
TECHNICAL REPORT TR11-05, COMNET, TECHNION, ISRAEL 1

The Variable-Increment Counting Bloom Filter
Ori Rottenstreich, Yossi Kanizo and Isaac Keslassy

Technion
{or@tx,ykanizo@cs,isaac@ee}.technion.ac.il

Abstract—Counting Bloom Filters (CBFs) are widely used in
networking device algorithms. They implement fast set represen-
tations to support membership queries with limited error, and
support element deletions unlike Bloom Filters. However, they
consume significant amounts of memory.

In this paper we introduce a new general method based on
variable increments to improve the efficiency of CBFs and their
variants. Unlike CBFs, at each packet arrival, the hashed counters
are incremented by a hashed variable increment instead of a
unit increment. Then, to query a packet, the exact value of a
counter is considered and not just its positiveness. We present
two simple schemes based on this method. We demonstrate that
this method can always achieve a lower false positive rate and a
lower overflow probability bound than CBF in practical systems.
We also show how it can be easily implemented in hardware,
with limited added complexity and memory overhead. We further
explain how this method can extend many variants of CBF that
have been published in the literature. Last, using simulations, we
show how it can improve the false positive rate of CBFs by up to
an order of magnitude given the same amount of memory.

I. INTRODUCTION

A. Motivation

CBF (Counting Bloom Filter) variants are increasingly used
in networking device algorithms, in fields as diverse as account-
ing, monitoring, load-balancing, caching, policy enforcement,
routing, filtering, security, and differentiated services. For in-
stance, for a given flow, they can determine whether it has at
least one packet currently queued (set membership), how many
of its packets are queued (counter representation), whether it is
in a given state (state representation), or where to forward its
packets (IP lookups) [2]–[7].

CBFs are often used because they can be easily implemented
in hardware. In particular, element insertions, deletions and
queries can be implemented in CBFs using a constant complex-
ity that is essentially independent of the number of elements for
a given bits-per-element ratio. However, CBFs also consume
significant amounts of memory. For instance, using four bits
per entry and ten entries per element yields a needed memory
space in bits that is 40 times larger than the number of inserted
elements.

This paper is about a general method to improve the memory
efficiency of CBFs with limited added hardware complexity.
We introduce a novel method based on variable increments
to reduce the amount of memory used by CBFs for a given
false positive rate. This method can also implement element
insertions, deletions and queries using a constant complexity
per element. It has a low hardware implementation overhead
when compared to CBFs, and can replace CBFs as a sub-

module in any algorithm implementation without required
outside changes.

B. Intuition for Variable Increments
Let’s provide some intuition for variable increments by com-

paring Bloom Filters (BFs), Counting Bloom Filters (CBFs)
and Variable-Increment Counting Bloom Filters (VI-CBFs).

A Bloom Filter (BF) is a well-known simple data structure
used to represent a set of n elements S = {x1, . . . , xn}
elements from a universe U using an array of m bits [8].
However, it is not designed to support deletions of elements,
which are often needed in networking device algorithms.

As illustrated in Figure 1(a), BF uses k uniformly-distributed
hash functions over the range {1, . . . ,m} of its m-bit filter. For
each element x ∈ S, k hash entries are calculated using the
hash functions and the corresponding bits are set to one. For
instance, in the figure, the bits of x and y are set to one. In
order to check whether an element z is in S, we check whether
all of its k corresponding bit locations hi(z) are set to one. If
this is not the case, we know that z is not in S. If all of them are
set, as in Figure 1(a), we state that z ∈ S, although this might
be a false positive error. For each z /∈ S, the false positive
rate, i.e. the probability of a false positive error, is (1− p0)

k,
where p0 = (1−1/m)nk is the probability that a specific bit is
still zero after the insertion of n elements. Since BF does not
support deletions of elements, it cannot for instance be used to
represent the current set of packets of a flow in a router where
flows might dynamically change.

The Counting Bloom Filter (CBF) suggested by Fan et al. [2]
is a generalization of BF, in which each hash entry contains
a counter with a fixed size of b bits, instead of a single bit
in BF. Unfortunately, while supporting deletions, CBF also
needs large amounts of memory space (i.e. b times the memory
space consumed by BF), which is often valuable in networking
devices.

As shown in Figure 1(b), to insert an element, all the
corresponding counters are incremented by one. Likewise, to
delete it, all of its counters are decremented. To determine if an
element z ∈ S, we check if all of its hashed entries are positive.
For instance, in Figure 1(b), we state that z ∈ S, which might
be a false positive as in BF. Given only insertions, the false
positive rate of CBF is the same as for BF with the mentioned
increase in memory space. CBF might also suffer from counter
overflows with a probability that depends on its counter size b,
although b = 4 is sufficient to practically obtain a negligible
overflow probability [2].

We now want to introduce the use of variable increments.
We notice that CBF does not store much information in

2

(a) BF (Bloom Filter) (b) CBF (Counting Bloom Filter) (c) V I − CBF (Variable-Increment CBF)

Fig. 1. Comparison of the concepts behind BF, CBF and our proposed V I − CBF , using S = {x, y} and a query of element z /∈ S. In this example, BF
and CBF yield false positives while V I − CBF does not.

its counter values. When querying an element, it does not
distinguish between any counter values greater than zero, and
only considers their positiveness. In this paper, we use the
specific value of a counter in order to give a more complete
answer to the query.

The Variable-Increment Counting Bloom Filter, denoted as
V I − CBF , is a generalization of CBF that uses variable
increments to update each entry. We first define a set of possible
variable increments D. Then, for each counter update by an
element, we hash the element into a value of D and use it
to increment the counter. Likewise, to delete an element, we
decrement by its hashed value in D. Last, to determine if an
element z ∈ S, we check in each of its counters if its hashed
value in D could be part of the sum. If this is not the case in at
least one counter, then necessarily z ̸∈ S. Otherwise, as for BF
and CBF, we state that z ∈ S, which might be a false positive.

Figure 1(c) illustrates V I − CBF with D = {4, 5, 6, 7}.
First, x and y increment their corresponding counters by their
corresponding hashed values in D. For instance, x increments
its first counter value by 7 ∈ D. Consider now a query of
whether z is in S. The second hashed entry of z has counter
value 9, while for this entry z hashes to increment 7 ∈ D. Since
9− 7 = 2 cannot be presented as a sum of elements of D, the
increment 7 cannot be part of the sum 9, and we deduce that
necessarily z /∈ S, avoiding the false positive that occurred in
CBF (Figure 1(b)). Note that we could have known that as well
from the third hashed entry of z (since 6 > 5), but not from
its first entry (because x and z hash to the same increment, so
the sum of 5 can be composed of the increment 5).

C. Related Work: Applications of the Variable-Increment
Method

The variable-increment method is a generic approach that
can actually be implemented to improve or extend most variants
of CBF. In this paper, we detail and evaluate its application to
both CBF and ML-HCBF.

• CBF [2]: As presented above.
• ML-HCBF (MultiLayer Hashed CBF) [7]: This algorithm

uses a hierarchical compression of CBF filters to achieve
better performance. We explain in Section V how the same
hierarchical compression idea could be combined with
V I − CBF , and show in Section V how the combination
can achieve even better results.

• VL-CBF (Variable Length CBF) [9]: This algorithm uses
a variable-length coding, such as the Huffman coding,
to represent counters with a variable number of bits. A

similar coding can be used for efficient representation of
counters in V I − CBF . Unfortunately, even using index
tables, a lookup in VL-CBF might be 100 times slower
than in the standard BF. Thus, it cannot be implemented
at line rate.

• SBF (Stateful BF) ACSM (Approximate Concurrent State
Machine) [3]: This scheme enables the representation
of dynamically-changing states of flows. Using variable
increments, it is possible to represent the set of two states
hashing into the same entry as the sum of their hashed
values, instead of simply storing a DK (Don’t Know) value
as currently done.

• Counter Braids [5]: This efficient counter architecture
incrementally compresses flow counters as it uses a hi-
erarchy of counters braided via a random graph. It later
uses an iterative reconstruction scheme for the recovery
of flow counters. The decoding of all flow counters is
required to obtain any single flow counter. By using
variable increments in each of its stages, it would provide
more information to its reconstruction scheme, which may
help ensure better guarantees on the termination of the
decoding scheme.

• Fingerprint-based Schemes [3], [4]: Fingerprint-based
schemes typically use d-left hashing to obtain balanced
allocations of elements into buckets, and then use hashed
fingerprints within each bucket to store information as-
sociated with each flow. While fingerprint-based schemes
belong to a different family of algorithms than CBF, they
may also be complemented using the variable-increment
idea. For instance, a fingerprint-based scheme may store
up to h states for each flow, or allow to store up to h flow
mini-fingerprints together with each main fingerprint. By
summing these state values, a variable-increment idea may
decrease the number of bits required to store these values.
In addition, it may behave more gracefully when there
are more than h states, by temporarily losing some infor-
mation, but being able to recover it with high probability
upon deletion (i.e. decrement) of some of the states.

