
TECHNICAL REPORT TR12-04, COMNET, TECHNION, ISRAEL 1

On Finding an Optimal TCAM Encoding Scheme
for Packet Classification

Ori Rottenstreich∗, Isaac Keslassy∗, Avinatan Hassidim‡, Haim Kaplan§, Ely Porat¶
∗Technion, {or@tx,isaac@ee}.technion.ac.il

‡Google Israel and Bar-Ilan University, avinatanh@google.com
§Tel Aviv University, haimk@post.tau.ac.il
¶Bar-Ilan University, porately@cs.biu.ac.il

Abstract—Hardware-based packet classification has become an
essential component in many networking devices. It often relies
on TCAMs (ternary content-addressable memories), which need
to compare the packet header against a set of rules. But efficiently
encoding these rules is not an easy task. In particular, the most
complicated rules are range rules, which usually require multiple
TCAM entries to encode them. However, little is known on the
optimal encoding of such non-trivial rules.

In this work, we take steps towards finding an optimal encoding
scheme for every possible range rule. We first present an optimal
encoding for all possible generalized extremal rules. Such rules
represent 89% of all non-trivial rules in a typical real-life
classification database. We also suggest a new method of simply
calculating the optimal expansion of an extremal range, and
present a closed-form formula of the average optimal expansion
over all extremal ranges. Next, we present new bounds on the
worst-case expansion of general classification rules, both in one-
dimensional and two-dimensional ranges. Last, we introduce
a new TCAM architecture that can leverage these results by
providing a guaranteed expansion on the tough rules, while
dealing with simpler rules using a regular TCAM. We conclude
by verifying our theoretical results in experiments with synthetic
and real-life classification databases.

I. INTRODUCTION

A. Background
Packet classification is the key function behind many net-

work applications, such as routing, filtering, security, account-
ing, monitoring, load-balancing, policy enforcement, differenti-
ated services, virtual routers, and virtual private networks [1]–
[4]. For each incoming packet, a packet classifier compares
the packet header fields against a list of rules, e.g. from access
control lists (ACLs), then returns the first rule that matches the
header fields, and applies a corresponding action on the packet.
Typically, a tuple of five fields from the packet header is used,
namely the source IP address, destination IP address, source
port number, destination port number, and protocol type. We
focus here on the common scenario where the possible actions
are either to accept or deny the packet.

Today, hardware-based TCAMs (ternary content-addressable
associative memories) are the standard devices for high-speed
packet classification [5], [6]. They match the concatenation of
the five-tuple from the packet header into a fixed-width ternary
array composed of 0s, 1s, and ∗s (don’t care). For each packet,
a TCAM device checks all the rules in parallel, and therefore
reaches higher rates than other software-based or hardware-
based classification algorithms [1]–[3], [7], [8].

There are two types of rules: simple rules that specify a fixed
value (or a specific prefix-range as defined formally below) for
each field of the header, and range rules. Typically, a range
rule applies when the source port and/or the destination port
are in specific intervals. Encoding range rules requires several
TCAM entries (this is called range expansion), and therefore
although most rules are simple rules, most entries are used to
encode range rules [9]. In addition, there is evidence that the
percentage of range-based rules is increasing [10].

TCAM devices have a large set of rules which can be
encoded together. However, understanding how to do this
efficiently (using as few TCAM entries as possible) requires us
first to understand how a single rule can be encoded. Therefore,
a large body of work has been devoted to this question. Still,
no practical algorithm can give an optimal encoding for any
arbitrary range rule, i.e. the encoding that minimizes the
needed number of TCAM entries. Instead, because of the high
complexity of devising such an optimal algorithm, past works
have limited themselves to sub-optimal encoding. They have
either restricted the degrees of freedom of the algorithm, e.g.
by forcing it to be prefix [11] or only with accept entries [12],
or employed heuristic approaches [1]–[3], [13]–[17].

B. Our Contributions

In this paper we study the fundamental complexity of
encoding a single rule, using both accept and deny entries. We
focus on the optimal encoding of any single range, and explore
the theoretical hardness of encoding one-dimensional and two-
dimensional ranges. Then, we deduce practical results for
providing guaranteed-expansion TCAM encoding algorithms.

As illustrated in Table I and Fig. 1, we mainly provide three
new contributions in this paper.

Our first contribution is a theoretical one. Consider a set
{0, 1, · · · , 2W − 1} of 2W points, also represented as a tree
with 2W leaves. Extremal ranges in this set are ranges that
cover the first or last leaves of the tree, i.e. ranges of the form
[0, y] or [y, 2W − 1]. Generalized extremal ranges are ranges
that are extremal for a sub-tree of this tree. For instance, within
a tree with 64 leaves, [5, 7] is extremal for the sub-tree that
represents [4, 7], and therefore is a generalized extremal range.

The first contribution of this paper is that we achieve an
optimal-encoding goal for generalized extremal ranges. Specif-
ically, we present a simple linear-time algorithm that finds an

2

TABLE I
SUMMARY OF THE NOVEL PAPER RESULTS (IN BOXED BOLD). (A) PRESENTS IN THE LAST ROW AN OPTIMAL ALGORITHM FOR THE ENCODING OF

ONE-DIMENSIONAL (GENERALIZED) EXTREMAL RULES (WITH RANGES LIKE [0, y]). AS SHOWN, THIS IS THE FIRST OPTIMAL RESULT WHEN THE DEGREES
OF FREEDOM OF THE ALGORITHM ARE NOT LIMITED. PREVIOUS PAPERS EITHER ASSUMED ADDITIONAL CONSTRAINTS ON THEIR ALGORITHMS OR DID

NOT PROVIDE OPTIMAL ALGORITHMS.(B) PRESENTS THE NEW RESULTS OBTAINED BY THIS PAPER FOR GENERAL RANGES. AS SHOWN IN THE LAST ROW,
WHEN THE DEGREES OF FREEDOM OF THE ALGORITHM ARE NOT LIMITED, THE PAPER ACHIEVES A TIGHT BOUND OF W FOR ONE-DIMENSIONAL

GENERAL RANGES. IN ADDITION, IN TWO-DIMENSIONAL RANGES, THE PAPER OBTAINS TIGHT BOUNDS OF W + 1 FOR EXTREMAL RULES (ASSUMING
EVEN W FOR SIMPLICITY), AS WELL AS 2W FOR GENERAL RULES.

(A) Optimal algorithm for any range

Constraints References Extremal Ranges General Ranges
No deny Prefix Gray One Dimension Two Dimensions One Dimension Two Dimensions
entries code codes

x x - [18]
√

-
√

-
x - x - - - -
x - - - - - -
- x - [11]

√ √ √ √

- - -
√

- - -

(B) Bounds on worst-case expansion over all ranges

Constraints References Extremal Ranges General Ranges
No deny Prefix Gray One Dimension Two Dimensions One Dimension Two Dimensions
entries code codes

Upper Lower Upper Lower Upper Lower Upper Lower
Bound Bound Bound Bound Bound Bound Bound Bound

x x - [18] W W W 2 - 2W − 2 2W − 2 (2W − 2)2 -
x - x [9] - - - - 2W − 4 W (2W − 4)2 -
x - - [12] W - W 2 - 2W − 4 2W − 4 (2W − 4)2 -

- x - [11], [19]–[21]
⌈

W+1
2

⌉ ⌈
W+1

2

⌉
W + 1 W + 1 W W 2W 2W

- - - [21]
⌈

W+1
2

⌉ ⌈
W+1

2

⌉
W + 1 W + 1 W W 2W 2W

optimal encoding for any given generalized extremal range. The
main insight that allows us to obtain this result is the proof that
there is an optimal TCAM encoding for generalized extremal
ranges that uses only prefix TCAM entries. In other words,
we prove that for generalized extremal ranges, restraining
the degrees of freedom of our encoding does not affect its
optimality. We can then use a simple dynamic programming
algorithm to find the smallest TCAM that uses only prefix
TCAM rules, based on an existing algorithm [11].

As shown in the last row of Table I(A), for the first time,
we achieve optimal encoding for non-trivial ranges. Former
results often added encoding constraints, e.g. by constraining
the encoding to be prefix, and therefore achieved sub-optimal
encoding.

This contribution is especially interesting in that the set of
generalized extremal ranges is a significant set in practice. To
estimate the potential impact of our results we consider a union
of 120 real-life classification databases from [10]. It contains
214,941 rules. We find that 97.2% of these rules are generalized
extremal rules (i.e. 208,850 rules). Even after excluding the
exact-match rules, which are trivial to encode, 89.4% of the
non-exact-match rules are generalized extremal (51,055 rules
out of 57,146).

Our discovery of an optimal algorithm for extremal ranges
also allows us to analyze the expected length of the optimal
encoding over all extremal ranges. To our knowledge, this is the
first formula known in the literature for the average encoding
size of a non-trivial range set. We show that it is only 2/3 of
the worst case.

Our second main contribution is that we find the exact worst-
case expansions of both one-dimensional and two-dimensional
ranges (last rows of Table I(B)). In particular, we first present
a simple algorithm that is optimal for general one-dimensional
ranges in the worst case. Specifically, we first show that it
encodes any range in [0, 2W − 1] in at most W rules. This
algorithm uses either a set of accept rules that accept the range,
or a set of deny rules that deny the complement of the range
together with a last default accept rule that accepts everything
else. We also exhibit a range that cannot be encoded with less
than W TCAM entries. Thus, our algorithm is optimal for the
worst case, and it improves substantially on a best previously-
known lower-bound of ⌈(W + 1)/2⌉ [21].

In addition, we also present an algorithm that is optimal in
the worst case for general two-dimensional ranges. In other
words, we analyze the two-dimensional scenario in which a
classification rule includes two ranges, one for the source port
and the other for the destination port. In this case we present
an algorithm that encodes any two-dimensional range with
at most 2W entries, where W is the length of each of the
two fields. We also exhibit a matching lower bound, i.e., a
tough two-dimensional range such that any TCAM encoding
it will necessarily contain at least 2W entries. Therefore, our
presented algorithm is optimal again in the worst case.

Finally, our third and last contribution is a new joint TCAM
architecture. As Fig. 1 illustrates, the architecture combines
a regular TCAM together with a modified TCAM, which
can provide a guaranteed improved expansion for the tough

3

(a) Regular TCAM architecture. A priority encoder (PE) is used to select the
first matching entry. Then, an action is selected based on the entry index.

(b) Suggested joint TCAM architecture. It includes a regular TCAM and a
modified TCAM. In the modified TCAM, each range is encoded separately, and
the regular PE is replaced by a hierarchical PE that is used to select the first
matching range. Finally, the action is selected based on the indices sent by the
two TCAMs.

Fig. 1. Comparison of a regular TCAM architecture with the suggested TCAM
architecture. Components that also appear in the regular TCAM are presented
in gray.

classification rules. More specifically, given a set of classi-
fication rules, we split the rules between the two TCAMs.
We set the first TCAM to encode the simple rules, while
the second TCAM encodes the complex ones (e.g., the two-
dimensional or the non-extremal one-dimensional rules). Then,
each incoming header is sent to both TCAMs. The first TCAM
outputs the index of its first matching entry. The second
TCAM provides the index of the first matching entry to its
simplified PE (priority encoder), which corresponds to the
index of its first matching rule. To do so, it decomposes
its PE logic into a hierarchical structure, in which the first
module determines whether there is a match on each rule,
then the second one determines the first matching rule. Then, a
modified conversion module considers both indices. From each
index, it can deduce the respective rule index in the original
classification list. Thus, it knows which rule has higher priority,
and can output the corresponding action. It is therefore slightly
more complex than a regular TCAM conversion module, which
can be implemented using a simple SRAM with the action
for each index. Here, the modified conversion module needs
to use two SRAM-based memory tables, where each table
entry may contain the original rule index and the associated
action corresponding to each index. Also, while the stand-alone
modified TCAM architecture is known in the literature [22], it
may waste practical resources when applied on the set of all
rules. Instead, our new architecture uses a regular TCAM for
the simple rules, and only spends the additional logic on the
complex ones.

This new architecture is especially interesting because the
fraction of complex classification rules is increasing, and is
expected to increase dramatically with the introduction of
virtualization and the related flexible flow matching in SDN
(Software-Defined Networking) [10], [23]. Therefore, this new
architecture may help solve future scaling bottlenecks, since
it provides tight guarantees on the worst-case number of
entries needed for each rule. In addition, updates are easier
to implement in the modified TCAM architecture [22], and
therefore in the combined architecture. On the other hand, note
that the modified TCAM involves additional logic, and is not
an off-the-shelf component. Therefore, it is more costly, which
may limit the current appeal of the new architecture.

We further simulate the new architecture on the set of
120 real-life rule files mentioned above. We encode two-
dimensional rules in the modified TCAM using the schemes
in our paper, and other rules in the regular one using a simple
binary prefix scheme. We find that the number of entries needed
to encode the two-dimensional rules decreases by 73.4%, and
the total number of entries needed decreases by 19.5%.

C. Related Work
As further illustrated in Table I, several previous papers

have tried to find bounds on the worst-case expansion of a
single rule. It is well-known that each range defined over a
field of W bits can be encoded in at most 2W − 2 prefix
TCAM entries for W ≥ 2, where all TCAM entries have
an action of accept [18]. For example, assume that W = 4,
and that we want to encode the single range R = [1, 14] ⊆[
0, 2W − 1

]
so that packets in that range are accepted while

others are denied (default action). Then we need the following
2W −2 = 6 TCAM entries, not counting the last default entry:
(0001 → accept, 001∗ → accept, 01 ∗ ∗ → accept, 10 ∗ ∗ →
accept, 110∗ → accept, 1110 → accept, (∗∗∗∗→deny)).

