to the average random-greedy online performance. The offline random-greedy algorithm,
defined as its best run out of 100, improves upon the average online performance. The offline latency-based algorithm further improves the
performance. The optimal algorithms in Ring and Torus provide a speedup above 20% in all cases.

7.5 8 8.5 9 9.5 10 10.5 11 11.5
0

2

4

6

8

10

12

14

Slots

D
is

tr
ib

ut
io

n

 

 

random−greedy
latency−based

(a) Torus

10 11 12
0

2

4

6

8

10

12

14

16

18

20

Slots

D
is

tr
ib

ut
io

n

 

 

random−greedy
latency−based

(b) Mesh

Fig. 6. Period length distribution with the permutation traffic pattern.
In all cases the latency-based algorithm achieves a better distribution.

when compared to the Mesh NoC topology, and the
resulting additional performance. Figure 7 compares the
performance ratio and the capacity ratio of the Torus and
the Mesh NoC topologies.

3 4 5 6 7 8 9 10
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N

R
at

io

 

 
Performance ratio
Capacity ratio

Fig. 7. Comparison of the performance ratio and the capacity ratio
of the Torus and the Mesh using average online performance random-
greedy algorithm.

• The performance ratio is defined as the ratio of
the average period length in the random-greedy
algorithm given the Torus topology, by the same
parameter given the Mesh topology.

• The capacity ratio is defined as the ratio of the link
capacities of the Torus versus the Mesh given N ,
i.e. Torus capacity

Mesh capacity = N2+N
N2 .
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Fig. 8. Period length as function of number of nodes of the optimal
algorithms in line, ring and torus topologies.
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Fig. 9. Period length as function of the total link capacities of the
optimal algorithms in line, ring and torus topologies. The capacity of
a single link between two adjacent nodes is equal to 1.

We can see that as we scale the topologies, the
performance ratio seems to stabilize around 1.68, while
the capacity ratio converges to 1. At first look, this
might indicate that the torus topology is more adapted.
However, bear in mind that torus links might need to be
longer, and therefore their cost might be higher when
compared to mesh links than indicated in this simplistic
model. On a more theoretical level, notice that the ratio is
indeed always between 1 and 8, as proved in Theorem 7.

Next, we compare the length of the optimal schedule
of DTNS and TNS algorithms under the line, ring and
torus topologies as a function of the number of nodes
(Figure 8) and a function of the total link capacities
(Figure 9). The graphs were obtained using Properties
1 and 2 and Lemma 1. Note that the results of existence
of overlapping periods is negligible with a large number
of nodes (and links) and, therefore, we did not refer to it
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Fig. 10. Comparison of throughput of DTNS and TNS algorithms
vs. the achievable capacity as function of the number of nodes.

in the plots. The results show the gained speedup of torus
over degree-two topologies, and the gained speedup of
ring over line.

Next, we compare the throughput of the DTNS algo-
rithm in the line and the ring, and the TNS algorithm in
the torus, with the achievable capacity in the networks
under varying number of nodes. Figure 10 shows that
the DTNS in a line topology is not capable of achieving
full capacity, because the links in the middle of the line
transmit more packets than the links closer to the edges
of the line. However, DTNS in ring topology achieves
full capacity under all number of nodes, as proved in
Theorem 4. Finally, TNS in a torus topology achieves
full capacity with odd N , and almost achieves capacity
with even N . Note that it is optimal in the sense that no
other schedule can achieve a better throughput in a torus
topology, as proved in Theorem 5. Finally, also note that
given a number of nodes, it is the torus topology that
scales best, since it grows as Θ(

√
n).

IX. CONCLUSION

In this paper, we provided several periodic scheduling
algorithms for bufferless NoCs, that are designed to
meet the hard communication deadlines of real-time
applications, applications based on the BSP program-
ming model, and network congestion-control applica-
tions. In particular, we introduced DTNS and TNS
scheduling algorithms that were proved to be optimal
for complete exchange traffic on degree-two and torus
networks. We also provided an application of the TNS
algorithm on mesh NoCs, and showed that it achieves
a constant bounded schedule length compared to the
optimal scheduling. Then, we provided a Latency-based
scheduling algorithm for general periodic traffic pattern.
We showed that latency-based scheduling algorithm is
more efficient than random greedy scheduling on such
NoC topologies as rings, tori and mesh.

In future work, we would like to investigate the
following open problems: proving that the collision-free
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scheduling problem for periodic arbitrary traffic is NP-
hard, providing improvements to our Latency-based
algorithm, and to apply our results to other collision-
free networks, like optical networks, which consist of
arbitrary topologies.
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