There are a few additional variants to CBF that the generic
variable-increment idea does not necessarily improve. In par-
ticular, in [10], counters are used for the estimation of the mul-
tiplicities of individual items. Several schemes are introduced,
and only some of them support deletions.

Finally, there are many works on Bh sequences [11]–[14],
yet none have been applied to network applications.

3

D. Contributions

This paper presents an improved Counting Bloom Filter
technique based on variable increments. This technique can
also implement element insertions, deletions and queries using
a constant complexity per element. We suggest two schemes
based on CBFs with variable increments.

We first present the Bh − CBF scheme. This scheme is
based on Bh sequences. To the best of our knowledge, this
is the first time that Bh sequences are used in network
applications. Intuitively, a Bh sequence is a set of integers with
the property that for any h′ ≤ h, all the sums of h′ elements
from the set are distinct. Therefore, given a sum of h′ elements,
we can determine whether an element of the Bh sequence is
a part of the sum. In the Bh − CBF scheme we have in each
hash entry a pair of counters: one with fixed increments, and
another one with variable increments that are selected from
the Bh sequence. We illustrate the Bh − CBF scheme and
compute its false positive rate.

Then, we present the V I − CBF scheme. In this scheme,
each hash entry only contains a single counter, as illustrated
above. We analytically show that the V I − CBF scheme can
always achieve a lower false positive rate and a lower overflow
probability bound than CBF in practical systems.

We also provide detailed implementation considerations for
these schemes. We discuss the complexity and throughput of
the schemes, and show that their complexity overhead is lower
than would be expected, especially for the V I − CBF scheme,
which can avoid using any lookup table.

Further, although in each operation both schemes require
calculating 2k hash functions instead of k in CBF, we show
that the relative increase in the number of required random bits
is very small. For instance, the V I − CBF scheme typically
needs k · (⌈log2(m)⌉+ 1) bits instead of k · (⌈log2(m)⌉) in
CBF.

Last, we evaluate all schemes using simulations. We show
that this method can reduce the false positive rate of the original
CBF by up to an order of magnitude, or alternatively reduce
the memory requirements for a requested false positive rate by
33%.

II. THE Bh − CBF SCHEME

A. Bh Sequences

In this section we introduce the Bh − CBF scheme, a
variable-increment CBF (Counting Bloom Filter) based on Bh

sequences [11]. We start with the formal definition of Bh

sequences. B2 sequences are also called Sidon sequences [12].
Definition 1 (Bh Sequence): Let D = {v1, v2, ..., vℓ} ⊆ N∗

be a sequence of positive integers. Then D is a Bh sequence
iff all the sums vi1 +vi2 + · · ·+vih with 1 ≤ i1 ≤ · · · ≤ ih ≤ ℓ
are distinct.

Example 1: Let D = {v1, v2, v3, v4} = {1, 4, 8, 13} ⊆ N∗.
We can see that all the 20 sums of 3 elements of D are distinct:
1 + 1 + 1 = 3, 1 + 1 + 4 = 6, 1 + 1 + 8 = 10, 1 + 1 + 13 =
15, 1+4+4 = 9, 1+4+8 = 13, 1+4+13 = 18, 1+8+8 =
17, 1+8+13 = 22, 1+13+13 = 27, 4+4+4 = 12, 4+4+8 =
16, 4 + 4 + 13 = 21, 4 + 8 + 8 = 20, 4 + 8 + 13 = 25, 4 +
13+ 13 = 30, 8 + 8+ 8 = 24, 8 + 8+ 13 = 29, 8 + 13+ 13 =

34, 13+13+13 = 39. Therefore, D is a B3 sequence. However,
4 + 4+ 4+ 4 = 16 = 1+ 1+ 1+ 13, therefore D is not a B4

sequence.
We can observe that for any h′ ∈ [1, h] the sums of exactly

h′ elements of the Bh sequence are also distinct.
Observation 1: If D = {v1, v2, ..., vℓ} is a Bh sequence and

h′ ∈ [1, h] then D is also a Bh′ sequence.
Proof: The case of h′ = h is trivial. If for some

h′ ∈ [1, h − 1] we have the same sum of h′ elements with
two different sets of elements of D, we can simply add to
each of the sums the same arbitrary h− h′ new elements. We
obtain two non-distinct sums of exactly h elements from the
Bh sequence. Contradiction to Definition 1.

Example 2: We look again at the B3 sequence D from
Example 1. For h′ = 1, every two elements of D are different.
So D is a B1 sequence. For h′ = 2, we can see that all the
10 sums of 2 elements of D are distinct: 1 + 1 = 2, 1 + 4 =
5, 1 + 8 = 9, 1 + 13 = 14, 4 + 4 = 8, 4 + 8 = 12, 4 + 13 =
17, 8 + 8 = 16, 8 + 13 = 21, 13 + 13 = 26. Therefore, D is a
B2 sequence as well.

B. Scheme Principles
We now introduce the Bh − CBF scheme to represent

|S| = n elements using m entries. While in CBF, each
entry contains a single counter with fixed increments of one,
in Bh − CBF , each entry contains a pair of counters: The
first counter, with fixed increments of one, counts the number
of elements hashed into this entry (as in CBF). The second
counter, with variable increments, provides a weighted sum of
these elements. Its variable increments are selected from a pre-
determined Bh sequence D = {v1, v2, ..., vℓ}.

Figure 2 illustrates how these counters are used and updated
given element insertions and queries. Note that in Section IV
we further show how to implement these operations efficiently
in hardware. Bh − CBF uses two sets of k hash functions. The
first set H = {h1, . . . , hk} uses k hash functions with range
{1, . . . ,m}, i.e. it points to the set of entries. The second set
G = {g1, . . . , gk} uses k functions with range {1, . . . , ℓ}, i.e.
it points to the set D.

Insertion — Upon insertion, an element x is hashed into the
k hash entries pointed by {h1, . . . , hk}. At each entry hi(x),
Bh − CBF updates the pair of counters as follows. The first
counter, with fixed increments, is incremented by one. The
second counter, with variable increments, is incremented by
the element vgi(x) of the Bh sequence D, where gi is the
corresponding hash function of G.

Upon deletion, the counters are decremented similarly.
Example 3: Figure 2(a) illustrates the insertion of two ele-

ments u and v. It uses the B3 sequence D = {v1, v2, v3, v4}
= {1, 4, 8, 13} from Example 1, and each element is hashed
into k = 2 entries. In this example, {h1(u), h2(u)} = {1, 3}
and {g1(u), g2(u)} = {3, 2}. The packet belonging to flow
u is hashed into entries 1, 3 using hash functions h1, h2. It
increments the first counter of each entry by one. It also incre-
ments the second counters of these entries by (vg1(u), vg2(u)) =
(v3, v2) = (8, 4), respectively. Similarly, a packet of flow v
is hashed into entries 5 and 7 and increments their variable-
increment counters by 13 and 4, respectively.

4

9170 25

5
3

→4
3 42 3

0

→1

3

→4
c
1

2 7 8 94 5 61 3

2

→3

34
9

→13
6 2626

17

→30
21

0

→8

25

→29
c
2

u

+4+8

v

+4+13

(a) Insertion (see Example 3)

5 4 3 42 30 3c
1

2 7 8 94 5 61 3

3

34 13 6 2626 30 210 25c
2

z?

13?8?

y?

8?4?

x?

4?1?

(b) Query (see Example 4)

Fig. 2. Examples of insertion and query in Bh − CBF with the B3 sequence D = {1, 4, 8, 13}.

Query — To query whether an element y is in S,
Bh − CBF uses the unique properties of the Bh sequence.
For i ∈ [1, k], let c1(i) and c2(i) be the values of the
fixed-increment and variable-increment counters in entry hi(y),
respectively. Bh − CBF asks whether y might have been
inserted in this entry in the past. Namely, if y is hashed into
value vgi(y), it asks whether c2(i) can be a sum of c1(i)
elements including vgi(y). Specifically, in each entry hi(y), it
considers several cases depending on the value of c1(i):
• If c1(i) = 0, then as in CBF, Bh − CBF determines that

y /∈ S.
• If c1(i) ∈ [1, h], Bh − CBF considers the exact values

of both the counters. In this case, no more than h elements
were hashed into the hash entry hi(y). Therefore, c2(i) is a
sum of c1(i) ≤ h elements of D. Since D is a Bh sequence,
Bh − CBF can deduce the elements of D used in the sum
c2(i) (i.e. in the insertions of these elements into this hash
entry). In particular, Bh − CBF can determine whether vgi(y)
is part of the sum c2(i). Otherwise, necessarily y /∈ S.
• If c1(i) > h, Bh − CBF considers the entry as useless.