A first improvement of the 2W − 2 result used non-prefix
TCAM encoding and a connection to Boolean DNF (disjunctive
normal form) to show an upper bound of 2W − 4 [24]. A
second improvement used Gray codes instead of binary codes
to reduce the worst-case TCAM size for any range from 2W−2
to 2W − 4 as well [9].

The previous examples only used entries with the action of
accept. In general, we also allow entries with the action of deny.
In this case, the order of the TCAM entries becomes significant
and the first entry that applies to a given input determines the
action on that input. When both actions are allowed, there is
an upper bound of W entries [19], [20]. For instance, the range
R = [1, 14] could be encoded using 3 ≤ W entries: (0000→
deny, 1111 → deny, **** → accept).

Other than the papers mentioned above, there is an extensive
literature on efficient heuristics of how to encode ranges in
TCAMs [1]–[3], [13]–[17].

Some rules specify a range both for the source IP’s and for
the destination IP’s. This motivates considering rules that are
the product of d ranges defined on d different fields of W bits
each. It is easy to see that they can be simply encoded using
up to (2W − 2)d prefix TCAM entries each accepting some
part of the range. This gives a bound of 900 TCAM entries for
a pair of (d = 2) port ranges of 16 bits each [1].

4

There are not many known lower bounds on the number of
TCAM entries required to encode a range. If the encoding is
constrained to the use of only accepting entries, then there is a
range for which the encoding length has to contain at least W
entries [9]. Furthermore, for binary codes, it was shown in [12]
that there is a range whose encoding requires at least 2W − 4
accepting TCAM entries.

When both denying and accepting entries are used, [21]
presented a lower bound of

⌈
W+1

2

⌉
for extremal ranges given

in binary codes, even when the entries are not limited to be
prefix. For general ranges, a lower bound of W was suggested
only when the entries are limited to be prefix.

Recently, a two-level TCAM architecture was suggested to
reduce power consumption in packet classification [25].

Finally, an algorithm for finding an optimal prefix encoding
for a given range is presented in [11]. However, its optimality
is limited to encodings that contain only prefix entries.

Paper Organization: We start with preliminary definitions
in Section II. Then, in Section III we consider one-dimensional
extremal ranges. We suggest an optimal encoding scheme for
any given extremal range and calculate the average range
expansion over extremal ranges. In Section IV we present
the conflicting set of pairs, a new analytical tool for proving
lower bounds on the range expansion. Next, in Section V we
provide new tight bounds on the worst-case expansion of one-
dimensional and two-dimensional ranges. Last, we examine our
theoretical results and evaluate the suggested encoding schemes
in Section VI.

II. MODEL AND NOTATIONS

A. Terminology
We first formally define the terminology used in this paper.

Unless mentioned otherwise, we assume a binary code rep-
resentation. For simplicity, as long as there is no confusion,
we also do not distinguish between a W -bit binary string (in
{0, 1}W) and its value (in [0, 2W − 1]). We denote by xy
the concatenation of the strings x and y, and by (x)k the
concatenation of k copies of the string x.

Definition 1 (Range, prefix range, extremal range). A range
R of width W is defined by two bit strings r1 and r2 of W
bits each, such that r1 ≤ r2. The range R is the set of all bit
strings x of W bits such that x ∈ [r1, r2]. A bit string x of
W bits is said to match the range (or be in the range) R if
x ∈ [r1, r2].

In particular, a range R is a prefix range, with a prefix
r′ ∈ {0, 1}k of length k ∈ [0, W] if r1 = r′(0)W−k, and r2 =
r′(1)W−k. It is a single point or an exact match if r1 = r2.
We say that the range is a general range when we want to
emphasize that it is not necessarily a prefix range.

When r1 = 0 we call the range a left-extremal range, and
when r2 = 2W − 1 we call the range a right-extremal range.
An extremal range is either a left-extremal range or a right-
extremal range.

Definition 2 (TCAM entry, prefix TCAM entry). A TCAM
entry S of width W is a ternary string S = s1 . . . sW ∈
{0, 1, ∗}W , where {0, 1} are bit values and ∗ stands for don’t-
care. A W -bit string b = b1 . . . bW matches S, denoted as

b ∈ S, if and only if for all i ∈ [1,W], si ∈ {bi, ∗}. We will
use S to denote also the set of strings that it matches, when
no confusion will arise.

A TCAM entry S = s1 . . . sW ∈ {0, 1, ∗}W is a prefix TCAM
entry if sj = ∗ for some j ∈ [1,W] implies that sj′ = ∗ for
any j′ ∈ [j, W].

Note that prefix TCAM entries of width W are in one-to-one
correspondence with prefix ranges of width W . A range with
a prefix r corresponds to the prefix TCAM entry r(∗)W−k.

We assume that each TCAM entry S is associated with
an action a that is either accept or deny. We denote a pair
consisting of an entry S and an action a by S → a. Depending
on the context, we shall refer by a TCAM entry either to S or
to the pair S → a.

To simplify our presentation we assume at first that the
packet header consists of a single field of width W . We focus
on a single classification rule defined by a general range over
this field and its action is to accept all bit strings in the range.
We call such a rule a range rule. Later we also discuss headers
with two fields of width W each, in which case the width of
the header and of the TCAM entries would be 2W .

Definition 3 (TCAM Encoding of a range). A TCAM encoding
ϕ of a range R of width W is a set of TCAM entries
(S1 → a1, . . . , Sn → an) where each ai is either accept or
deny. Then, for each header x ∈ {0, 1}W such that x ∈ R, the
first TCAM entry Sj matching x is associated with aj = accept;
and likewise, for each x ̸∈ R, either the first TCAM entry Sj

matching x is associated with aj = deny, or no TCAM entry
matches x (we assume a default action of deny). The number
of rules, n, is called the size of ϕ and denoted by |ϕ|.

A prefix TCAM encoding ϕ of a range R is a TCAM
encoding of R in which all entries are prefix TCAM entries.

B. Optimal Range Encoding Schemes

For each range R we denote by OPT (R) a smallest TCAM
encoding of R, and by OPTp(R) a smallest prefix TCAM
encoding of R. We also denote opt(R) = |OPT (R)| and
optp(R) = |OPTp(R)|. Let opt(R) be the TCAM expansion of
R, or just the expansion of R for short. Likewise let optp(R)
be the prefix TCAM expansion of R, or just the prefix expansion
of R for short.

We define r(W) to be the maximum expansion of a range
in {0, 1}W , that is r(W) = maxR opt(R). Similarly we define
re(W) to be the maximum expansion of an extremal range,
that is re(W) = max{opt(R) | R = [0, y]∨R = [y, 2W − 1]}.
Analogously, we define the maximum expansion with prefix
TCAM entries to be rp(W) = maxR optp(R), and for extremal
ranges re

p(W) = max{optp(R) | R = [0, y]∨R = [y, 2W −1]}.
Our main goal is to find an algorithm that encodes a range

R with opt(R) rules and to understand the expected value of
opt(R) over all ranges. Another goal is to find r(W), re(W),
rp(W), and re

p(W).

III. EXTREMAL 1-D RANGES

In this section, we consider the expansion of one-
dimensional extremal ranges over the set of prefix encoding

5

schemes denoted by Φp, and over the set of all encoding
schemes denoted by Φ.

As defined in Definition 1, for y ∈ [0, 2W − 1], an extremal
range may be a left-extremal range of the form RLE = [0, y],
or a right-extremal range of the form RRE = [y, 2W − 1].

Given a TCAM encoding scheme ϕ that encodes a left-
extremal range R = [0, y] with |ϕ| TCAM entries, we can
obtain a TCAM encoding scheme ϕ′ that encodes the right-
extremal range R′ = [2W − 1 − y, 2W − 1] in exactly |ϕ|
TCAM entries. To do so, invert each of the bit values 0 and 1
(and ignore the don’t-cares) in all the |ϕ| entries. The TCAM
expansion of left-extremal ranges is the same as that of right-
extremal ranges. In this section, we consider only left-extremal
ranges.

Likewise, note that while we deal with extremal ranges,
the results below also apply to generalized extremal ranges.
This is because each generalized extremal range is simply an
extremal range in its subtree. For simplicity, we will therefore
only consider extremal ranges.

A. Prefix Encoding Vs. General Encoding of Extremal Ranges

The next theorem compares, for any extremal range R, the
size of the smallest TCAM encoding of R and the size of the
smallest prefix TCAM encoding of R. It shows that they are
actually identical.

Theorem 1. For any extremal range R = [0, y] (where y ∈
[0, 2W − 1]), the TCAM expansion of R is exactly the prefix
TCAM expansion of R, i.e.

optp(R) = opt(R). (1)

Proof: We consider an extremal range R = [0, y] =
{(0)W , . . . , y1 . . . yW } and want to show that optp(R) =
opt(R).

As Φp ⊆ Φ, we trivially get optp(R) ≥ opt(R). Therefore
we need to prove that optp(R) ≤ opt(R). Consider all the
encoding schemes in Φ that encode the extremal range R in the
minimal number of entries. Among them, consider the schemes
with the minimal number of non-prefix entries, and in this
subset, the schemes with the minimal number of ∗s in their
non-prefix entries. Let ϕ = (S1 → a1, . . . , Sn → an) ∈ Φ be
such a minimal encoding scheme. We will show that we can
encode R in a prefix encoding scheme with at most |ϕ| entries.

If all the TCAM entries of ϕ are prefix TCAM entries, we
have that ϕ ∈ Φp is the required prefix encoding scheme.

Otherwise, among the non-prefix TCAM entries of ϕ, we
look at the index of the left-most * in each entry. We then
consider the entry with the minimal index among these indices.
If there are several non-prefix entries with the same index of
their left-most *, we consider the last one. We denote this entry
by S → a such that S = (s1, . . . , sW) ∈ {0, 1, ∗}W and
distinguish two different cases according to the action a ∈
A = {‘accept’, ‘deny’}. Let j ∈ [1,W] be the minimal index
such that sj = ∗. Further, let k ∈ [1, n] be the index of this
TCAM entry such that Sk = S and ak = a.

We first assume that a = ‘accept’. The case a = ‘deny’ is
similar, and we discuss it shortly at the end of the proof. For this
range R = [0, y], we compare the first j−1 symbols of y and S.

By definition of j, we have that ∀i ∈ [1, (j − 1)], si ∈ {0, 1}
and therefore y1 . . . yj−1, s1 . . . sj−1 are both binary strings.
The proof now splits into several cases:

(i) We have s1 . . . sj−1 > y1 . . . yj−1. In this case, the rule
accepts strings which are not in the range, and therefore have
been denied earlier on. Therefore, an equivalent encoding of R,
with one less rule, would be to remove the rule Sk → ‘accept’.
This is a contradiction to the selection of ϕ.

(ii) We have s1 . . . sj−1 < y1 . . . yj−1. In this case, one can
replace Sk → ‘accept’ with s1 . . . sj−1(∗)W−j+1 → ‘accept’,
to get an encoding of R with less non-prefix rows.

(iii) We have s1 . . . sj−1 = y1 . . . yj−1 and yj = 0. In this
case, replace Sk → ‘accept’ with s1 . . . sj−10sj+1 . . . sW →
‘accept’.

(iv) We have s1 . . . sj−1 = y1 . . . yj−1 and yj = 1, and there
exists a rule Sℓ that begins with s1 . . . sj−10. If the rule Sℓ is
of the form Sℓ → ‘deny’, deleting the rule ℓ would leave us
with a more efficient encoding of R. If the rule Sℓ is of the
form Sℓ → ‘accept’, change the encoding of R by removing
the rule Sℓ, changing Sk to s1 . . . sj−11sj+1 . . . sW → ak, and
add as a first rule the rule s1 . . . sj−10(∗)W−j → ‘accept’.

(v) Finally, we have s1 . . . sj−1 = y1 . . . yj−1 and yj = 1,
and no rule that begins with s1 . . . sj−10 exists. Consider
now some string x = s1 . . . sj−10xj+1 . . . xW which its
first match is in Sk (if no such x exists change Sk to be
s1 . . . sj−11sj+1 . . . sW → ‘accept’). There are two cases:

(v.a) The smallest ℓ > k such that x ∈ Sℓ is of the form
Sℓ → ‘accept’. In this case, since there is no rule (anywhere)
that begins with s1 . . . sj−10, it must be that the index of the
leftmost ∗ in Sℓ is at most j. As the rule k is the non-prefix
rule with the minimal leftmost ∗, and the last non-prefix rule
among all the non-prefix rules with ∗ in place j, we have that
Sℓ is a prefix rule, of the form s1 . . . sr(∗)W−r with r < j. But
for every string y that begins with s1 . . . sj−10 the first rule in
Sk+1 → ak+1, . . . , Sn → an which affects y is Sℓ. Therefore,
changing Sk to be s1 . . . sj−11sj+1 . . . sW → ak produces an
encoding of ϕ with less *s in the non-prefix entries - all the
strings that begin with s1 . . . sj−10 will be accepted by Sℓ.

(v.b) The smallest ℓ > k such that x ∈ Sℓ is of the form
Sℓ → ‘deny’. Similarly to the previous case, for every string
y that begins with s1 . . . sj−10 we have that the first rule in
Sk+1 → ak+1, . . . , Sn → an which affects y is Sℓ. But since
ϕ is encoded correctly, this means that S1 → a1, . . . , Sk → ak

accept every string that begins with s1 . . . sj−10. Since there
is no rule (anywhere) that begins with s1 . . . sj−10, it must be
the case that every string z that begins with s1 . . . sj−11 has
z ∈ Sr for some r ≤ k. Therefore, if it should be rejected by R,
when reaching the kth rule it was already denied. This means
that we can change Sk to be s1 . . . sj−1(∗)W−j+1 → ‘accept’
while still encoding R. This decreases the number of non-prefix
rules in the encoding.

The case a = ‘deny’ is similar to the accept case. Note
that the asymmetry between accept and reject which is created
by the default is not an issue here, as case (v.a) (respectively
(v.b)) treats the possibility that the next rule to be applied to
these values is an accept (respectively a reject). In particular,
the default accept rule is covered by (v.a).

6

B. Optimal Encoding Scheme For Any Given Extremal Range
In this section we present an algorithm that computes, for

any given extremal range R, an optimal encoding of R. By
Theorem 1, it is sufficient to find the optimal encoding with
prefix TCAM entries.

Let T be a subtree of the binary trie describing the entire
space [0, 2W−1]. Each such subtree T corresponds to all strings
starting with a particular prefix x(T). That is, all the strings
matching the TCAM entry c(T) = x(T)(∗)W−|x(T)|. Given a
range R ⊆ [0, 2W −1], and a subtree T , we call a prefix TCAM
encoding of R∩ T , such that all of its entries start with x(T),
a prefix TCAM encoding of T .

For a subtree T we define A(T) to be an optimal pre-
fix encoding of T in which the last entry is of the form
c(T) → ‘accept’, and let nA(T) be the number of entries
in this encoding. If there are more than one possible optimal
encodings with such last entry, A(T) is an arbitrary one of
them. Similarly, let D(T) be an optimal prefix encoding of T
with last entry c(T) → ‘deny’, and let nD(T) be the number
of entries in such an optimal encoding.

Example 1. If a subtree T satisfies T ⊆ R then T can
be encoded by A(T) = (c(T) → ‘accept’) in nA(T) = 1
entries or by D(T) = (c(T) → ‘accept’, c(T) → ‘deny’) with
nD(T) = 2. Likewise, if T ⊆ Rc then T can be encoded by
A(T) = (c(T) → ‘deny’, c(T) → ‘accept’) with nA(T) = 2
or by D(T) = (c(T) → ‘deny’) with nD(T) = 1.

If a subtree T contains a single input header (i.e. |T | = 1),
then either T ⊆ R or T ⊆ Rc. Thus A(T), nA(T), D(T), and
nD(T) can be computed as in Example 1. In preparation for our
dynamic programming algorithm, the following propositions
shows how we can compute A(T), nA(T), D(T), and nD(T)
for |T | ≥ 2 based on the corresponding value for the left and
the right subtrees of T . They also relate the value of optp(R)
and nD(T) for the complete binary trie T .

Proposition 1. Let T be the complete binary trie of [0, 2W −1]
(i.e. c(T) = (∗)W). The prefix range expansion of a range R
is nD(T) − 1, i.e.

optp(R) = nD(T) − 1. (2)

Proof: Given a range R, D(T) is an optimal prefix
encoding of T in nD(T) entries with a last entry of c(T) =
(∗)W → ‘deny’. If we omit this last entry any input header
that was first matched by this entry is not matched now and
the default action of ‘deny’ applies to it. Thus even if we omit
the last entry of D(T) we have a correct encoding of R so
optp(R) ≤ nD(T) − 1. Likewise, if R can be encoded in
optp(R) entries, we can simply add to such encoding the entry
(∗)W → ‘deny’ and the encoding remains correct. It follows
that optp(R) + 1 ≥ nD(T).

Proposition 2. Let T a subtree such that |T | ≥ 2. Let LT , RT

be the left and right subtrees of T , respectively. Then,

nA(T) = min{nA(LT) + nA(RT) − 1, nD(LT) + nD(RT)}
nD(T) = min{nA(LT) + nA(RT), nD(LT) + nD(RT) − 1}.

Proof: We start with the first equality and show that
nA(T) ≤ min{nA(LT) + nA(RT) − 1, nD(LT) + nD(RT)}.

We can get an encoding of T as follows. We concatenate
the encodings A(LT) and A(RT). Then we remove the last
entry c(LT) → ‘accept’ of the first encoding, and the last
entry c(RT) → ‘accept’ of the second encoding, and add
the entry c(T) → ‘accept’ as the last in the new encoding.
It is easy to verify that we get a correct encoding of T
with nA(LT) + nA(RT) − 1 entries, and therefore nA(T) ≤
nA(LT) + nA(RT) − 1

Alternatively, we can concatenate the encodings D(LT) and
D(RT) without their last entries and add two new entries at
the end c(T) → ‘deny’ followed by c(T) → ‘accept’. Again,
it is easy to verify that we get a correct encoding of T with
nD(LT) + nD(RT) entries so nA(T) ≤ nD(LT) + nD(RT).
This completes the proof that nA(T) ≤ min{nA(LT) +
nA(RT) − 1, nD(LT) + nD(RT)}.

We now want to show that nA(T) ≥ min{nA(LT) +
nA(RT)−1, nD(LT)+nD(RT)}. To show that, we prove that
any optimal prefix TCAM encoding A(T) of T with a last entry
c(T) → ‘accept’ satisfies that nA(T) ≥ nA(LT)+nA(RT)−1
or nA(T) ≥ nD(LT) + nD(RT).

If nA(T) = 1, we clearly have that T ⊆ R and thus
also nA(LT) = nA(RT) = 1 and the first of the last two
inequalities holds. So we may assume that nA(T) ≥ 2.

All the entries in A(T) start with the string x(T). We divide
the entries of A(T) into three disjoint subsets according to their
value in the |x(T)| + 1 leftmost symbol and define, A(T)0 =
{S = s1 . . . sW → a | S ∈ A(T), s|x(T)|+1 = 0}, A(T)1 =
{S = s1 . . . sW → a | S ∈ A(T), s|x(T)|+1 = 1} and A(T)∗ =
{S = s1 . . . sW → a | S ∈ A(T), s|x(T)|+1 = ∗}. Since A(T)
is a prefix encoding, any entry in A(T)∗ is of the form c(T) →
a for a ∈ {‘accept’, ‘deny’}. Thus the entries in A(T)∗ must
be the last entries of A(T) because any entry which follows
them is redundant.

We distinguish two cases according to the size of A(T)∗.
If |A(T)∗| = 1 then A(T)∗ is composed of the last entry of
A(T), c(T) → ‘accept’ and |A(T)0| + |A(T)1| = nA(T) − 1.
We encode LT by adding a last entry c(LT) → ‘accept’ to
the entries in A(T)0 and encode RT by adding a last entry
c(RT) → ‘accept’ to the entries in A(T)1. By the correctness
of A(T), these are correct encodings of LT and RT , both with a
last entry with the action ‘accept’. We then have that nA(LT)+
nA(RT) ≤ |A(T)0|+|A(T)1|+2 = nA(T)−1+2 = nA(T)+1
and nA(T) ≥ nA(LT) + nA(RT) − 1.

If |A(T)∗| = 2, then the additional entry in A(T)∗ is c(T) →
‘deny’ which is the (nA(T) − 1)th entry of A(T). Then, we
encode LT by adding a last entry c(LT) → ‘deny’ to the entries
in A(T)0 and encode RT by adding a last entry c(RT) →
‘deny’ to the entries in A(T)1 and we get that nD(LT) +
nD(RT) ≤ |A(T)0|+ |A(T)1|+ 2 = nA(T)− 2 + 2 = nA(T)
and nA(T) ≥ nD(LT) + nD(RT).

We got that either nA(T) ≥ nA(LT) + nA(RT) − 1
or nA(T) ≥ nD(LT) + nD(RT) and thereby nA(T) ≥
min{nA(LT) + nA(RT)− 1, nD(LT) + nD(RT)}. This com-
pletes the proof of the equality nA(T) = min{nA(LT) +
nA(RT) − 1, nD(LT) + nD(RT)}.

The proof of the equality nD(T) = min{nA(LT) +
nA(RT), nD(LT) + nD(RT) − 1} is analogous.

7

(a) Illustration of the algorithm (b) A Deterministic Finite Automaton (DFA) (c) The corresponding Markov Chain

Fig. 2. Illustration of the algorithm results for the extremal range R = [0, 22] from Example 2. The parameters (nA(Ti), nD(Ti)) of each tree Ti ∈
{T0, . . . , TW } are illustrated. The parameter nA(Ti) is the number of entries in the smallest encoding of Ti with a last entry of the form c(Ti) → ‘accept’.
Likewise, nD(Ti) is the size of the smallest encoding with a last entry c(Ti) → ‘deny’. The smallest encoding of R has opt(R) = nD(T5)− 1 = 4− 1 = 3
entries. (b) presents a Deterministic Finite Automaton (DFA), as discussed in Section III-C. It has three states representing the three possible values of
(nA(T) − nD(T)) ∈ {−1, 0, 1} in a subtree T . (c) shows the corresponding Markov Chain of the DFA with the same 3 states.

Proposition 3. Let T be a binary subtree. Then, nD(T) ≤
nA(T)+1 and nA(T) ≤ nD(T)+1, i.e. |nA(T)−nD(T)| ≤ 1.

Proof: If we add the entry c(T) → ‘deny’ to A(T) we
still have a correct encoding of T and therefore nD(T) ≤
nA(T) + 1. Similarly, by adding the entry c(T) → ‘accept’
to D(T) the encoding remains a correct encoding of T so
nA(T) ≤ nD(T) + 1.

Based on Proposition 2, we suggest a simplified version
of a dynamic-programming algorithm presented in [11] to
compute an optimal encoding of any extremal range. Our
suggested version is original in several ways. First, we demon-
strate its optimality among all encoding schemes rather than
just among prefix schemes. Second, it is significantly easier
to compute. This is because we only consider the subtrees
Ti = y1 . . . yW−i(∗)i (for i ∈ [1,W]). In each step of the
algorithm we calculate the parameters of a subtree based on
its left and right subtrees, while the parameters of one of them
can be obtained immediately from Example 1.

Algorithm 1. Consider an arbitrary extremal range R =
[0, y] = {(0)W , . . . , y1 . . . yW }. To optimally encode it, we first
compute A(T), D(T), nA(T), nD(T) for the W + 1 different
subtrees T0, T1, . . . , TW where c(Tj) = y1 . . . yW−j(∗)j . Each
subtree is rooted at a different level of the complete trie of
[0, 2W − 1], T0 is a single leaf and TW is the entire trie. An
optimal encoding of R is given by the nD(TW)−1 first entries
in D(TW).

Since T0 ⊆ R = [0, y] = {(0)W , . . . , y1 . . . yW }, we
have that A(T0) = (c(T0) → ‘accept’) , nA(T0) = 1 and
D(T0) = (c(T0) → ‘accept’, c(T0) → ‘deny’) , nD(T0) = 2,
as described in Example 1. Next, we consider the subtree
Ti = y1 . . . yW−i(∗)i (for i ∈ [1,W]) that contains Ti−1 as
a left or right subtree, and distinguish two cases according
to the value of yW−i+1. If yW−i+1 = 0, then Ti’s values
are calculated based on its two subtrees LTi = Ti−1 =
y1 . . . yW−i0(∗)i−1 and RTi = y1 . . . yW−i1(∗)i−1 ⊆ Rc.
Similarly, if yW−i+1 = 1, then and LTi ⊆ R and RTi = Ti−1.
It follows that in either case, for each considered subtree, one of
its subtrees was considered in the previous step of the algorithm
while the second subtree is included either in the range R or
in the range complementary Rc. Thus its parameters can be
computed as in Example 1.

Next, we try to understand the behavior of the values of
nA(Ti), nD(Ti) and the optimal encodings A(Ti), D(Ti) for a
subtree Ti = y1 . . . yW−i(∗)i.

If yW−i+1 = 0 then LTi = Ti−1 and
RTi ⊆ Rc. We then have that A(RTi) =
(c(RTi) → ‘deny’, c(RTi) → ‘accept’) , nA(RTi) = 2
and D(RTi) = (c(RTi) → ‘deny’) , nD(RTi) = 1.
We can obtain D(Ti) from D(Ti−1) by replacing its
last entry c(Ti−1) → ‘deny’ with c(Ti) → ‘deny’ so
nD(Ti) = nD(Ti−1).

To compute A(Ti) and nA(Ti), we split into two subcases
according to the values of nA(LTi) and nD(LTi). By Propo-
sition 3, these are the only subcases possible.

Case 1: If nA(LTi) + 1 = nD(LTi) or nA(LTi) = nD(LTi)
then nA(Ti) = min{nA(LTi) + nA(RTi) − 1, nD(LTi) +
nD(RTi)} = min{nA(LTi) + 1, nD(LTi) + 1} = nA(LTi) +
1. Here, we can get A(Ti) by replacing the last en-
try c(LTi) → ‘accept’ of A(LTi) by the two entries
(c(RTi

) → ‘deny’, c(Ti) → ‘accept’).
Case 2: If nA(LTi) = nD(LTi) + 1 then nA(Ti) =

min{nA(LTi) + nA(RTi) − 1, nD(LTi) + nD(RTi)} =
min{nA(LTi) + 1, nD(LTi) + 1} = nD(LTi) + 1 = nA(LTi).
To get A(Ti), we replace the last entry c(LTi) → ‘deny’ of
D(LTi) by the two entries (c(Ti) → ‘deny’, c(Ti) → ‘accept’).