The value of c2(i) is not used and we cannot determine that
y /∈ S based on the current hash entry.

If Bh − CBF cannot determine that y /∈ S based on any of
the k hash functions, it determines that y ∈ S. With some
probability, Bh − CBF might be wrong and yield a false
positive. More precisely, in case y /∈ S, the false positive occurs
if for each of the k hash functions, either there are more than
h elements hashed into the corresponding hash entry, or the
corresponding element of the Bh sequence was used by another
element hashed into the same entry.

Example 4: As illustrated in Figure 2(b), we look at three
queries for the Bh − CBF introduced in Example 3. In this
figure, we assume that for x, y, z the hash entries selected by
the hash functions h1 and h2 are provided by their left and right
outgoing arrows, respectively. For each element a ∈ {x, y, z},
we denote the values of the two counters in the hash entry
hi(a) by ca1(i), c

a
2(i).

First, in order to determine whether x ∈ S, we start by
looking at the hash entry h1(x). Since cx1(1) = 0, Bh − CBF
can determine immediately that x /∈ S. We now consider y.
In its first hashed entry, h1(y), the number of elements is
cy1(1) = 3. Since we use a Bh sequence D with h = 3, then
Bh − CBF can determine the components of the weighted sum
by definition of the Bh sequence. In this case, Bh − CBF can
deduce that cy2(1) = 25 is comprised of 4 + 8 + 13 = 25.
Since y increments this counter by vg1(y) = 4, Bh − CBF

cannot exclude y ∈ S based on this hash entry. However,
since cy1(2) = 3 ≤ h as well, the variable-increment counter
cy2(2) = 30 = 4+13+13 is not comprised of vg2(y) = 8. Thus,
Bh − CBF can also determine that y /∈ S. Finally, applying
the above method to z, Bh − CBF cannot deduce that z /∈ S
based on the two hash entries since cz1(1), c

z
1(2) = 4 > h.

Therefore, Bh − CBF determines that z ∈ S. This might
of course yield a false positive if z /∈ S. (In fact, using
a more careful examination, it is possible to determine that
indeed z /∈ S, as detailed below with the improved Bh − CBF
scheme.)

C. False Positive Rate

We now provide the false positive rate of Bh − CBF . As
shown in the literature, in real-world systems, practical hash
functions usually work as if they were fully random [15]. We
assume in our proofs that the hash functions map items to
random numbers uniformly distributed over their given range,
and that the inserted elements and the elements in the query
are independent.

Theorem 1: The false positive rate of Bh − CBF is given
by:

FPR =

(
1−

h∑
j=0

(
nk

j

)(ℓ− 1

ℓm

)j(
1− 1

m

)nk−j
)k

. (1)

Proof: Let X denote the number of elements hashed into
an arbitrary entry. The probability of the event X = j is given
by

Pr(X = j) =

(
nk

j

)(1

m

)j(
1− 1

m

)nk−j

. (2)

When exactly X = j elements are hashed into an entry, a
specific value of the Bh sequence is not used by any of them

with probability
(
1 − 1

ℓ

)j
. Therefore, the false positive rate

FPR, i.e. the probability that for an element y /∈ S we cannot
deduce from each of the k hash entries that y /∈ S, is

FPR =
(
1−

h∑
j=0

Pr(X = j)
(
1− 1

ℓ

)j)k
, (3)

yielding the result.
Note that by adopting a more complex query scheme, we

can further decrease the false positive rate. This improved
Bh − CBF scheme analyzes the hash entry even when there

5

are more than h hashed elements. In such a case, the Bh

sequence definition does not directly help anymore, because
the elements in the sum c2(i) are not necessarily unique when
there are more than h elements. However, by examining all the
possible variable increments that can lead to the sum c2(i), we
can still conclude that an element cannot have been inserted
into this entry. For instance, in Figure 2(b), the first hashed
entry of z indicates that there are cz1(1) = 4 > h values
totaling cz2(1) = 13. In addition, the first hashed value of z
is 8. But 8 cannot be possible part of this sum, since the other
cz1(1) − 1 = 4 − 1 = 3 values of the sum would need to total
cz2(1)− vg1(z) = 13− 8 = 5, and this is impossible, as shown
in Example 1. So z ̸∈ S. More details and analysis can be
found in Section VI.

III. THE V I − CBF SCHEME

A. Scheme Description

The Bh − CBF scheme suggested above uses two counters
per entry instead of a single counter. This nearly doubles the
needed number of bits (neglecting the differences in counter
sizes). Consequently, we introduce V I − CBF (Variable-
Increment Counting Bloom Filter), which also uses variable in-
crements but only relies on a single variable-increment counter
per entry, without the additional counter that indicates the
number of hashed elements.

Specifically, as previously illustrated in Figure 1(c), we use
again an array of m entries to represent |S| = n elements.
In each array entry, the single variable-increment counter is
updated exactly like the second counter in the Bh − CBF
scheme, using variable increments selected from a set D =
{v1, v2, ..., vℓ}. We use again two sets of k hash functions,
H = {h1, . . . , hk} and G = {g1, . . . , gk}. Upon insertion,
at each corresponding array position hi(x), the counter is
incremented by the element vgi(x) of the set D. Likewise, upon
deletion, counter hi(x) is decremented by vgi(x) ∈ D.

We now want to find an appropriate set D for the
V I − CBF scheme. A problem in the V I − CBF scheme
is that it cannot directly use Bh sequences anymore. This
is because the Bh sequence definition requires to know the
number of elements in a sum. However, unlike the Bh − CBF
scheme, the V I − CBF scheme cannot obtain it because it
does not have a small counter that provides the number of
elements hashed into a given entry.

B. A First Option for D: B̃h Sequences

According to the last observation, we now suggest to use
more complicated sequences, and call them B̃h sequences.
Informally, the B̃h sequences are the sequences that can still
help distinguish the elements in a sum even when the exact
number of elements is unknown. As long as there are at most
h elements in this sum, we can know it from the sum and
determine the elements.

Definition 2 (B̃h Sequence): Let D = {v1, v2, ..., vℓ} ⊆ N∗

be a sequence of positive integers. Then D is a B̃h sequence
iff all the sums vi1 + vi2 + · · · + vih′ with 1 ≤ h′ ≤ h and
1 ≤ i1 ≤ · · · ≤ ih′ ≤ ℓ are distinct and differ from all the
sums of more than h elements of D.

Example 5: Let D = {v1, v2} = {3, 4} ⊆ N∗. Then all the
sums of up to two elements are distinct, and also different from
all the sums of at least three elements: the sums of at most two
elements are 3, 4, 3 + 3 = 6, 3 + 4 = 7, 4 + 4 = 8, while the
sums of at least three elements are at least 9. Therefore, D is
a B̃2 sequence.

C. A Simple Option for D: DL = [L, 2L− 1]

In the general case, to query whether an element is hashed
into an entry, the implementation of the Bh − CBF and
V I − CBF schemes requires the use of a predetermined two-
dimensional binary table based on the set D (see Section IV).
However, we will now present a set D = DL that does not need
such a lookup table. Therefore, DL is easier to implement in
hardware.

In the next subsections, we first analyze the V I − CBF
scheme given D = DL. In Section IV we show that for
this case, no additional memory is required. We then provide
an exact calculation of the false positive rate of this detailed
scheme. We also show that it always improves the false positive
rate of CBF given a number m ≥ 20 of memory entries and a
number n of inserted elements.

Let L ≥ 2 be a positive integer of the form L = 2i. We
define the set DL of size L as DL = [L, 2L − 1] = {L,L +
1, ..., 2L− 1}.

We now want to compute the false positive rate of the
V I − CBF scheme. First, if an element y /∈ S hashes into
an entry counter hi(y) of value c, we want to determine the
probability that we will be able to tell that y /∈ S given c. Note
that the entry counter value c is defined as a sum of elements
of DL. To do so, we distinguish different values of c using the
following lemma.

Lemma 1: Let y be an element whose i-th hash function
hi(y) hashes into an entry of value c. If

(
c − vgi(y)

)
∈

(−∞,−1] ∪ [1, L− 1] then y /∈ S.
Proof: We distinguish different values of c:

• If c = 0, then the number of elements in the sum is zero,
and therefore y /∈ S.
• If c ∈ [L, 2L− 1], we can deduce that c is composed of a

single element of DL, because the minimal value of a sum of
two or more elements is L+ L = 2L. Further, this element is
of course c. Therefore if vgi(y) ̸= c, then y /∈ S.
• If c ∈ [2L, ..., 3L−1], we must have that c is a sum of two

elements, because the maximal value of one element is 2L− 1
and the minimal value of three elements is 3L. For instance,
c = L+(c−L), or c = (L+1)+(c−L−1), etc. Therefore, c
can be comprised of any of the elements {L,L+1, ..., c−L},
but not of any x ∈ {c − L + 1, ..., 2L − 1}, since in such a
case (c − x) < L. So if vgi(y) /∈ {L,L + 1, ..., c − L} (i.e.
(c− vgi(y)) < L), then y /∈ S.
• If c ≥ 3L, c can be comprised of any of the elements in

DL, since (c− vgi(y)) > L for any vgi(y) ∈ [L, 2L− 1].
Summarizing the cases above, we cannot exclude that y ∈ S

if c = vgi(y) or (c− vgi(y)) ≥ L, hence the result.
In the next theorem we present the false positive rate of this

case.