If yW−i+1 = 1 then LTi ⊆ R and RTi = Ti−1 and the
analysis is symmetric to the previous case.

Here, A(LTi
) = (c(LTi

) → ‘accept’) , nA(LTi
) =

1, D(LTi) = (c(LTi) → ‘accept’, c(LTi) → ‘deny’), and
nD(LTi) = 2. We can obtain A(Ti) from A(Ti−1) by replacing
its last entry c(Ti−1) → ‘accept’ by c(Ti) → ‘accept’ so
nA(Ti) = nA(Ti−1).

Next, we compute D(Ti) and nD(Ti) based on the val-
ues nA(RTi), and nD(RTi). If nA(RTi) = nD(RTi) + 1
or nA(RTi) = nD(RTi) then nD(Ti) = min{nA(LTi) +
nA(RTi), nD(LTi) + nD(RTi) − 1} = min{nA(RTi) +
1, nD(RTi)+1} = nD(RTi)+1. Now, to get D(Ti), we replace
the last entry c(RTi) → ‘deny’ of D(RTi) by the two entries
(c(LTi) → ‘accept’, c(Ti) → ‘deny’).

If nA(RTi)+1 = nD(RTi) then nD(Ti) = min{nA(LTi)+
nA(RTi), nD(LTi) + nD(RTi) − 1} = min{nA(RTi) +
1, nD(RTi) + 1} = nA(RTi) + 1 = nD(RTi). To get D(Ti),

8

we replace the last entry RTi → ‘accept’ of A(RTi) by the
two entries (c(Ti) → ‘accept’, c(Ti) → ‘deny’).

Example 2. Fig. 2(a) illustrates the results of the algorithm
for the range R = [0, 22] = {(0)W , . . . , y1 . . . yW } for W =
5 and y1 . . . yW = 10110. First, for T0 = {y1 . . . yW }, we
clearly have nA(T0) = 1 and nD(T0) = 2. Similarly, for i ∈
[1,W], the values nA(Ti) and nD(Ti) of the subtree Ti where
c(Ti) = y1 . . . yW−i(∗)i are also presented. By Proposition 1,
opt(R) = optp(R) = nD(TW)− 1 = 4− 1 = 3 and R can be
encoded as (10111 → deny, 11∗∗∗ → deny, ∗∗∗∗∗ → accept).

C. The Range Expansion of a Given Extremal Range

We derive from our algorithm a simple deterministic finite
automata (DFA) that computes the optimal range expansion of
a given extremal range R = [0, y] = {(0)W , . . . , y1 . . . yW }.
This automata will be useful for analyzing the expected range
expansion over all extremal ranges.

The DFA, shown in Fig. 2(b), consists of three states
Q = {A,B, C}. These three states represent the three possible
values of nA(T) − nD(T) ∈ {−1, 0, 1} for a subtree T , in
a way that we make precise in Proposition 4. The state A =
(a, a+1) represents a subtree T with nA(T)+1 = nD(T), the
state B = (b, b) represents a subtree T with nA(T) = nD(T),
and the state C = (c + 1, c) represents a subtree T with
nA(T) = nD(T) + 1.

The input to the DFA would be the binary string y1 . . . yW

in a right to left order. The starting state is A and the transition
function δ : Q × Σ → Q is defined such that δ(A, 0) = B,
δ(A, 1) = A, δ(B, 0) = C, δ(B, 1) = A, δ(C, 0) = C, and
δ(C, 1) = B. (Since we are not interested in the language this
DFA accepts we do not define accepting states.)

We want to show how to derive the expansion of R from the
computation of this DFA. To do so, we define the state qi ∈ Q,
for i ∈ [0,W], to be the state of the DFA after reading the
first i input bits yW , . . . , yW−i+1. We then use the following
proposition that connects between Ti and qi.

Proposition 4. Let Ti be the subtree corresponding to the
set y1 . . . yW−i(∗)i. The state qi corresponds to the values of
nA(Ti) and nD(Ti) as follows. If qi = A = (a, a + 1) then
nA(Ti) + 1 = nD(Ti). If qi = B = (b, b) then nA(Ti) =
nD(Ti) and if qi = C = (c+1, c) then nA(Ti) = nD(Ti)+ 1.

Proof: The proof is by induction on i. For i = 0, q0 =
A = (a, a + 1) and indeed (nA(T0), nD(T0)) = (1, 2) as
explained in Example 1.

The induction step follows from the previous description of
the recursive formulas for nA(Ti), and nD(Ti). For instance,
if qi = A = (a, a + 1) then nA(Ti) + 1 = nD(Ti). If
the (i + 1)th processed symbol satisfies yW−i = 0 then
nA(Ti+1) = nA(Ti) + 1 = nD(Ti) = nD(Ti+1) and
qi+1 = B = (b, b). Thus δ(A, 0) = B. If yW−i = 1, then
nA(Ti+1) + 1 = nA(Ti) + 1 = nD(Ti) = nD(Ti+1) and we
have that qi+1 = A = (a, a + 1) and δ(A, 1) = A. Similarly,
we can show the correctness of the induction step also for the
four other transitions. If qi = B = (b, b) and yW−i = 0 then
nA(Ti+1) = nA(Ti) + 1 = nD(Ti) + 1 = nD(Ti+1) + 1 and
qi+1 = C = (c + 1, c). If qi = B = (b, b) and yW−i = 1 then

nA(Ti+1) + 1 = nA(Ti) + 1 = nD(Ti) + 1 = nD(Ti+1) and
qi+1 = A = (a, a + 1). If qi = C = (c + 1, c) and yW−i = 0
then nA(Ti+1) = nA(Ti) = nD(Ti) + 1 = nD(Ti+1) + 1 and
qi+1 = C = (c + 1, c). If qi = C = (c + 1, c) and yW−i = 1
then nA(Ti+1) = nA(Ti) = nD(Ti) + 1 = nD(Ti+1) and
qi+1 = B = (b, b).

Theorem 2. Let ny be the number of transitions of the form
δ(B, 1) = A or δ(C, 1) = B while the DFA processed
yW , . . . , y1. Then, the range expansion of the extremal range
R = [0, y] = {(0)W , . . . , y1 . . . yW } satisfies opt(R) = ny +1.

Proof: For i ∈ [0,W], let Ti be the subtree corresponding
to y1 . . . yW−i(∗)i as before. Furthermore, let ni be the number
of transitions of the form δ(B, 1) = A or δ(C, 1) = B while
processing the last i symbols in y1 . . . yW . We now want to
show by induction on i that nD(Ti) = ni + 2, for i ∈ [0,W].

First, nD(T0) = 2 as discussed before and n0 = 0 since
the DFA has not yet processed any symbol. For the induction
step, we can first see that ni+1 = ni + 1 only if the (i + 1)th

transition is of the form δ(B, 1) = A or δ(C, 1) = B and
ni+1 = ni otherwise. Likewise, by the proof of Proposition 4,
nD(Ti+1) = nD(Ti)+1 only if qi = B, and yW−i = 1 or qi =
C, and yW−i = 1, i.e. when (i + 1)th transition is one of the
two mentioned above. Thus the equality nD(Ti+1) = ni+1 +2
follows from the induction hypothesis nD(Ti) = ni + 2. By
Proposition 1 and the definition of ny , we can now deduce that
optp(R) = nD(TW) − 1 = nW + 2 − 1 = nW + 1 = ny + 1.
Finally, by Theorem 1, opt(R) = optp(R) = ny + 1.

D. Average Range Expansion For Extremal Ranges

We now use the DFA of Section III-C to derive a closed-
form formula for the average range expansion of an extremal
range formally defined as

G(W) = Ey: 0≤y≤2W −1

(
opt([0, y])

)
=

1
2W

·
∑

y: 0≤y≤2W −1

opt([0, y]). (3)

Theorem 3. The average extremal range expansion function
G(W) satisfies

G(W) =
4
9

+
W

3
+

4
9
·
(1

2

)W

if W is odd, and

G(W) =
4
9

+
W

3
+

5
9
·
(1

2

)W

if W is even. (4)

Proof: To calculate G(W), we derive a Markov chain
from the DFA of Section III-C. This Markov chain is shown
in Fig. 2(c). It has the same states as the DFA with the
same interpretation. At each state it flips a coin and takes the
transition that corresponds to an input of 1 with probability
1/2, and the transition that corresponds to an input of 0 with
probability 1/2. This simulates the DFA on an extremal range
drawn uniformly at random.

The transition probabilities are represented in the following
3×3 transition matrix P . The first row and column correspond

9

to state A, the second to state B, and the third to state C. The
(i, j)th element of P describes the transition probability from
the state corresponding to row i to the state corresponding to
column j.

P =

0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

 . (5)

Let ri = (Pr(qi = A), Pr(qi = B),Pr(qi = C)). The
clearly r0 = (1, 0, 0) and by the properties of Markov chains
ri = r0 · P i.

By Theorem 2, G(W) can be calculated based on the average
number of transitions of the form δ(B, 1) = A or δ(C, 1) = B
among the W performed transitions for each range. Let ny

be the number of these specific transitions while processing y.
We think of ny here as a random variable and present it as
the sum of W indicator variables {Iy,i | i ∈ [1,W]}, such that
the function Iy,i indicates whether the (i)th transition is one of
the two specific transitions. Then we can compute G(W), as
presented below.

G(W) =Ey: 0≤y≤2W −1

(
opt([0, y])

)
=Ey: 0≤y≤2W −1

(
ny + 1

)
=1 + Ey: 0≤y≤2W −1

(
ny

)
=1 + Ey: 0≤y≤2W −1

(W∑
i=1

Iy,i

)
=1 +

W∑
i=1

Ey: 0≤y≤2W −1

(
Iy,i

)
=1 +

W∑
i=1

(
Pr(qi−1 = B, yW−i+1 = 1)

+ Pr(qi−1 = C, yW−i+1 = 1)
)

=1 +
1
2
·

W−1∑
i=0

(
Pr(qi = B) + Pr(qi = C)

)
=1 +

1
2
·

W−1∑
i=0

(
1 − Pr(qi = A)

)
=1 +

1
2
·

W−1∑
i=0

(
1 − ri(1)

)
=1 +

1
2
·

W−1∑
i=0

(
1 −

(
(1, 0, 0) · P i

)
(1)

)
=1 +

1
2
·

W−1∑
i=0

(
1 − (P i)(1,1)

)
. (6)

The matrix P satisfies (P 2i−1)(1,1) = (P 2i)(1,1) = 1
3 + 2

3 ·(
1
2

)2i

. Thus the function G(W) satisfies G(W) = G(W −

2) + 1
2

(
(1 − (PW−2)(1,1)) + (1 − (PW−1)(1,1))

)
= G(W −

2) + 1 − (PW−1)(1,1) = G(W − 2) + 2
3 − 4

3 ·
(

1
2

)W

if W is
odd and G(W) = 1

2 (G(W −1)+G(W +1)) if W is even. By

solving these recursive equations we directly have the requested
formulas for G(W) for the even and odd values of W .

To our knowledge, this is the first formula in the literature
for the average encoding size of a non-trivial range set.

By [19]–[21], the worst case expansion for an extremal range
is re(W) = re

p(W) =
⌈

W+1
2

⌉
. Thus clearly G(W) ≤

⌈
W+1

2

⌉
.

Theorem 3 and its corollary below show that the average
encoding length is only about 2/3 of the worst case.

Corollary 4. The average extremal range expansion function
G(W) satisfies

lim
W→∞

G(W)
W

=
1
3
. (7)

IV. ANALYTICAL TOOLS FOR TCAM EXPANSION LOWER
BOUNDS

We now want to introduce a novel general analytical tool that
can help us analyze the minimum number of TCAM entries
needed to encode a range. Intuitively, for a range that we need
to encode, we find n pairs of points. Each pair consists of one
point in the range and one outside the range. We show that the
pairs are pairwise conflicting in a certain sense that we make
precise later, and as a consequence we deduce that these n pairs
cannot be encoded with less than n TCAM entries. Recall that
we work over the set of strings of length W , and the width of
a TCAM entry is W .

A. Past Results

To prove lower bounds on the TCAM worst-case expansion,
we will rely on older analytical tools that have been introduced
in [21]. In this section, we review their main definitions and
results.

First, let’s start with the hull of a set of strings.

Definition 4 (Hull). The hull of n strings {a1, . . . , an}, where
ai = ai

1 . . . ai
W , is the smallest cuboid containing a1, . . . , an.

We denote it by H(a1, . . . , an). Formally,

H(a1, . . . , an) = {x = x1 . . . xW ∈ {0, 1}W |
∀j ∈ [1,W], xj ∈ {a1

j , . . . , a
n
j }} (8)

The hull H(a1, . . . , an) corresponds to the TCAM entry
s(H) = s1 . . . sn where sj = a1

j if a1
j = a2

j = . . . an
j , and

sj = ∗ otherwise. The entry s(H) is the entry with the minimal
number of *s that all the strings a1, . . . , an match. Each string
in the hull is matched by this TCAM entry and vice versa. This
is captured precisely in the following proposition.

Proposition 5. Let a1, . . . , an be n strings. Then a1, . . . , an

match the same TCAM entry s if and only if all the strings in
the hull H(a1, . . . , an) match this TCAM entry.

Then, the notion of an alternating path was defined and
used to derive the lower bound in Proposition 6. To simplify
the presentation we define the alternating path as well as our
relaxation of it to a conflicting set of pairs with respect to
ranges, but they both can be defined with respect to a general
classification function α : {0, 1}W → {accept, deny}.

10

Fig. 3. An illustration of R = [1, 2] = {01, 10} from Example 3, and its
conflicting set of pairs B2 = {(a1, b1), (a2, b2)} = {(01, 00), (10, 11)} of
size W = 2. Members of the same pair in B2 are connected in a dashed line.
a1, a2 ∈ R and b1, b2 /∈ R. Likewise, H(a1, a2)∩{b1, b2} = {b1, b2} ̸= ∅
and H(b1, b2) ∩ {a1, a2} = {a1, a2} ̸= ∅. Therefore, any encoding of R
needs at least |B2| = 2 TCAM entries.

Definition 5 (Alternating Path). An alternating path An of
size n with respect to a range R is an ordered set of 2n − 1
strings An = (a1, . . . , a2n−1) that satisfies the following two
conditions:
(i) Alternation:

{a1, a3, . . . , a2n−1} ⊆ R, {a2, a4, . . . , a2n−2} ∩ R = ∅. (9)

(ii) Hull: For any i1, i2, i3 such that 1 ≤ i1 < i2 < i3 ≤ 2n−1,

ai2 ∈ H(ai1 , ai3). (10)

Proposition 6. A TCAM encoding of a range with an alter-
nating path of length n contains at least n entries.

B. Conflicting Set of Pairs

We now define a new analytical tool called a conflicting
set of pairs. Intuitively, a conflicting set of pairs of size n is
composed of n pairs of points, each with one point within the
range and one outside the range. We show that the pairs are
pairwise conflicting such that we cannot encode together two
points within the range or alternatively two points outside the
range from two different pairs.

Definition 6 (Conflicting Set of Pairs). A conflicting set of
pairs Bn of size n with respect to a range R is defined as a
set of n ordered pairs of strings

Bn = {(ai, bi) | i ∈ [1, n],∀i ∈ [1, n], ai, bi ∈ {0, 1}W }

that satisfies the following two conditions:
(i) Alternation: For i ∈ [1, n],

ai ∈ R and bi ̸∈ R. (11)

(ii) Hull: For any i1, i2 such that 1 ≤ i1 < i2 ≤ n,

H(ai1 , ai2) ∩ {bi1 , bi2} ≠ ∅, and

H(bi1 , bi2) ∩ {ai1 , ai2} ≠ ∅. (12)

Example 3. Let W = 2, and consider the range R = [1, 2] =
{01, 10} presented in Fig. 3. Let a1 = 1 = 01, b1 = 0 = 00,
a2 = 2 = 10 and b2 = 3 = 11. Then B2 = {(a1, b1), (a2, b2)}
is a conflicting set of pairs of size n = 2 because it satisfies
the two conditions:
(i) Alternation: a1 ∈ R, b1 ̸∈ R and a2 ∈ R, b2 ̸∈ R.
(ii) Hull: First, b2 ∈ H(a1, a2), i.e. 11 ∈ H(01, 10), because it
shares its first bit with a2 and its second bit with a1. Likewise,
a2 = 10 ∈ H(b1, b2) = H(00, 11), because it shares its first
bit with b2 and its second bit with b1.

Since the alternation property holds for any pair of elements
in a conflicting set of pairs and the hull property holds for any
two pairs of elements, we can easily observe the following.

Corollary 5. Let n be a positive integer, and Bn+1 =
{(a1, b1), . . . , (an+1, bn+1)} be a conflicting set of pairs of size
n + 1. Then removing any pair of elements in the conflicting
set of pairs yields a conflicting set of pairs of size n.

The next lemma suggests a lower bound on the range
expansion of a range with a conflicting set of pairs.

Lemma 1. A range with a conflicting set of pairs of size n
cannot be encoded in less than n TCAM entries.

Proof: The proof is by induction on n. Let Bn =
{(ai, bi)|i ∈ [1, n]} denote the conflicting set of pairs and let
βn =

∪n
i=1{ai, bi} denote the set of elements in the pairs of

Bn.
Induction basis: For n = 1, let B1 = {(a1, b1)}. We need

at least one TCAM entry to accept a1.
Induction step: We assume that we cannot encode a classifier

function with a conflicting set of pairs of size n in less than n
TCAM entries, and want to show it for n + 1 as well.

Assume by contradiction that we can encode a clas-
sifier function with a conflicting set of pairs Bn+1 =
{(a1, b1), . . . , (an+1, bn+1)} of size n + 1 in less than n + 1
TCAM entries. Then consider the first TCAM entry S → a,
and distinguish several cases.

(i) If none of the elements of βn+1 are in this first TCAM
entry, which we denote by βn+1 ∩ S = ∅, then S does not
impact Bn+1, and we can actually encode the elements of
Bn+1 in the next (at most) n− 1 TCAM entries. However, by
Observation 5 we can extract from Bn+1 a conflicting set of
pairs of size n, e.g. {(a1, b1), . . . , (an, bn)}, and by induction
we know that it cannot be encoded in n − 1 TCAM entries.

(ii) If a single element ai or bi out of βn+1 is in this first
TCAM entry, i.e. βn+1∩S = {ai} or βn+1∩S = {bi}, then by
Observation 5, we can remove from Bn+1, the pair of elements
(ai, bi), and obtain a conflicting set of pairs Bn of size n that
does not contain ai and bi. But then we need to encode Bn in
the next (at most) n − 1 TCAM entries, because βn ∩ S = ∅,
and by induction we know that it is impossible.

(iii) If at least two elements out of βn+1 are in this first
TCAM entry, i.e. |βn+1 ∩ S| > 1, then they all must yield
the same action by definition of the TCAM entry. Assume first
that {ai1 , ai2} ⊆ βn+1 ∩ S, with i1 ̸= i2 and ai1 , ai1 ∈ R.
By Definition 6, {bi1 , bi2} ∩ H(ai1 , ai2) ̸= ∅. Therefore,
by Proposition 5, at least one of bi1 , bi2 also matches the
same TCAM entry, even though they should both yield a
different action than ai1 and ai2 . Contradiction again. A similar
contradiction occurs if {bi1 , bi2} ⊆ βn+1∩S, with i1 ̸= i2 and
bi1 , bi1 /∈ R.
Remark: We can in fact prove a stronger version of Lemma
1 saying that even if we give up the element bn of the pair
(an, bn) the lower bound still follows. Consequently it is not
hard to see how we can get a conflicting set of n pairs without
bn from an alternating path of length 2n − 1.

11

(a) (b)

Fig. 4. Two encoding schemes of the range R = [5, 22] =
{00101, . . . , 10110} from Example 4. Fig. 4(a) presents the encoding of R
itself as a union of several prefix ranges. The six plus signs represents the six
TCAM entries in this encoding. Fig. 4(b) demonstrates the alternative encoding
of R in which we first encode negatively its complementary Rc and add an
additional entry that accepts R itself. Again, the five signs represents the five
entries of this encoding. For any W -bit range R, one of these two encodings
has at most W entries.

V. BOUNDS ON WORST-CASE EXPANSION

A. General 1-D Ranges

The following result is known from [19]–[21].

Property 6. For all W ≥ 1, the maximum range expansion
satisfies the following upper-bound:

r(W) ≤ rp(W) = W. (13)

In this section we describe a very simple algorithm that
encodes a W -bit range with at most W rules. Although
this algorithm has the same maximum range expansion as the
encoding scheme presented in [19], it is unique in its simplicity.
This algorithm either uses entries that accept the range, or a
set of entries that deny the complement of the range and an
additional entry that accepts everything else.

We consider a W -bit range R = [y, z] =
{y1 . . . yW , . . . , z1 . . . zW }. If y = z then R is an exact
match and can be encoded in one entry of the form
y → ‘accept’. Otherwise, let j ∈ [1,W] be the first bit
index in which y1 . . . yW and z1 . . . zW differ, such that
y1 . . . yj−1 = z1 . . . zj−1 and yj = 0, zj = 1.

Let n0(y), n1(y) be the number of 0s and the number of 1s
in yj+1 . . . yW , respectively. Similarly, we define n0(z), n1(z)
as the number of each of these symbols in zj+1 . . . zW . We
can present R as a union of at most n0(y) + n1(z) + 2 prefix
ranges as follows:

R =
(∪

i∈[j+1,W],yi=0{y1 . . . yi−11(∗)W−i}
) ∪(∪

i∈[j+1,W],zi=1{z1 . . . zi−10(∗)W−i}
)∪

{y, z}.(14)

By adding an action of ‘accept’ to each of the corresponding
prefix TCAM entries, we can encode R in n0(y) + n1(z) + 2
prefix entries. Likewise, we can represent Rc as a union of
n1(y) + n0(z) prefix ranges

Rc =
(∪

i∈[j+1,W],yi=1{y1 . . . yi−10(∗)W−i}
) ∪(∪

i∈[j+1,W],zi=0{z1 . . . zi−11(∗)W−i}
)
. (15)

Then we can encode R by first encoding negatively its com-
plementary Rc by adding an entry of ‘deny’ to each of these
last n1(y) + n0(z) entries and adding a last entry of the form
(∗)W → ‘accept’ in a total expansion of n1(y) + n0(z) + 1.

For a range R, we denote by na(R), nd(R) the number of
entries in these two presented encodings, respectively, such that
na(R) = n0(y)+n1(z)+2 and nd(R) = n1(y)+n0(z)+1. By
their definitions, we have that n0(y)+n1(y) = W −j ≤ W −1
and n0(z) + n1(z) ≤ W − 1 as well. We then have the the
total number of entries in these two possible encoding satisfies
na(R)+nd(R) = (n0(y)+n1(z)+2)+(n1(y)+n0(z)+1) ≤
2(W − 1)+3 = 2W +1. Thus min{na(R), nd(R)} ≤ W and
one of the encodings includes at most W entries. We encode
R by this encoding.

Example 4. Let W = 5, and consider the range R =
[y, z] = [5, 22] = {00101, . . . , 10110}. As illustrated in
Fig. 4(a), we can encode R itself as union of n0(y) +
n1(z) + 2 = 2 + 2 + 2 = 6 (here j = 1) prefix TCAM
entries (01(∗)3 → ‘accept’, 0011∗ → ‘accept’, 00101 →
‘accept’, 100(∗)2 → ‘accept’, 1010∗ → ‘accept’, 10110 →
‘accept’). Likewise, as presented in Fig. 4(b) we can first
encode negatively Rc and add a last entry that accepts every-
thing else by (000(∗)2 → ‘deny’, 00100 → ‘deny’, 11(∗)3 →
‘deny’, 10111 → ‘deny’, (∗)5 → ‘accept’), in n1(y) + n0(z) +
1 = 2 + 2 + 1 = 5 entries. For this range R, in the second
encoding the number of entries satisfies nd(R) = 5 ≤ W .

The next theorem shows that the upper-bound on the max-
imum range expansion r(W) ≤ W is actually tight. Unlike
the limited result from [21] that shows its tightness among
only prefix encoding schemes, we show its tightness among all
TCAM encoding schemes. Incidentally, this theorem answers
the open question left in the conclusion of [21].

Theorem 7. For all W ≥ 1, the maximum range expansion
satisfies

r(W) = rp(W) = W. (16)

Proof: We show that for all W ≥ 1, the maximum range
expansion satisfies r(W) ≥ W . It then follows from Property 6
that the bound is tight, i.e. r(W) = rp(W) = W.

To do so, we first assume that W
is even, and consider the range R =[
1
3

(
2W − 1

)
, 2W−1 − 1

] ∪ [
2W−1, 2

3

(
2W − 1

)]
=[

1
3

(
2W − 1

)
, 2

3

(
2W − 1

)]
= {(01)

W
2 , . . . , (10)

W
2 }. We

show that given R, we can build a conflicting set of pairs of
size W . Then, based on Lemma 1, we deduce that R cannot
be encoded in less than W TCAM entries.

The construction is as follows. We start by defining 2W
elements c1, c2, . . . , c2W from which the W pairs of the
conflicting set of pairs will be later composed of. We define
c1 = (01)

W
2 , and then obtain c2, . . . , cW+1 by flipping each

time the (W −(i−1))th bit of ci to obtain ci+1: by flipping the
W th (least significant) bit of c1, we get c2 = (01)

W
2 −100. Then

by flipping the (W − 1)th bit of c2, we get c3 = (01)
W
2 −110,

and likewise until cW = 00(10)
W
2 −1 and cW+1 = (10)

W
2 .

We then continue to obtain cW+2, . . . , c2W in a similar way,
such that ci+1 is given by flipping the (2W − (i − 1))th

bit of ci, for i ∈ [W + 1, 2W − 1]. We can see that
R =

[
1
3

(
2W − 1

)
, 2

3

(
2W − 1

)]
= {(01)

W
2 , . . . , (10)

W
2 } =

[c1, cW+1]. We remind that in comparing two W -bit binary
strings ci and cj using the lexicographic order, ci < cj iff there
exists some most significant different bit k such that their first

12

k − 1 bits are equal, and the kth bit of ci is 0 while the kth bit
of cj is 1. We can now observe that these 2W elements have
the following properties.