6

Theorem 2: The false positive rate of the V I − CBF
scheme using D = DL is given by:

FPR =

(
1−

(
1− 1

m

)nk
− L− 1

L

(
nk

1

)
1

m

(
1− 1

m

)nk−1

(4)

− (L− 1)(L+ 1)

6L2

(
nk

2

)(1

m

)2(
1− 1

m

)nk−2
)k

.

Proof: Let y /∈ S be an input to a query. As usual, since
there are k hashed entries, the false positive rate FPR is given
by

(1− p)k, (5)

where p is the probability that by considering one of the k hash
entries used by hash function hi, we can determine that y /∈ S.
Let X denote again the number of elements hashed into this
entry and let c be the resulting counter value, i.e. the weighted
sum of X elements of DL. We distinguish several cases based
on X .

As explained earlier, if X = 0 then clearly y /∈ S.
If X = 1, then c has one of the L values of DL, each with

the same probability of 1
L . Therefore c has one of the L − 1

values that differ from vgi(y) w.p. L−1
L · Pr(X = 1), in which

case we can deduce that y /∈ S.
If X = 2, there are L2 possible ordered pairs of increments.

Further, there are L3 combinations of the values of the two
increments and the corresponding increment vgi(y) of the
examined element, each having an equal probability of 1/L3.
We now distinguish depending on the value of c. First, as
explained in the proof of Lemma 1, if c ∈ [2L, ..., 3L − 1],
there are exactly c− 2L+1 options to obtain a sum of c with
two addends of DL: The possibilities are {(L)+ (c−L), (L+
1)+(c−L−1), ..., (c−L)+(L)}. Also, the sum of c cannot be
comprised of (3L−c−1) of the possible values DL. Therefore,
out of the L3 combinations above, in

3L−1∑
c=2L

(c− 2L+ 1)(3L− c− 1)

=

L−1∑
i=0

(i+ 1)(L− i− 1) =

L−1∑
i=1

i(L− i)

of them, we can determine that y /∈ S. In addition, if c ≥ 3L,
then the value of X is not necessarily known and c can be
comprised of any of the L values of DL. Thus, the current
entry is not used to determine that y /∈ S.

If X ≥ 3 then c ≥ 3L and the current entry is not used
again to determine that y /∈ S.

Combining all cases for X , we obtain the following formula
for the probability p that we can determine y /∈ S using c.

p = Pr(X = 0) +
L− 1

L
Pr(X = 1)+

1

L3
Pr(X = 2)

L−1∑
i=1

i(L− i).

We use the formula
∑n

i=1 i
2 = 1

6n(n+ 1)(2n+ 1) and get
L−1∑
i=1

i(L− i) = L
L−1∑
i=1

i−
L−1∑
i=1

i2 =
1

6
(L− 1)L(L+ 1). (6)

Simplifying p, and using Equations (2) and (5), we obtain the
result.

D. Improving The False Positive Rate of CBF
We now demonstrate that V I − CBF can always improve

the false positive rate of CBF as the system is scaled. For a
fair comparison, we assume that the two schemes use the same
amount of memory for the same number of inserted elements.
In addition, since this false positive rate computation does not
take into account the counter overflow probability, we also show
that the V I − CBF scheme always obtains a lower overflow
probability bound than CBF.

Assume that CBF uses four bits per counter (a common
assumption, initially suggested by Fan et al. [2]). Let α denote
the memory bit-per-element ratio, so that for every number of
elements n, the memory size is αn bits with m = ⌈αn

4 ⌉ coun-
ters. Then the following theorem compares the performances
of V I − CBF and CBF as n is scaled and both schemes use
the same memory size.

Theorem 3: While keeping the same bit-per-element ratio
α > 0 (and, as a consequence, also the same total memory
size), V I − CBF satisfies the following properties when com-
pared to CBF:
(i) V I − CBF obtains a lower false positive rate than CBF
with m counters for any m ≥ m0 = 20.
(ii) When α goes to infinity, i.e. the two systems are made
increasingly efficient, the ratio of their false positive rates goes
to 0.
(iii) V I − CBF obtains a lower counter overflow probability
bound than the classical bound for CBF from [2].

Proof: We first consider a CBF with m counters, n ele-
ments and k hash functions. Its false positive rate FPR(CBF)
is optimized when k = m

n ln(2) [2] and equals

FPR(CBF) =

(
1−

(
1− 1

m

)kn
)k

=

(
1−

(
1− 1

m

)ln(2)m
)k

>
(1
2

)k
. (7)

Incidentally, when k is not integer, it is possible to let each
flow use either k1 = ⌊k⌋ hash functions with probability pk =
⌈k⌉ − k (i.e., as determined by an additional hash function),
or k2 = ⌈k⌉ w.p. 1 − pk. The probability that an entry bit is
equal to zero remains unchanged, but the resulting false positive
rate is a weighted sum of those for k1 and k2. The proof then
stays unchanged, simply using the weighted sums instead. In
the remainder, we assume that k is integer.

As mentioned in [2], using four bits per counter in CBF
suffices to obtain a negligible counter overflow probability of

Pr
(
max

i
c(i) ≥ 16

)
≤ m

(enk

16m

)16
(8)

= m
(e ln(2)

16

)16
≈ 1.37 · 10−15 ·m.

7

entry array

Flow ID Hash1

(flow ID)

Lookup

(index)

entry

index

counter

c

>0?

If false stop

else continue

12

k

12

k

12

k

(a) CBF

k

2 If false stop

else continue
Flow ID

Hash2

(flow ID)

Lookup

(index)

increment v

counter pair

(c1, c2)
Hash1

(flow ID)

entry

index

>0?

entry array

12

k

12

k
12

kLookup

(c1-1, c2-v)

D-based table

1

12

k

(b) Bh − CBF

k

2 If false stop

else continue
Flow ID

Hash2

(flow ID)

Lookup

(index)

increment v

counter

c
Hash1

(flow ID)

entry

index

>0?

entry array

12

k

12

k
12

kc - v:

(=0 or ≥L) ?

1

12

k

(c) V I − CBF

Fig. 3. Logical View of Hardware Implementation. Components that also appear in CBF are presented in gray, while white ones are new.

Let’s now consider the V I − CBF scheme with m′ coun-
ters, n′ = n elements and k hash functions. Note that we use
the same k as in CBF scheme for simplicity, but might further
improve the false positive rate with a different k. We choose
the parameter L of this scheme to be L = 4, and therefore
DL = {L,L + 1, ..., 2L − 1} = {4, 5, 6, 7}. The maximal
counter increment is max(DL) = 2L − 1 = 7. Instead of
using four bits per counter as in CBF, we suggest to use eight
bits per counter. For simplicity, we also assume that m is even.
Therefore, given the same total number of memory bits, we
use m′ = ⌈ 4m

8 ⌉ = ⌈m
2 ⌉ = m

2 counters, i.e. half the number
of counters since the counters are twice as large. Let r = 1/2
denote the ratio in the number of counters, such that m′ = mr.
Likewise, let p denote again the probability that by considering
one of the k hash entries used by hash function hi, we can
determine that y /∈ S and let X denote again the number of
elements hashed into this entry.

Comparing Equation (4) on the false positive rate of
V I − CBF to Equation (7) on the false positive rate of CBF,
we can see that in order to demonstrate that the false positive
rate of V I − CBF is lower than the false positive rate of CBF,
we just need to prove that p > 1

2 , where

p =
(
1− 1

m′

)n′k

+
L− 1

L

(
n′k

1

)
1

m′

(
1− 1

m′

)n′k−1

+
(L− 1)(L+ 1)

6L2

(
n′k

2

)(1

m′

)2(
1− 1

m′

)n′k−2

= Pr(X = 0)+
L− 1

L
Pr(X = 1)+

(L− 1)(L+ 1)

6L2
Pr(X = 2).