(i) For i ∈ [1,W], the most significant bit of ci is 0 and
ci ∈ [0, 2W−1 − 1]. Likewise, for i ∈ [W + 1, 2W], the most
significant bit of ci is 1 and ci ∈ [2W−1, 2W − 1].

(ii) For i ∈ [1,W +1], ci has the same first W − (i−1) bits
as c1 = (01)

W
2 and the same last i−1 bits as cW+1 = (10)

W
2 .

For i ∈ [W + 1, 2W], ci has the same first 2W − (i − 1) bits
as cW+1 and the same last i − (W + 1) bits as c1 = (01)

W
2 .

(iii) For i ∈ [2, W], the most significant bit in which ci and
c1 differ is the (W − (i − 2))th bit. Since c1

W−(i−2) = 0 if i

is odd and c1
W−(i−2) = 1 if i is even, we have that ci ≥ c1,

ci ∈ R if i is odd, and ci < c1, ci /∈ R if i is even. From the
same reason, by comparing ci and cW+1, we have that also for
i ∈ [W + 1, 2W], ci ∈ R if i is odd and ci /∈ R if i is even.

We now define for i ∈ [1, W], ai = c2i−1 and bi = c2i.
To show that BW = {(a1, b1), . . . , (aW , bW)} is a conflicting
set of pairs of size W , we have to show it satisfies the two
required conditions. The alternation property follows directly
from (iii).

We would like to show now that BW satisfies also the
hull property. We first consider two elements ai1 , ai2 for
1 ≤ i1 < i2 ≤ W . If i1, i2 ∈ [1, W

2] or i1, i2 ∈ [W
2 + 1, W],

then bi1 ∈ H(ai1 , ai2) since it shares W − 1 of its W bits
with ai1 and the remaining bit with ai2 . If i1 ∈ [1, W

2] and
i2 ∈ [W

2 + 1,W], let i = i1 and j = i2 − W
2 . We then

have ai1 = ai = (01)
W
2 −(i−1)(10)(i−1) and ai2 = aj+ W

2 =
(10)

W
2 −(j−1)(01)(j−1). We distinguish two possible subcases.

If i ≥ j, ai1 , ai2 differ in their first W − 2(i − 1) first bits.
Since ai1 , bi1 differ only in their (W −2(i−1))th bit, we have
that bi1 ∈ H(ai1 , ai2). From the same reason, if i < j then
bi2 ∈ H(ai1 , ai2).

We now consider two elements bi1 , bi2 such that 1 ≤
i1 < i2 ≤ W . If i1, i2 ∈ [1, W

2] or i1, i2 ∈ [W
2 + 1, W],

then ai2 ∈ H(bi1 , bi2) since ai2 , bi2 differ in only one bit
on which ai2 and bi1 agree. If i1 ∈ [1, W

2] and i2 ∈
[W

2 + 1,W], we use again the notations i, j as defined above.
Here bi1 = bi = (01)

W
2 −i00(10)(i−1) and bi2 = bj+ W

2 =
(10)

W
2 −j11(01)(j−1). If i ≥ j, bi1 , bi2 differ (at least) in their

last 2j − 1 bits with indices {W − (2j − 2), . . . ,W}. Since
ai2 , bi2 differ only in their (W − (2j − 2))th bit, we have
that ai2 ∈ H(bi1 , bi2). From the same reason, if i < j then
ai1 ∈ H(bi1 , bi2).

Then, we can observe that BW is indeed a conflicting set of
pairs. It has exactly W pairs of elements, thus it is a conflicting
set of pairs of size W . Finally, based on Lemma 1, we deduce
that R cannot be encoded in less than W TCAM entries.

Likewise, if W is odd, we consider the
range R =

[
1
3

(
2W−1 − 1

)
, 4

3

(
2W−1 − 1

)]
=

{0(01)
W−1

2 , . . . , (10)
W−1

2 0}. We define c1 = 0(01)
W−1

2 ,
and then obtain (c1, . . . , cW) by flipping each time the
(W − (i − 1))th bit of ci to obtain ci+1. For instance,
c2 = 0(01)

W−1
2 −100 and cW = 0(10)

W−1
2 . We then continue

to obtain (cW+1, . . . , c2W) such that for i ∈ [W + 1, 2W], ci

is given by flipping the first bit of ci−W . By defining again,
for i ∈ [1,W], ai = c2i−1 and bi = c2i, we can show that

(a) (b)

Fig. 5. Two-dimensional range R = Rx×Ry . Fig. 5(a) presents the encoding
of the two-dimensional range R by negatively encoding the complementary
of Rx and then encoding positively Ry itself. Fig. 5(b) demonstrates the
alternative encoding of R: first encoding negatively Ry’s complementary and
then encoding positively Rx itself.

BW = {(a1, b1), . . . , (aW , bW)} is a conflicting set of pairs
of size W . Thus R cannot be encoded in less than W TCAM
entries.

Example 5. Let W = 6, and consider the range
R = [21, 42] = {(01)

W
2 , . . . , (10)

W
2 }. Let (a1, b1) =

(010101, 010100), (a2, b2) = (010110, 010010), (a3, b3) =
(011010, 001010). Likewise, let (a4, b4) = (101010, 101011),
(a5, b5) = (101001, 101101), (a6, b6) = (100101, 110101).
Then, BW = {(a1, b1), . . . , (aW , bW)} is a conflicting set of
pairs of size W . Thus the range R cannot be encoded in less
than W = 6 TCAM entries.

B. General 2-D Ranges

We now consider the encoding of two-dimensional ranges.
The input here is a pair of strings (a, b). A two-dimensional
range is a product of two one-dimensional ranges R1×R2, and
the encoding of such a range should accept exactly the pairs
of strings (a, b) such that a ∈ R1 and b ∈ R2.

We generalize the definition of r(W) to multi-dimensional
ranges, and define rd(W) as the maximum expansion of a d-
dimensional range in [0, 2W −1]d. Likewise, define re,d(W) as
the maximum expansion of a d-dimensional extremal range, i.e.
the maximum expansion of a range whose projection on each
dimension is an extremal range. Finally, let rd

p(W) (respec-
tively re,d

p (W)) be the maximum expansion of a (an extremal)
d-dimensional range when we use only prefix encodings.

Lemma 2. A two-dimensional classification rule R has a
worst-case expansion of

r2(W) ≤ 2W. (17)

Proof: The proof is based on the two possible encodings
of a one-dimensional range presented in Section V. We also
use similar notations. We consider a two-dimensional range
R2 = Rx × Ry and again present two possible encodings of
R2 such that one of them has the required expansion.

First, as illustrated in Fig. 5(a), to encode R2 we can nega-
tively encode the complementary of Rx in nd(Rx)− 1 entries
while setting the symbols corresponding to the second field to
be (∗)W in all entries (here an additional entry that accepts the
Rx itself is not required). Then we encode positively Ry itself
again with (∗)W in the first field in na(Ry). This encodes R
in nd(Rx)−1+na(Ry) entries. Alternatively, as demonstrated

13

in Fig. 5(b), we can first encode negatively (Ry)c and then Rx

itself in nd(Ry) − 1 + na(Rx). As explained in Section V,
na(Rx) + nd(Rx), na(Ry) + nd(Ry) ≤ 2W + 1. We now
deduce that nd(Rx) − 1 + na(Ry) + nd(Ry) − 1 + na(Rx) =
na(Rx) + nd(Rx) + na(Ry) + nd(Ry) − 2 ≤ 4W . Thus
min{nd(Rx) − 1 + na(Ry), nd(Ry) − 1 + na(Rx)} ≤ 2W .
Finally, we encode R2 by the encoding that achieves the
minimum, and the bound on the expansion is satisfied.

We now show that our suggested encoding scheme for
two-dimensional ranges has the optimal worst-case TCAM
expansion. To do so, we present a particular two-dimensional
range, denoted as R2, and show that we can build a conflicting
set of pairs of size 2W for R2. Then, from Lemma 1, we
deduce that R2 cannot be encoded in less than 2W TCAM
entries.

We first generalize Definition 4 for pairs of strings. Con-
sider n pairs of strings (a1, b1), . . . , (an, bn), then the hull of
{(a1, b1) . . . , (an, bn)} is the cartesian product of the single-
dimensional hulls H((a1, b1) . . . , (an, bn)) = H(a1 . . . , an)×
H(b1 . . . , bn) = {(a, b) | a ∈ H(a1 . . . , an), b ∈
H(b1 . . . , bn)}.

From Proposition 5, it follows that the single-dimensional
hull is transitive, that is H(a1, . . . , an) = H(H(a1, . . . , an)).
From this, it easily follows that the multidimensional hull is
also transitive.

The following definition and proposition are needed to
prove the lower bound on the worst-case expansion of two-
dimensional ranges. For a bit value bi let bi be the bit value
1− bi. We define the function Ψ : [0, 2W −1]2 → [0, 2W −1]2

mapping a pair of strings (x, y) = (x1 . . . xW , y1 . . . yW) to a
pair of strings as follows:

Ψ((x, y)) = Ψ((x1 . . . xW , y1 . . . yW)) =
(y1 . . . yW , x1 . . . xW). (18)

Ψ((x, y)) is an injective function and Ψ−1((x, y)) =
(y1 . . . yW , x1 . . . xW).

Proposition 7. For any pairs of strings b1, b2, b3,

b3 ∈ H(b1, b2) ⇔ Ψ(b3) ∈ H(Ψ(b1), Ψ(b2)). (19)

Proof: Let bi = (xi
1 . . . xi

W , yi
1 . . . yi

W) for i ∈
[1, 3]. Then, Ψ(bi) = (yi

1 . . . yi
W , xi

1 . . . xi
W). On the one

hand, if b3 ∈ H(b1, b2) then ∀j ∈ [1,W], x3
j ∈

{x1
j , x

2
j} ∧ y3

j ∈ {y1
j , y2

j }. We immediately also have
that ∀j ∈ [1, W], x3

j ∈ {x1
j , x

2
j} and as a consequence

Ψ(b3) ∈ H(Ψ(b1), Ψ(b2)). For the second direction, we can
also see that Ψ4((x, y)) = Ψ4((x1 . . . xW , y1 . . . yW)) =
Ψ3((y1 . . . yW , x1 . . . xW)) = Ψ2((x1 . . . xW , y1 . . . yW)) =
Ψ1((y1 . . . yW , x1 . . . xW)) = (x1 . . . xW , y1 . . . yW) = (x, y).
Thus if Ψ(b3) ∈ H(Ψ(b1), Ψ(b2)), we use the previ-
ous claim three times and observe that b3 = Ψ4(b3) ∈
H(Ψ4(b1),Ψ4(b2)) = H(b1, b2).

We can now prove the main result of this section. This result
shows the optimality of the suggested encoding scheme for
two-dimensional ranges.

Lemma 3. The worst-case expansion of a two-dimensional
classification rule R2 satisfies,

r2(W) ≥ 2W. (20)

Proof: We provide the proof for even values
of W . We consider the range R2 = R × R =[
1
3

(
2W − 1

)
, 2

3

(
2W − 1

)]
×

[
1
3

(
2W − 1

)
, 2

3

(
2W − 1

)]
.

The projection of R2 on each dimension is the hard-to-encode
range R =

[
1
3

(
2W − 1

)
, 2

3

(
2W − 1

)]
from which we can

build a conflicting set of pairs of size W , as described in
Section V. We also reuse the definitions of a1, b1, . . . , aW , bW

defined there and remind that BW = {(a1, b1), . . . , (aW , bW)}
is a conflicting set of pairs of size W as shown in Section V.

We define 4W pairs of strings as follows. For i ∈ [1, W
2],

ci = (ai, a1) and di = (bi, a1). For i ∈ [W
2 + 1,W],

ci = (a1, ai) and di = (a1, bi). Next, for i ∈ [W + 1, 3W
2],

ci = (ai−W
2 , a

W
2 +1) and di = (bi−W

2 , a
W
2 +1). Finally, for i ∈

[3W
2 +1, 2W], ci = (a

W
2 +1, ai− 3W

2) and di = (a
W
2 +1, bi− 3W

2).
For simplicity, we denote these four sets of W indices by Si

for i ∈ [1, 4] such that Si = [(i− 1) · W
2 + 1, i · W

2]. We would
like to show now that DW = {(c1, d1), . . . , (c2W , d2W)} is a
conflicting set of pairs of size 2W .

We start with the alternation property and remind that since
BW = {(a1, b1), . . . , (aW , bW)} is a conflicting set of pairs,
we have that ∀i ∈ [1,W], ai ∈ R, bi /∈ R. Since a pair of
strings (x, y) satisfies (x, y) ∈ R2 = R × R iff x ∈ R and
y ∈ R, we can observe directly from their definitions that
∀i ∈ [1, 2W], ci ∈ R2, di /∈ R2.

Next, we examine the hull property of DW . We again use the
fact that BW = {(a1, b1), . . . , (aW , bW)} itself is a conflicting
set of pairs.

We want to show that for any i1, i2 such that 1 ≤ i1 < i2 ≤
2W , H(ci1 , ci2)∩{di1 , di2} ̸= ∅∧H(di1 , di2)∩{ci1 , ci2} ≠ ∅.
We consider several cases regarding the membership of i1, i2
to the four sets of indices S1, S2, S3 and S4.

If i1, i2 ∈ S1 then ci1 = (ai1 , a1) and ci2 = (ai2 , a1). It is
known that H(ai1 , ai2) ∩ {bi1 , bi2} ̸= ∅. If bi1 ∈ H(ai1 , ai2)
then by the generalization of Definition 4, di1 = (bi1 , a1) ∈
H((ai1 , a1), (ai2 , a1)) = H(ci1 , ci2). Likewise, if bi2 ∈
H(ai1 , ai2) then di2 = (bi2 , a1) ∈ H((ai1 , a1), (ai2 , a1)) =
H(ci1 , ci2). Thus H(ci1 , ci2) ∩ {di1 , di2} ̸= ∅. Further, since
H(bi1 , bi2) ∩ {ai1 , ai2} ̸= ∅, we have that either ai1 ∈
H(bi1 , bi2) and ci1 = (ai1 , a1) ∈ H((bi1 , a1), (bi2 , a1)) =
H(di1 , di2) or ai2 ∈ H(bi1 , bi2) and ci2 = (ai2 , a1) ∈
H((bi1 , a1), (bi2 , a1)) = H(di1 , di2). Therefore, H(di1 , di2) ∩
{ci1 , ci2} ̸= ∅.

If i1 ∈ S1, i2 ∈ S2 then ci1 = (ai1 , a1) and ci2 = (a1, ai2).
First, (a1, a1) ∈ H(ci1 , ci2) since it shares its first W bits
with ci2 and its last W bits with ci1 . Second, bi2 ∈ H(a1, ai2)
and di2 = (a1, bi2) ∈ H((a1, a1), (a1, ai2)). Last, based on
the transitivity property of the hull function, we observe that
di2 ∈ H(ci1 , ci2). Likewise, we can see that ai1 ∈ H(bi1 , bi2)
and ci1 ∈ H(di1 , di2).

If i1 ∈ S1, i2 ∈ S3 then ci1 = (ai1 , a1) and
ci2 = (ai2−W

2 , a
W
2 +1). Clearly, a1, a

W
2 +1 ∈ H(a1, a

W
2 +1).

Thus based again on the generalization of Definition 4,
if bi1 ∈ H(ai1 , ai2−W

2) then di1 = (bi1 , a1) ∈
H((ai1 , a1), (ai2−W

2 , a
W
2 +1)) = H(ci1 , ci2). If

bi2−W
2 ∈ H(ai1 , ai2−W

2) then di2 = (bi2−W
2 , a

W
2 +1) ∈

H((ai1 , a1), (ai2−W
2 , a

W
2 +1)) = H(ci1 , ci2). Thus we have

14

again that H(ci1 , ci2) ∩ {di1 , di2} ̸= ∅. Using the same
arguments we can show that H(di1 , di2) ∩ {ci1 , ci2} ̸= ∅.

We would like now to generalize these cases and show the
existence of the hull property also for arbitrary i1, i2. To do
so, we use Proposition 7. We first observe that for i ∈ [1, 2W],
Ψ(ci) = ci+ W

2 and Ψ(di) = di+ W
2 where the indices summing

up is calculated modulu 2W . For instance, for i ∈ [1, W
2], ci =

(ai, a1), di = (bi, a1) and ci+ W
2 = (a1, ai+ W

2) and di+ W
2 =

(a1, bi+ W
2). By the definition of ai, bi for i ∈ [1,W], ai+ W

2

(and bi+ W
2) is achieved by flipping all the bits of ai (bi). Thus

we indeed have that Ψ(ci) = ci+ W
2 and Ψ(di) = di+ W

2 .
If i1 ∈ S1, i2 ∈ S4, then (i1 + W

2) ∈ S2, (i2 + W
2) ∈

S1. Then, as proved earlier di1+
W
2 ∈ H(ci1+

W
2 , ci2+

W
2) and

ci2+
W
2 ∈ H(di1+

W
2 , di2+

W
2). Based on Proposition 7, we have

that di1 = Ψ−1(di1+
W
2) ∈ H(Ψ−1(ci1+

W
2), Ψ−1(ci2+

W
2)) =

H(ci1 , ci2) and similarly ci2 ∈ H(di1 , di2).
More generally, if i1 ∈ Si, i2 ∈ Sj for 1 ≤ i ≤ j ≤ 4 then

(i1 − (i−1)·W
2) ∈ S1, (i2 − (i−1)·W

2) ∈ Sj−(i−1). As shown
in one of the four subcases above according to the identity
of the set Sj−(i−1), H(Ψ−(i−1)(ci1), Ψ−(i−1)(ci2)) ∩
{Ψ−(i−1)(di1), Ψ−(i−1)(di2)} =
H(ci1− (i−1)·W

2 , ci2− (i−1)·W
2)∩{di1− (i−1)·W

2 , di2− (i−1)·W
2 } ≠ ∅.

By applying Proposition 7 (i − 1) times, we have that
H(ci1 , ci2) ∩ {di1 , di2} ̸= ∅. Similar claims show that
H(di1 , di2) ∩ {ci1 , ci2} ̸= ∅.

Finally, we observe that DW = {(c1, d1), . . . , (c2W , d2W)}
is a conflicting set of pairs of size 2W . Thus by Lemma 1 the
two-dimensional range R2 cannot be encoded in less than 2W
TCAM entries.

It follows from Lemma 2 that the bound is tight, i.e.

r2(W) = 2W. (21)

Theorem 8. The worst-case expansion of a two-dimensional
classification rule satisfies,

r2(W) = r2
p(W) = 2W. (22)

Proof: Clearly, r2(W) ≤ r2
p(W). Since the encoding

presented in the proof of Lemma 2 includes only prefix entries
we have also that r2

p(W) ≤ 2W . Finally, by Lemma 3 we have
the result.

Example 6. For W = 2, consider the two-dimensional range
R2 = R × R = [1, 2] × [1, 2]. For the range R = [1, 2],
BW = {(a1, b1), (a2, b2)} = {(01, 00), (10, 11)} is a conflict-
ing set of pairs. Based on the construction above we define
4W pairs of strings as illustrated in Fig. 6. c1 = (a1, a1),
d1 = (b1, a1), c2 = (a1, a2), d2 = (a1, b2). Likewise,
c3 = (a2, a2), d3 = (b2, a2), c4 = (a2, a1), d4 = (a2, b1). Then
D2 = {(c1, d1), (c2, d2), (c3, d3), (c4, d4)} is a conflicting set
of pairs of size 2W and the range R2 cannot be encoded in
less than 2W = 4 TCAM entries.

C. Extremal 2-D Ranges
As in the case of one-dimensional ranges, the upper bound

for general two-dimensional ranges from Theorem 8 can be

Fig. 6. A conflicting set of pairs {(c1, d1), (c2, d2), (c3, d3), (c4, d4)} of
size 2W = 4 for the range R2 = [1, 2] × [1, 2]. We prove that any encoding
of R2 needs at least 4 TCAM entries.

improved when only extremal ranges are considered.

Lemma 4. The worst-case expansion of a two-dimensional
extremal classification rule R satisfies

re,2(W) ≤ re,2
p (W) ≤ W + 1. (23)

Proof: We again consider two possible encodings for the
two-dimensional extremal range R2 = Rx×Ry as presented in
the proof of Lemma 2. Since Rx, Ry are both extremal ranges,
we can show that na(Rx)+nd(Rx), na(Ry)+nd(Ry) ≤ W+2.
Then nd(Rx)−1+na(Ry)+nd(Ry)−1+na(Rx) ≤ 2W +2
and min{nd(Rx)−1+na(Ry), nd(Ry)−1+na(Rx)} ≤ W+1.
The range R2 can be encoded in the smaller encoding among
the two.

We would also like to suggest lower bounds on the worst-
case expansion of these special range. To do so, we first gen-
eralize Proposition 6 to the case of multidimensional strings.

Lemma 5. Consider d range fields of W bits, and define
an alternating path with an alternation property and a hull
property (generalization of Definition 4). This alternating path
is composed of concatenated strings of d · W bits. Then, a d-
dimensional classifier function with an alternating path of size
n cannot be encoded in less than n TCAM entries.

Proof: The proof is similar to the proof of Proposition 6
presented in [21] and is given by induction on W . We first show
that the encoding of a single string in an alternating path of size
n = 1 requires one TCAM entry. By the same considerations,
given such an alternating path An of size n, we cannot encode
in one TCAM entry more than one point from the alternating
path. Given the first TCAM entry, we can produce as a subset
of An a new alternating path of size (n − 1) such that none
of its points are defined in this entry. Thus by the induction
hypothesis, at least n − 1 additional entries are required to
complete the encoding of An.

Lemma 6. The worst-case expansion of a two-dimensional
extremal classification rule R satisfies

re,2
p (W) ≥ re,2(W) ≥ 2 ·

⌈
W + 1

2

⌉
− 1. (24)

15

Fig. 7. An illustration of R2 = [0, 2] × [0, 2] from Ex-
ample 7, and its alternating path BW+1 = (b1, . . . , b5) =
((10, 01), (11, 01), (01, 01), (01, 11), (01, 10)) of size W +1 = 3. We prove
that any encoding of R2 requires at least W + 1 = 3 TCAM entries.

More specifically, if W is even, re,2
p (W) ≥ re,2(W) ≥ W + 1

and re,2
p (W) ≥ re,2(W) ≥ W if W is odd.

Proof: We first provide the proof for even values
of W . The proof uses the one-dimensional range R =
[0, 2

3

(
2W − 1

)
] = {(0)W , . . . , (10)

W
2 }. We start by defin-

ing a1 = (10)
W
2 and obtaining (a2, . . . , aW+1) by flipping

each time the (W − (i − 1))th bit of ai to have ai+1 for
i ∈ [1,W]. Then, as shown in [21], An = (a1, . . . , aW+1)
is an alternating path of size n = W

2 + 1. We now consider
the two-dimensional range R2 = R × R and build an L-
shaped alternating path in the two-dimensional space composed
of the two one-dimensional alternating paths joined together.
We remind that (x, y) ∈ R2 if x, y ∈ R. We define the
alternating path B2n−1 = (b1, . . . , bW+1, . . . , b2W+1) of size
2n − 1 = 2 · (W

2 + 1) − 1 = W + 1 in which each element is
composed of a pair of strings from the original one-dimensional
alternating path. For i ∈ [1,W +1], we define bi = (ai, aW+1)
and for i ∈ [W + 1, 2W + 1], bi = (aW+1, a2W+2−i).

Based on the fact that An is an alternating path, we now
show that B2n−1 satisfies the two required conditions:

(i) Alternation: First, b1 = (a1, aW+1) ∈ R2 since
a1, aW+1 ∈ R. Next, for i ∈ [1, W

2], b2i = (a2i, aW+1) /∈ R2

since a2i /∈ R and b2i+1 = (a2i+1, aW+1) ∈ R2. Last,
for i ∈ [W

2 + 1,W], b2i = (aW+1, a2W+2−2i) /∈ R2 since
a2W+2−2i /∈ R and b2i+1 = (aW+1, a2W+1−2i) ∈ R2.

(ii) Hull: We want to show that for any i1, i2, i3 such that
1 ≤ i1 < i2 < i3 ≤ 2W + 1, bi2 ∈ H(bi1 , bi3) and consider
several cases.

(ii.a) If i1 < i2 < i3 ≤ W + 1, then bi2 = (ai2 , aW+1) ∈
H((ai1 , aW+1), (ai3 , aW+1)) = H(bi1 , bi3) since ai2 ∈
H(ai1 , ai3).

(ii.b) If W + 1 ≤ i1 < i2 < i3 ≤
2W + 1, then bi2 = (aW+1, a2W+2−i2) ∈
H((aW+1, a2W+2−i1), (aW+1, a2W+2−i3)) = H(bi1 , bi3)
since a2W+2−i2 ∈ H(a2W+2−i1 , a2W+2−i3).

(ii.c) If i1 < i2 ≤ W + 1 ≤ i3 ≤ 2W + 1, then
bi2 = (ai2 , aW+1) ∈ H((ai1 , aW+1), (aW+1, a2W+2−i3)) =
H(bi1 , bi3), since ai2 ∈ H(ai1 , aW+1) and clearly aW+1 ∈
H(aW+1, a2W+2−i3).

(ii.d) If i1 ≤ W + 1 ≤ i2 < i3 ≤ 2W + 1, bi2 =

(aW+1, a2W+2−i2) ∈ H((ai1 , aW+1), (aW+1, a2W+2−i3)) =
H(bi1 , bi3), since a2W+2−i2 ∈ H(aW+1, a2W+2−i3) and
clearly aW+1 ∈ H(ai1 , aW+1).

We now deduce that B2n−1 is an alternating path of size
2n − 1 = 2 · (W

2 + 1) − 1 = W + 1 and apply Lemma 5 to
have the requested result.

If W is even, we first define the one-dimensional range R =
{0, 2

3

(
2W−1 − 1

)
} = {(0)W , . . . , (10)

W−1
2 } and then consider

the two-dimensional range R2 = R×R. This is the same range
we considered for the even value of W − 1. We again build
the L-shaped alternating path of size (W − 1) + 1 = W in
the two-dimensional space as defined above and deduce that
the two-dimensional range R2 cannot be encoded in less than
(W − 1) + 1 = W TCAM entries.

Based on Lemma 4 and Lemma 6 we can now observer the
following result.