Distinguishing the elements in the formula of p, we get

Pr(X = 0) =

(
1− 1

m′

)n′k

=

(
1− 1

mr

)m ln(2)

≥
(
1− 1

m0r

)m0 ln(2)

,

where the last inequality holds for m ≥ m0. Likewise,

Pr(X = 1) =

(
n′k

1

)
1

m′

(
1− 1

m′

)n′k−1

= m ln(2) · 1

mr
· mr

mr − 1
·
(
1− 1

mr

)m ln(2)

=
m ln(2)

mr − 1
·
(
1− 1

mr

)m ln(2)

>
ln(2)

r
·
(
1− 1

mr

)m ln(2)

≥ ln(2)

r
·
(
1− 1

m0r

)m0 ln(2)

,

where again the last inequality holds for m ≥ m0. And again
for m ≥ m0,

Pr(X = 2) =

(
n′k

2

)(1

m′

)2(
1− 1

m′

)n′k−2

=
m ln(2)(m ln(2)− 1)

2
·
(1

mr

)2
·
(mr

mr − 1

)2
·
(
1− 1

mr

)m ln(2)

=
m ln(2)(m ln(2)− 1)

2(mr − 1)2
·
(
1− 1

mr

)m ln(2)

≥ m ln(2)(m ln(2)− 1)

2(mr)2
·
(
1− 1

mr

)m ln(2)

=
ln(2)(ln(2)− 1

m)

2r2
·
(
1− 1

mr

)m ln(2)

≥
ln(2)(ln(2)− 1

m0
)

2r2
·
(
1− 1

m0r

)m0 ln(2)

.

For L = 4, r = 1/2,m0 = 20, we get

p = Pr(X = 0) +
L− 1

L
Pr(X = 1)+

(L− 1)(L+ 1)

6L2
Pr(X = 2) ≥

(
1− 1

m0r

)m0 ln(2)

·
(
1+

L− 1

L
· ln(2)

r
+
(L− 1)(L+ 1)

6L2
·
ln(2)(ln(2)− 1

m0
)

2r2

)
> 0.5.

We denote by p0 the last lower bound of p for these parameters,
s.t.

p0 =
(
1− 1

m0r

)m0 ln(2)

·
(
1 +

L− 1

L
· ln(2)

r

+
(L− 1)(L+ 1)

6L2
·
ln(2)(ln(2)− 1

m0
)

2r2

)
> 0.5.

Next, we look at the counter overflow probability of
V I − CBF of each counter c(i). Let γ(i) be the number of
addends in the sum c(i). Since the maximal increment of c(i)
is 2L− 1 = 7, we must have that

Pr
(
max

i
c(i) ≥ 256

)
≤ Pr

(
max

i
γ(i) ≥

⌈
256

7

⌉)
= Pr(max

i
γ(i) ≥ 37) ≤ m′

(en′k

37m′

)37
≤ m′

(en′k

32m′

)37
= mr

(em ln(2)

32mr

)37
= mr

(e ln(2)
16

)37
.

Comparing to the classical overflow probability bound of
CBF (from Equation (8)), since e ln(2)

16 < 1 and r = 0.5, we
can see that the overflow probability bound of V I − CBF is
strictly lower.

To complete the proof we can see that when α goes to
infinity, the optimal number of hash functions for CBF (k) also

8

goes to infinity. Thus, we have

FPR(V I − CBF)

FPR(CBF)
=

(1− p)k(
1−

(
1− 1

m

)ln(2)m)k
≤
(
1− p0
1/2

)k
k→∞−−−−→ 0.

IV. IMPLEMENTATION CONSIDERATIONS

In this section we discuss the implementation of the
Bh − CBF and V I − CBF schemes in comparison with CBF.
We consider several issues such as logic complexity, memory
throughput and hashing complexity.

Pipeline Complexity — The insertion, deletion and query
of each element can be organized in a pipeline manner, so
that each operation is implemented at line rate. We assume
for simplicity that there are no conflicts between elements at
different steps of the pipeline. Note also that the set D is fixed,
and therefore the pipeline is also fixed and there is no need to
recompute online any of the values related to the Bh sequences.

Figure 3 illustrates the logical pipeline implemented to go
through a query of packet x. It focuses on one of k parallel
pipelines, shown on k parallel planes, and corresponding to the
k hash entries.

Figure 3(a) presents the implementation of CBF in which
the flow ID of the packet is hashed into one of the CBF array
entries. The corresponding counter value c in considered. If
it equals zero, CBF determines that x /∈ S. Otherwise, CBF
continues to check the next hash entry.

Figure 3(b) illustrates the implementation of Bh − CBF .
Components that also appear in CBF are presented in gray,
and the additional components in white. Bh − CBF uses two
hash functions instead of one. The first points to an entry in
the Bh − CBF array with the pair of counters (c1, c2). The
second points to an increment from the set D denoted by v.

In order to efficiently determine whether the weighted sum
c2 can be comprised of v using exactly c1 addends, we suggest
using a predetermined two-dimensional binary table A that is
based on D. The bit A[i][j] is set if there is a sum of i addends
from D that equals j. We notice that the value c2 can be
comprised of v using c1 addends for c1 ≥ 1 only if there
is a sum of exactly c1−1 addends that equals the value c2−v,
i.e. if the bit value A[c1−1][c2−v] is set. The cases out of the
table boundary (c1 = 0 and c1 > h) can easily be defined in
the lookup procedure. In summary, if c1 > h or if the relevant
bit value is set, Bh − CBF continues to the next hash entry.
Otherwise, it determines that x /∈ S

Note that Bh − CBF enters table A only for cases where
c1 ∈ [1, h]. Therefore the first dimension index is c1−1 ≤ h−1
and the maximal possible value of the weighted sum is at most
(c1− 1) ·max(D) ≤ (h− 1) · vℓ. Thus, the memory size of the
table A is at most h · ((h− 1) · vℓ + 1) ≤ h2 · vℓ bits.

Next, we consider the implementation of the V I − CBF
scheme given the set D = DL. As explained in Section III-C
a lookup table is not required in this case. As in the previous
scheme, two hash functions are calculated. The first points to an

entry in the V I − CBF array with a counter c and the second
points again to an increment v ∈ D. Instead of the lookup
operation, we just check whether c − v = 0 or (c − v) ≥ L
(Lemma 1). If so, V I − CBF continues to the next hash entry.
Otherwise, it determines that x /∈ S.

Memory Throughput — In order to increase the memory
throughput, we can implement the two schemes using the
ideas implemented in the Blocked Bloom Filter [16]. For each
element, all hash functions are mapped into a single block in the
memory, i.e. a single memory word. Although this technique
suffers from a higher false positive rate, it is clearly energy-
efficient and improves the memory throughput, because there
is a single memory word access instead of up to k.

Hashing Complexity — In each operation of insertion,
deletion or query, the two suggested schemes require the com-
putation of 2k hash functions instead of k in CBF. However, the
total required number of random bits is much less than twice
the number in CBF. In order to point to a random element in D,
only ⌈log2(|D|)⌉ = ⌈log2(ℓ)⌉ random bits are required. Since
the selection of D with small cardinality (such as ℓ = 4) is
enough to have an improved false positive rate, as explained
in the proof of Theorem 3, we can reduce to two the number
of random bits generated by each of G = {g1, . . . , gk} hash
functions. In addition, given the same overall memory size,
the number of counters in V I − CBF is reduced by a factor
of two, because they are twice larger, therefore they need one
less bit for each counter selection. Thus, V I − CBF typically
needs k · (2 + (⌈log2(m)⌉ − 1)) = k · (⌈log2(m)⌉+ 1) bits
instead of k · (⌈log2(m)⌉) in CBF.

V. COMBINING WITH THE ML-HCBF

In this section we show that V I − CBF can be combined
with the MultiLayer Hashed CBF scheme (ML-HCBF) [7] to
further decrease its memory requirements for a requested false
positive rate.

Instead of using one level with a constant number of bits
per counter, ML-HCBF uses a hierarchical structure of several
layers with narrower counters such that the number of counters
is a decreasing function of the level number. The number of
counters in the first level is a baseline number of counters, and
their number in each additional level is based on the overflow
probability of counters in the previous level. During insertion,
a counter in the first level is examined. If it is not saturated, it
is simply incremented. If it is saturated, the counter position is
hashed to obtain an address of a counter in the next levels. If
it is also saturated, the procedure continues in the next levels
until a non-saturated counter is found.

A similar concept can be implemented using variable in-
crements, as in V I − CBF . We denote it ML-VI-HCBF. We
increment a counter in the first level by a variable increment till
it reaches its maximal value. If it was saturated, we continue
and increment another counter in the next level by the rest of
the current increment, such that the sum of their increments
equals the requested one. By using perfect hashing as in the
original work, the actual value of a counter can be calculated as
the sum of the corresponding counters in one or more levels.
For instance, instead of using counters of 7 bits as for the

9

0 1 h=3 5 7 9 11 13 15
0

0.2

0.4

0.6

0.8

1

j

f D
(j)

Improved B
h
 − Bloom

B
h
 − Bloom

Fig. 4. The detection probability function fD(j) for the B3 sequence D =
{1, 4, 8, 13}.