Theorem 9. The worst-case expansion of a two-dimensional
extremal classification rule satisfies

2 ·
⌈

W + 1
2

⌉
− 1 ≤ re,2(W) ≤ re,2

p (W) ≤ W + 1. (25)

More specifically, if W is even, re,2(W) = re,2
p (W) = W + 1

and W ≤ re,2(W) ≤ re,2
p (W) ≤ W + 1 if W is odd.

It clearly follows from Lemma 4 and Lemma 6 that the
bounds are tight, i.e.

re,2(W) = re,2
p (W) = W + 1 if W is even, and (26)

W ≤ re,2(W) ≤ re,2
p (W) ≤ W + 1 if W is odd. (27)

Example 7. Consider the two-dimensional range R2 = [0, 2]×
[0, 2] with W = 2. As illustrated in Fig. 7, BW+1 =
((10, 01), (11, 01), (01, 01), (01, 11), (01, 10)) is an alternating
path of size W + 1 = 3. Thus any encoding of R2 requires at
least W + 1 = 3 TCAM entries.

VI. EXPERIMENTAL RESULTS

A. One-Dimensional Extremal Ranges

We conduct simulations to examine the results of the average
range expansion for extremal ranges presented in Section III-D.
Fig. 8(a) presents the function G(W) for W ∈ [1, 32]. For each
value of W , the average expansion is calculated based on 2W

extremal ranges. We can see that the simulated average expan-
sion exactly matches the theory from Theorem 3. For instance,
G(W = 3) = 1.5 since the ranges [0, 0], [0, 1], [0, 3], [0, 7] can
be encoded in one TCAM entry while the encodings of the
ranges [0, 2], [0, 5], [0, 6], [0, 7] requires 2 entries.

Next, Fig. 8(b) presents the function G(W)
W for similar values

of W . We can see that indeed limW→∞
G(W)

W = 1
3 as stated

by Theorem 4. For instance, for W = 16, G(W)/W ≈ 0.3611
and for W = 32, G(W)/W ≈ 0.3472.

Last, Fig. 8(c) presents the distribution of the extremal
range expansion for W = 32. The minimal expansion is
of course 1 and the maximal expansion is

⌈
W+1

2

⌉
= 17,

both with negligible probability. For instance, among the 232

extremal ranges, only 33 extremal ranges of the form [0, 2i−1]
for i ∈ [0, 32] can be encoded in only one TCAM entry.

16

(a) The average extremal range expansion G(W)
presented in Theorem 3.

(b) The normalized average extremal range ex-
pansion G(W)/W . We can see that indeed
limW→∞

G(W)
W

= 1
3

as stated by Theorem 4.

(c) Extremal range expansion distribution for
W = 32. The minimal expansion is 1 and the
maximal expansion is

⌈
W+1

2

⌉
= 17.

Fig. 8. Simulations of extremal range expansion

TABLE II
RANGE EXPANSION FOR TWO-DIMENSIONAL RANGES IN [0, 2W − 1] ×

[0, 2W − 1].

Encoding Worst-Case Average Expansion
Scheme Expansion W = 4 W = 5 W = 6 W = 7 W = 8

Binary Prefix (2W − 2)2 6.14 10.72 17.26 25.86 36.56
SRGE (2W − 4)2 4.03 6.96 11.51 17.95 26.42

External Encoding 4W − 3 5.24 7.06 9.00 10.98 12.98
Suggested Scheme 2W 1.84 2.45 3.18 3.99 4.85

The most popular expansion is 11, and there are about a
billion (1, 053, 445, 120) different extremal ranges with such
an expansion, out of about 4 billion (232) left-extremal ranges.

B. Two-Dimensional Ranges

We would like to examine the average expansion of two-
dimensional ranges in [0, 2W − 1] × [0, 2W − 1]. We consider
the suggested encoding scheme for two-dimensional ranges
from Section V (with an improved worst-case expansion of
2W) in comparison with other well-known encoding schemes
such as the the Binary Prefix encoding [18], the SRGE encod-
ing [9] and the external encoding for two-dimensional ranges
from [19]. The first two schemes use the cartesian product of
encodings of the one-dimensional ranges and have a quadratic
worst-case expansion of (2W − 2)2 and (2W − 4)2. The third
scheme with both denying and accepting entries first encodes
a two-dimensional range [r1, r2] × [r3, r4] ⊆ [0, 2W − 1]
× [0, 2W − 1] by first encoding negatively the four regions
([0, r1−1]× [0, 2W −1], [r2+1, 2W −1]× [0, 2W −1], [0, 2W −
1]× [0, r3 − 1], [0, 2W − 1]× [r4 +1, 2W − 1]) and has a linear
worst-case expansion of 2 · (2W − 2) + 1 = 4W − 3.

For W ∈ [4, 8], we examine all two-dimensional ranges in
[0, 2W − 1] × [0, 2W − 1]. Since each two-dimensional range
is defined by two one-dimensional ranges of the form [r1, r2]
s.t. 0 ≤ r1 < r2 ≤ (2W − 1) or 0 ≤ r1 = r2 ≤ (2W − 1), the

total number of two-dimensional ranges is
((

2W

2

)
+

(
2W

1

))2

.
Table II summarizes the results. The improvement in the

average expansion is more significant for larger values of W .
For instance, for W = 8 the average expansion of the suggested
scheme is 4.85 in comparison with 36.56, 26.42 and 12.98 in
the first three schemes, an improvement of 86.7%, 81.6% and
62.6%, respectively.

C. Real-Life Database Statistics

We examine the frequency of generalized extremal rules in
a real-life database of 120 separate rule files with 214, 941
rules originating from various applications (such as firewalls,
and ACL-routers) The same database was previously used
in [1], [9], [10]. In this database, the source port and the
destination port are W -bit fields (with W = 16). The rules
might include ranges in these fields. We find that out of the
214,941 rules, 97.2% (208,850) are generalized extremal rules,
i.e. all their fields contain generalized extremal ranges. Even
when excluding the exact-match rules, 89.4% of the remaining
rules are still generalized extremal (51,055 rules out of 57,146).

Last, we compare the average range expansion for the two-
dimensional ranges in these real-life files. The average obtained
range expansions in the Binary Prefix encoding, the external
encoding from [21] and our suggested encoding were 47.18,
20.09 and 12.56, respectively. This shows an improvement of
73.4% and 37.5% of the suggested scheme when compared to
the other two encodings.

D. Effectiveness on Real-life Packet Classifiers

Fig. 9(a) presents the total expansion of the two-dimensional
ranges in twelve artificial classifiers generated by the Class-
Bench benchmark tool [26] and on the union of the 120 real-
life rule files. It compares the expansion of the suggested
encoding scheme for two-dimensional ranges (with the upper
bound of 2W) in comparison with Binary Prefix encoding [18]
and SRGE encoding [9]. For the classifier fw4, for instance, the
total expansion is 33,774 entries in comparison with 154,813
and 153,691 entries. An improvement of and 78.2% and 78.0%,
respectively. Likewise, for the real-life files, the improvement
is 73.4% in comparison with Binary Prefix.

Fig. 9(b) compares the total expansion of all rules in these
classifiers in the regular TCAM architecture using Binary Prefix
and SRGE (illustrated in the two left bars in each group of
three) and in the suggested joint TCAM architecture from
Fig. 1 (in the right bar). In this simulation, we choose to
encode all the two-dimensional ranges in the second part of
the architecture using also deny entries in order to improve
their average expansion. Therefore, the expansion of exact-
match rules and one-dimensional rules (encoded in the first
part of the architecture with only accept entries), is exactly
as in Binary Prefix encoding. Thus, the total improvement is

17

(a)

(b)

Fig. 9. Effectiveness of the suggested encoding scheme and the suggested
joint TCAM architecture (illustrated in Fig. 1) on twelve artificial classifiers
generated by ClassBench benchmark tool and on a real-life database. For each
classifier, the two left bars present the expansion of Binary Prefix and of SRGE.
The third bar illustrates our suggested solution. In (a), we compare the total
expansion of the two-dimensional ranges in the classifiers. In (b), we examine
the expansion using the joint TCAM architecture when the two-dimensional
ranges are encoded in the second (modified) TCAM.

less significant but still not negligible. For instance, for the
real-life files, the improvement in the total expansion is 19.5%
in comparison with Binary Prefix. This essentially serves as a
proof of concept to our joint TCAM architecture.

VII. CONCLUSION

In this paper, we took a first step towards finding an
optimal TCAM encoding algorithm for all classification rules.
We presented an encoding algorithm that is optimal for all
possible generalized extremal rules, which represent 89% of
all non trivial rules in a typical real-life classification database.
We also obtained new tight bounds on the worst case for
general classification rules, both for one-dimensional and two-
dimensional ranges. Finally we presented a novel combined
TCAM architecture, composed of a regular TCAM and a
modified TCAM, which can provide a guaranteed improved
expansion for the tough classification rules.

Two intersecting directions for future work encompass ex-
tending our optimal analysis to general range rules, and study-
ing the optimal encoding of an arbitrary set of rules.

VIII. ACKNOWLEDGMENT

We would also like to thank Noam Nisan, Danny Raz, Alex
Shpiner and Aran Bergman for their helpful participation and
suggestions. We would like to acknowledge Anat Bremler-Barr
for kindly accepting to run several simulations.

This work was partly supported by the European Research
Council Starting Grant No. 210389, by the Israel Science Foun-
dation grants No. 822/10 and 1241/12, by the United States

- Israel Binational Science Foundation project No. 2006204,
by the German-Israeli Foundation for Scientific Research and
Development, by the Israeli Centers of Research Excellence
(I-CORE) program No. 4/11, by an Intel research grant on
Heterogeneous Computing and by the Hasso Plattner Center
for Scalable Computing. Ori Rottenstreich is the Google Eu-
rope Fellow in Computer Networking and a Jacobs-Qualcomm
Fellow.

REFERENCES

[1] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, 2005.

[2] G. Varghese, Network Algorithmics. Morgan Kaufmann, 2005.
[3] J. Chao and B. Liu, High Performance Switches and Routers. Wiley,

2007.
[4] J. Naous, D. Erickson, A. Covington, G. Appenzeller, and N. McKeown,

“Implementing an OpenFlow switch on the NetFPGA platform,” in ACM
ANCS, 2008.

[5] NetLogic Microsystems. [Online]. Available: www.netlogicmicro.com/
[6] Renesas. [Online]. Available: www.renesas.com/
[7] P. Gupta and N. McKeown, “Packet classification on multiple fields,” in

ACM SIGCOMM, 1999.
[8] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification

using multidimensional cutting,” in ACM SIGCOMM, 2003.
[9] A. Bremler-Barr and D. Hendler, “Space-efficient TCAM-based classifi-

cation using gray coding,” IEEE Trans. Computers, vol. 61, no. 1, 2012.
[10] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms

for advanced packet classification with ternary CAMs,” in ACM SIG-
COMM, 2005.

[11] S. Suri, T. Sandholm, and P. R. Warkhede, “Compressing two-
dimensional routing tables,” Algorithmica, vol. 35, no. 4, pp. 287–300,
2003.

[12] T. Sasao, “On the complexity of classification functions,” in ISMVL, 2008.
[13] A. X. Liu, C. R. Meiners, and Y. Zhou, “All-match based complete

redundancy removal for packet classifiers in TCAMs,” in IEEE Infocom
Mini-Conference, 2008.

[14] Y.-K. Chang, C.-I. Lee, and C.-C. Su, “Multi-field range encoding for
packet classification in TCAM,” in IEEE Infocom Mini-Conference, 2011.

[15] R. Wei, Y. Xu, and H. J. Chao, “Block permutations in boolean space
to minimize TCAM for packet classification,” in IEEE Infocom Mini-
Conference, 2012.

[16] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A non-prefix
approach to compressing packet classifiers in TCAMs,” IEEE/ACM
Trans. Networking, vol. 20, no. 2, pp. 488–500, 2012.

[17] E. Spitznagel, D. E. Taylor, and J. S. Turner, “Packet classification using
extended TCAMs,” in ICNP, 2003.

[18] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and scalable
layer four switching,” in ACM SIGCOMM, 1998.

[19] O. Rottenstreich and I. Keslassy, “Worst-case TCAM rule expansion,” in
IEEE Infocom Mini-Conference, 2010.

[20] R. Cohen and D. Raz, “Simple efficient TCAM based range classifica-
tion,” in IEEE Infocom Mini-Conference, 2010.

[21] O. Rottenstreich and I. Keslassy, “On the code length of TCAM coding
schemes,” in IEEE ISIT, 2010.

[22] O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy, “Exact worst-case
TCAM rule expansion,” IEEE Trans. Computers, 2012.

[23] W. Jiang and V. K. Prasanna, “Scalable packet classification on FPGA,”
IEEE Trans. VLSI Syst., vol. 20, no. 9, pp. 1668–1680, 2012.

[24] B. Schieber, D. Geist, and A. Zaks, “Computing the minimum DNF rep-
resentation of Boolean functions defined by intervals,” Discrete Applied
Mathematics, vol. 149, no. 1-3, pp. 154–173, 2005.

[25] Y. Ma and S. Banerjee, “A smart pre-classifier to reduce power con-
sumption of TCAMs for multi-dimensional packet classification,” in ACM
SIGCOMM, 2012.

[26] D. E. Taylor and J. S. Turner, “ClassBench: a packet classification
benchmark,” in IEEE Infocom, 2005.