V I − CBF , we can have a hierarchical structure of 4 levels
with (4, 3, 3, 3) bits per counter, i.e. only four bits per counter
in the first level and three bits per counter in all the other levels.

VI. IMPROVEMENTS OF THE Bh − CBF SCHEME

Detection with more than h elements — Consider a hash
entry hi(y) with more than h hashed elements. In such a case,
the Bh sequence definition does not help anymore, because the
elements in the sum c2(i) are not necessarily unique. However,
we can still obtain some information in certain cases. By
examining all the possible variable increments that can lead
to the sum c2(i), we can conclude that y /∈ S if vgi(y) does not
belong to any of these possible variable increments. Let vi be an
arbitrary element of D = {v1, v2, ..., vℓ}. Let c be an arbitrary
sum of j elements of D \ {vi}. With some probability, we can
determine that c is not comprised of vi. We denote by fD(j)
the probability that we can indicate this fact based on the values
c and j. The function fD(j) is called the detection probability
function. Of course, if D is a Bh sequence, for any j ∈ [0, h],
there is only one sum of j elements that equals c. Thus, this
sum must be the sum with the property that its elements are
all in D \ {vi}. Therefore, we must have that fD(j) = 1 for
j ∈ [0, h]. In the previously presented Bh − CBF scheme,
fD(j) = 0 for j > h, since we cannot leverage the properties
of the Bh sequence in such cases. In the improved scheme
fD(j) is the probability that all the sums of j elements of D
which equal c are not comprised of vi. In all such cases, we
can deduce that c is not comprised of vi.

Using the last definition, we can now present the false

positive rate of the improved scheme.(
1−

∞∑
j=0

Pr(X = j)
(
1− 1

ℓ

)j
fD(j)

)k
=
(
1−

h∑
j=0

Pr(X = j)
(
1− 1

ℓ

)j
(9)

−
∞∑

j=h+1

Pr(X = j)
(
1− 1

ℓ

)j
fD(j)

)k
=
(
1−

h∑
j=0

(
nk

j

)(ℓ− 1

ℓm

)j(
1− 1

m

)nk−j

−

∞∑
j=h+1

(
nk

j

)(ℓ− 1

ℓm

)j(
1− 1

m

)nk−j

fD(j)
)k

.

From the last statement, it is clear that this scheme has
an improved false positive rate in comparison with the ba-
sic Bh − CBF scheme. The false positive rate of the basic
Bh − CBF scheme presented in Equation (1), can be achieved
from Equation (9) using fD(j) = 1 for j ∈ [0, h] and
fD(j) = 0 for j > h since with this scheme we do not consider
any hash entry with more than h hashed elements.

Example 6: We look again at the B3 sequence D from
Example 1. Figure 4 presents fD(j) for j ∈ [0, 15]. As
explained earlier, for the basic Bh − CBF scheme, we have
that fD(j) = 1 for j ∈ [0, h] and fD(j) = 0 for j > h.
We now try to calculate fD(j) for our improved Bh − CBF
scheme. As explained earlier, fD(j) = 1 for j ∈ [0, h] = [0, 3].
For instance, to calculate fD(4), we consider the 44 = 256
possible combinations of four ordered elements of D. Among
them there are, for each of the four values of D, 34 (ordered)
combinations in which it does not appear. I.e. a total number of
4 ·(34) = 324 cases of four addends vi1 , vi2 , vi3 , vi4 ∈ D\{vt}
for some t ∈ [1, ℓ]. We denote by C the sum vi1+vi2+vi3+vi4 .
Among these cases, there are 282 cases in which any sum of
four addends that equals C is not comprised of vt. Therefore,
fD(4) = 282

324 ≈ 0.87. We try to explain this results for a
query of y /∈ S. We look at the hash entry hi(y) with counters
values c1(i) and c2(i). If c2(i) is not comprised of gi(y) and
c1(i) = h+ 1 = 4, we can determine that y /∈ S based on the
current hash entry with probability 0.87.

Example 7: Consider the query of the element z from Exam-
ple 4, as illustrated in Figure 2(b). Although cz1(1) = 4 > h,
we can notice that cz1(2) − vg1(z) = 13 − 8 = 5 cannot be
comprised of exactly cz1(1)− 1 = 4− 1 = 3 addends from the
B3 sequence D. Thus, we can determine that z /∈ S, avoiding
a false positive.

Counter Representation —We now suggest another possi-
ble improvement. As explained in the previous section the value
of the second counter c2 is at most vℓ times the value of the
first counter c1. In order to reduce the overflow probability
of c2 we can update it differently. To show it, we define
a new compressed counter c3, used instead of c2. The first
counter c1 is not changed. First, it is easy to see that for
any arbitrary value c, if instead of incrementing c2 by vi,
c3 is incremented by vi − c, the original value of c2 can
be calculated as c3 + c · c1. Therefore, a first change can

10

be incrementing c3 by vi − v1 instead of by vi. With this
change, the maximal increment is vℓ − v1, smaller than the
original one and the counter overflow is decreased. In case
that vℓ − v1 ≤ vℓ

2 , the most significant bit of the counter
can be reduced. However, since if D = {v1, v2, ..., vℓ} is a
Bh sequence then D′ = {v1 + c, v2 + c, ..., vℓ + c} is a Bh

sequence as well, we can assume that the used Bh sequence
has the property that v1 = 1 (in order to minimize vℓ), so the
improvement is not significant.

A second, more significant improvement is choosing c as
the rounded value of the mean of the elements of D, i.e.
c = round(1q

∑q
i=1 vi). Now, c3 is incremented by vi − c and

might have also negative values. However, assuming insertion
of independent elements, the mean of the value of this counter
is close to zero (not exactly zero due to the rounding operation).
Therefore, by representing a set of negative values as well as
a set of positive values, we can use less bits for this counter
without increasing the counter overflow probability.

VII. LOWER BOUNDS ON THE CODING SCHEMES

We now consider the Bh − CBF scheme which uses a Bh

sequence D and the V I − CBF scheme with the option of
a B̃h sequence D. A fundamental view of these algorithms
is that in each entry, using either one or two counters, they
represent a multiset of up to h elements taken from a space of
size |D| = ℓ. This can provide us a lower bound on the needed
number of bits.

As an example, consider again the Bh − CBF scheme with
the B3 sequence D = {v1, v2, v3, v4} = {1, 4, 8, 13} with
|D| = ℓ = 4. There are 20 multisets of exactly three elements
from D, 10 multisets of two elements and of course ℓ multisets
of size one. The empty set is also a subset of D. Thus there
are 35 multisets of up to three elements from D. Therefore at
least ⌈log2(35)⌉ bits are required to represent the information
in such cases.

More generally, in order to represent differently all these
multisets, we must have a number of bits that equals at least
the base-2 logarithm of the number of possible elements. In
particular, since the number of multisets of up to h elements
from a set of size ℓ equals ϕ(h, l) =

(
h+ℓ
h

)
, we obtain a lower

bound of

⌈log2 ϕ(h, l)⌉ = ⌈log2
(
h+ ℓ

h

)
⌉ (10)

on the number of bits per entry. For instance, as we explained
with h = 3 and ℓ = 4, at least ⌈log2 ϕ(h, l)⌉ =

⌈
log2

(
3+4
3

)⌉
=⌈

log2
(
7
3

)⌉
= ⌈log2 35⌉ bits are required for each hash entry.

However, while these provide attractive lower bounds, they
might lack additional properties of Bh − CBF that are es-
sential for fast hardware implementation: in particular, during
insertions and deletions, they first need to decode the value
before re-encoding the next value, which is not needed in the
schemes presented in this paper. Of course, special codes that
can be incremented iteratively may be suggested.

20 25 30 35 40 45 50 55

10
−4

10
−3

10
−2

10
−1

bits per element

fa
ls

e
po

si
tiv

e
ra

te

CBF (theory)
CBF (simulation)
Bh − CBF (theory)
Bh − CBF (simulation)
Improved Bh − Bloom (simulation)
VI − CBF, D = DL (theory)
VI − CBF, D = DL (simulation)
VI − CBF, general D (simulation)

Fig. 5. Comparison of the false positive rates of CBF, V I − CBF
and Bh − CBF schemes and the theoretical models from Theorem 1 and
Theorem 2.

VIII. EXPERIMENTAL RESULTS

A. Trace-Driven Simulation

We conduct experiments using real-life traces recorded on a
single direction of an OC192 backbone link [17], and rely on
a 64-bit mix hash function [18] of the IP 5-tuple to implement
the requested hash functions.

Figure 5 plots the false positive rate of various schemes as a
function of the memory size (in bits per element). It also com-
pares the obtained values with the values obtained by theory.
For Bh − CBF , we use D = {1, 4, 13, 15}, and compare the
false positive rate of the basic scheme with Theorem 1. We
also present the results of the improved Bh − CBF scheme
that we introduced after Theorem 1. For V I − CBF , we first
use D = DL with L = 4 (in comparison with Theorem 2),
and later also use the more general set D = {8, 12, 14, 15}
(that was found to be a good one) to compare the two sets.
We classically assume four bits per counter for CBF, and for
the two Bh − CBF schemes, twelve bits per hash entry (four
and eight bits for the fixed-increment and variable-increment
counters, respectively). For the V I − CBF , we use seven bits
per counter for the V I − CBF with D = D4 and eight bits
per counter for the general D.

First, the simulation results confirm the theory from The-
orem 1 and Theorem 2. Further, all the suggested schemes
improve upon CBF. In addition, the two variants of V I − CBF
outperform the Bh − CBF and the improved Bh − CBF .
V I − CBF with the general set D yields the best perfor-
mance, and the improvement is especially significant for larger
numbers of bits per element. For instance, for 30 bits per
element, the false positive rate for CBF, Bh − CBF , improved
Bh − CBF , V I − CBF with D = DL and V I − CBF
with a general D are 0.02803, 0.01521, 0.00970, 0.00825 and
0.00383, respectively, thus obtaining an improvement by a
factor of 7. Likewise, for 50 bits we have 0.00258, 0.00092,
0.00048, 0.00031 and 0.00011 respectively, thus improving the
result by over an order of magnitude. Of course, as mentioned,
V I − CBF with D = DL is easier to implement in hardware
than V I − CBF with a general D, hence there is a clear
tradeoff between efficiency and complexity.

Alternatively, for the same false positive rate of CBF with
50 bits per element, V I − CBF with a general D requires

11

Spectral Improved ML- ML-
CBF BF dlCBF ML-HCBF Bh-CBF Bh-CBF VI-HCBF, VI-CBF, VI-CBF, VI-HCBF,

D = DL D = DL general D general D
Main Structure (KB) 14.1 8.12 5.2 7.14 12.07 11.31 10.97 6.27 9.28 5.80

Secondary Structure (KB) - - - 0.41 - - - 0.33 - 0.82
Additional Tables (KB) - 4 - - 0.02 0.07 - - 0.03 0.03

Total Size (KB) 14.1 12.12 5.2 7.55 12.09 11.38 10.97 6.60 9.31 6.65
False Positive Rate 10−3 10−3 1.5 · 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

TABLE I
MEMORY REQUIREMENTS COMPARISON. THE RESULTS OF FOUR STATE-OF-THE-ART ALGORITHMS ARE PRESENTED ON THE LEFT SIDE OF THE TABLE, AS

IN [7], AND THE RESULTS OF SIX SUGGESTED SCHEMES APPEAR ON THE RIGHT SIDE.

approximately 32 bits per element, hence a reduction of about
a third in the memory requirement.

B. Comparison with State-of-the-Art Algorithms

We adopt the same settings as in [7] to examine the memory
requirements of our suggested schemes in comparison with
several well-known schemes such as CBF [2], Spectral BF [10],
dlCBF [4] and ML-HCBF [7]. Specifically, we compare the
total memory size required to obtain a false positive rate of
10−3 when |S| = n = 2000 elements are represented.

For the new schemes, we consider the additional size if
the lookup table, when required. For instance, as explained in
Section IV, the Bh − CBF requires a table of size h2 · vℓ =
33 · 15 = 135 bits ≈ 0.02 KB. For the improved Bh − CBF
we base, in this simulation, the query decision on counters
with up to 2 · h = 6. Thus, the table size is (2h)2 · vℓ ≈ 0.07
KB. For V I − CBF scheme given the set D = DL, a lookup
table is not required. For the general set D, the size is at most
15 · 15 = 225 bits ≈ 0.03 KB.

The performance results of the previous schemes are
taken from [7]. We present the results of six new schemes:
Bh − CBF , the improved Bh − CBF , V I − CBF with D =
DL, V I − CBF with a general D and each of these two
versions of ML-VI-HCBF, i.e. V I − CBF combined with ML-
HCBF. For Bh − CBF and V I − CBF , we use the same set
D and the same number of bits per counter as in the previous
simulation. Table I summarizes the results.

In Bh − CBF , the required memory size is 12.09 KB, and it
drops to 11.38 KB in the improved Bh − CBF . V I − CBF
with D = D4 requires 12842 counters of seven bits, while
with the general D, 9500 counters of eight bits are used in
addition to the lookup table. This yields a total memory size
of 10.97 KB and 9.31 KB, respectively, i.e. improvements of
22.2% and 34.0% in comparison with CBF. All these schemes
present lower memory requirements than CBF and the Spectral
BF, but higher than those of the dlCBF. However, dlCBF may
have additional issues, like overflows and complexity [7]. As
mentioned in the Introduction, improving dlCBF in the same
way by using variable increments is left to future work.

For ML-VI-HCBF with D = D4, we use four layers with
12842 counters in the first level (as in the original scheme),
802 in the second, 100 in the third and 6 in the fourth levels.
In these four levels, 4, 3, 3 and 3 bits per counter were used,
respectively. ML-VI-HCBF uses a total memory size of 6.60
KB, an improvement of 40% in comparison with V I − CBF ,

20 25 30 35 40 45 50 55
10

−4

10
−3

10
−2

10
−1

bits per element

fa
ls

e
po

si
tiv

e
ra

te

L=2
L=4
L=8
L=16

Fig. 6. False positive rate of the V I − CBF with D = DL for various L
values.

and a 2x improvement (precisely, 53%) in comparison with
CBF. Likewise, when the set D = {8, 12, 14, 15} is considered,
we have four levels of 5, 5, 5, 4 bits with an almost similar
memory consumption of 6.65 KB. Both of these hierarchical
schemes also perform better than ML-HCBF.

C. Optimizing the V I − CBF parameters

We want to examine the effect of the parameter L for the
V I − CBF scheme with D = DL on the false positive rate.
On the one hand, increasing L makes it easier to exclude
membership of a non-member element based on one counter,
while on the other hand it requires more bits per counter and
thus reduces their number.

To do so, we first improve the analysis of the overflow
probability presented in the proof of Theorem 3. We consider
again a V I − CBF with m′ counters, n′ = n elements, k
hash functions, L = 4 and D = DL = {v1, v2, ..., vℓ} =
{L,L+ 1, ..., 2L− 1} = {4, 5, 6, 7}.

We present an improved upper bound for this probability
(in comparison with the overflow probability of CBF from
Equation (8), also if we use only 7 bits per counter in the
V I − CBF . Using the same amount of memory as in CBF,
we have here that m′ = mr for r = 4/7. To do so, we denote
by γ(i, j) (for i ∈ [1,m′], j ∈ [1, ℓ = 4]) the number of
addends in the sum c(i) that equal vj , s.t. γ(i), the number
of addends in the sum c(i), holds γ(i) =

∑ℓ
j=1 γ(i, j).

Using 7 bits per counter, the maximal value of a counter
that does yield to an overflow is 127. We observe that if
c(i) ≥ 128 ,then γ(i) ≥ ⌈ 128

vℓ
⌉ = ⌈ 128

7 ⌉ = 19. Further, if
c(i) ≥ 128 and γ(i) = 19, then γ(i, 4) ≥ 14, i.e. at least
14 among the 19 addends in the sum c(i) are v4 = 7. Since
all the elements of D are uniformly selected and the events,

12

{(γ(i, j) ≥ 14, γ(i) = 19)|j ∈ [1, ℓ = 4]} are disjoint, we must
have that Pr (γ(i, 4) ≥ 14|γ(i) = 19) ≤ 1

ℓ = 0.25.
We now have that

Pr
(
max

i
c(i) ≥ 128

)
≤ m′ Pr (c(i) ≥ 128)

≤ m′ ·
(
Pr (γ(i, 4) ≥ 14, γ(i) = 19) + Pr(γ(i) ≥ 20)

)
= m′ ·

(
Pr (γ(i) = 19) · Pr (γ(i, 4) ≥ 14|γ(i) = 19)

+ Pr(γ(i) ≥ 20)
)

≤ m′ ·
(
0.25 · Pr (γ(i) = 19) + Pr(γ(i) ≥ 20)

)
≤ m′ ·

(
0.25 · Pr (γ(i) ≥ 19) + Pr(γ(i) ≥ 20)

)
≤ m′ ·

(
0.25 ·

(en′k

19m′

)19
+
(en′k

20m′

)20)
= mr ·

(
0.25 ·

(em ln(2)

19mr

)19
+
(em ln(2)

20mr

)20)
= mr ·

(
0.25 ·

(e ln(2)
19r

)19
+
(e ln(2)

20r

)20)
.

For r = 4/7, this upper bound of the overflow probability is
lower than the bound in Equation (8).

We now assume a set with n = 1024 elements and variable
numbers of bits per elements. We examine the values 2, 4, 8, 16
for L and for each value we use the optimal number k of hashed
functions. Further, for each value of L, we use 4 + ⌈log2(vℓ)⌉
= 4+⌈log2(2L− 1)⌉ bits per counter. For instance, for L = 4,
we have 4 + 3 = 7 bits per counter. The false positive rates of
the optimal values of k are presented in Figure 6.

We can see that the performances of DL with L = 4 and
L = 8 are similar and are much better than the cases of L = 2
and L = 16. For example, for 30 bits per element we have
false positive rates of 0.01388, 0.00825, 0.00841, 0.01105 for
L = 2, 4, 8, 16, respectively.

D. Optimizing the Bh − CBF parameters

In this section we provide several simulations results in order
to examine the Bh − CBF scheme. For instance, we show how
(a) we can pick an optimal Bh sequence among all possible
such sequences; (b) we can decode the information provided
by the variable-increment counter in the case when there are
more than h elements; (c) we can trade off the false positive
rate against the overflow probability for a given number of
bits using the entry sizes; and (d) we can choose an optimized
coding of the counters by coding either their difference with
their expected values.

We first try to find a Bh sequence that minimizes the false
positive rate of the Bh − CBF scheme. Based on Equation
(1), for any values of k,m, n, the false positive rate is always
decreased when h, ℓ are increased. Therefore, given k,m, n, the
false positive rate is minimized when h, ℓ → ∞. Unfortunately,
we encounter some constraints on their values. We also observe
that according to this formula the false positive rate of the
basic scheme depends only on the parameters h, ℓ of the Bh

sequence and not on the specific values of {v1, v2, ..., vℓ}. Upon
insertion of an element x, the counter with variable increment,
is incremented by the element vgi(x) ∈ D, thus the increment is

TABLE II
Bh VARIATIONS WITH THE CONSTRAINT vℓ ≤ 15

h, ℓ Bh Example Optimal k FPR (for 30
bits per element)

h = 1, ℓ = 15 [1,15] 2 0.04630
h = 2, ℓ = 5 {1,2,4,8,13} 4 0.01963
h = 3, ℓ = 4 {1,2,5,14} 5 0.01521
h = 12, ℓ = 3 {1,2,15} 5 0.02902

at most vℓ. Since each of the counters has a fixed size we must
bound this increment. For example, we can bound the maximal
increment to be at most 24−1 = 15, i.e. require that vℓ ≤ 15. In
such a case, we can deduce that the variable-increment counter
needs approximately four more bits than the typical counter
size of four bits of CBF, i.e. it requires a total of about eight
bits. Now, with such a constraint, we have a tradeoff: we can
choose Bh sequence with large h and small ℓ or vice versa.
In our case, there are four different possibilities: First, we can
have a Bh sequence with ℓ = 15, h = 1, i.e. a B1 sequence
of all the 15 elements of [1, 15]. Second, we can use a B2

sequence, which has a maximal size of ℓ = 5. Similarly, there
is a maximal size of ℓ = 4 for h = 3. We can also find a B12

sequence of size ℓ = 3. We assume the following parameters:
n = 1024 and the number of bits per elements is bpe = 30,
i.e. the total memory size is n · bpe bits. For each of these four
possibilities, a minimal false positive rate is achieved for some
value of k.

The theoretical results are summarized in Table II where an
example of a Bh of each of the cases is also given. We can see
that the minimal false positive rate is achieved for h = 3, ℓ = 4
and k = 5.

To further reduce the false positive rate, we can also exploit
the information provided by the variable-increment counter in
the case when there are more than h elements as explained in
Section VI. To implement this generalization, we suggest using
another predetermined two-dimensional binary table with more
entries than the original table.

With this improvement, the false positive rate is affected by
the exact values of {v1, v2, ..., vℓ}. Thus, we want to examine
the possible Bh sequences with h = 3, ℓ = 4, vℓ ≤ 15. Without
loss of generality, we assume that v1 = 1. Otherwise, we can
just have the same false positive rate using the Bh sequence
{v1 − (v1 − 1), v2 − (v1 − 1), ..., vℓ − (v1 − 1)}. There are 48
such Bh sequences. For each of them, the false positive rate is
smaller than the result of Equation (1) that appears in Table II.
For the parameters above, the minimal simulated false positive
rate is achieved for the Bh sequence D = {1, 4, 13, 15} and
equals 0.00970, which is lower by 36% than the unoptimized
value of 0.01521.

There exists a tradeoff between the false positive rate and the
overflow probability. In fact, decreasing the number of bits per
variable-increment counter enables to store more counters, thus
decreasing the false positive rate, but also runs into overflow
more frequently. For instance, we consider again the case of
30 bits per element and k = 5. Using four bits per fixed-
increment counter and six bits per variable-increment counter
(i.e. 4 + 6 = 10 bits for each hash entry), we have a false
positive rate of 0.00475 and a counter overflow probability of

13

0.00234. With three and five bits (respectively), there are more
counters and the false positive rate falls to 0.00262 with the
price of greater overflow probability of 0.05726. We notice
that the overflow probability can be larger than the false positive
rate, since it is calculated as the ratio of counters with overflow.
A false answer to a query can be returned even if some of the
k counters have encountered overflow.

In order to improve the presented tradeoff, we now suggest
to use some more complicated counter representation scheme,
explained in the last paragraph of Section VI. We again
dedicate four and six bits to the two counters, i.e. four bits
for the fixed-increment counter and six bits for the variable-
increment counter. The last one has to represent negative
values as well, and it can represent the 26 values in the range
[−(26−1 − 1), 26−1)] = [−31, 32]. Other requested values lead
to counter overflow. We notice that here, unlike the typical
case, we might have a counter overflow that might be wrongly
’solved’ by future insertions. In any such case, we consider it as
an overflow. Using this technique and the parameters above, we
have a similar false positive rate of 0.00473 and a significantly
lower counter overflow probability of 0.00049.

IX. CONCLUSION

In this paper we presented a novel method based on variable
increments to improve the efficiency of CBFs and their variants.
We showed that it can be efficiently implemented in hardware
with limited added complexity. We also demonstrated that this
method can always achieve a lower false positive rate and
a lower overflow probability bound than CBF in practical
systems. More generally, we explained how this method can
extend many variants of CBF published in the literature.

To our knowledge, this is the first time that Bh sequences
are used in network applications. We believe that this is a
first step towards a more general use, because they seem to fit
increasingly-complex coding needs in networking applications.
These applications often require both a scalability in the
number of states to encode, yet also low hardware complexity—
and indeed, as explained in this paper, Bh sequences efficiently
compress sets of h states, yet can also be readily encoded and
decoded at line rates using fixed translation tables.

X. ACKNOWLEDGMENT

This work was partly supported by the European Research
Council Starting Grant no. 210389. We would like to thank
David Hay for his helpful participation and suggestions.

REFERENCES

[1] Ori Rottenstreich, Yossi Kanizo and Isaac Keslassy, “The variable-
increment Counting Bloom Filter.”

[2] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw.,
vol. 8, no. 3, 2000.

[3] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“Beyond Bloom filters: from approximate membership checks to approx-
imate state machines,” in SIGCOMM, 2006.

[4] ——, “An improved construction for Counting Bloom Filters,” in ESA,
2006.

[5] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measurement,”
in SIGMETRICS, 2008.

[6] H. Song, F. Hao, M. S. Kodialam, and T. V. Lakshman, “IPv6 lookups
using distributed and load balanced Bloom filters for 100gbps core router
line cards,” in IEEE Infocom, 2009.

[7] D. Ficara, A. D. Pietro, S. Giordano, G. Procissi, and F. Vitucci,
“Enhancing counting bloom filters through huffman-coded multilayer
structures,” IEEE/ACM Trans. Netw., vol. 18, no. 6, 2010.

[8] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, 1970.

[9] L. Li, B. Wang, and J. Lan, “A variable length Counting Bloom Filter,” in
2nd International Conference on Computer Engineering and Technology,
2010.

[10] S. Cohen and Y. Matias, “Spectral Bloom filters,” in SIGMOD Confer-
ence, 2003.

[11] S. Graham, “Bh sequences,” Analytic Number Theory, vol. 1 (Allerton
Park, IL, 1995), 1996.

[12] K. OBryant, “A complete annotated bibliography of work related to Sidon
sequences,” Electron. J. Combin Dynamic Survey 11, 2004.

[13] R. M. Roth and G. Seroussi, “Location-correcting codes,” IEEE Trans-
actions on Information Theory, vol. 42, no. 2, 1996.

[14] A. Barg and A. Mazumdar, “Codes in permutations and error correction
for rank modulation,” IEEE Transactions on Information Theory, vol. 56,
no. 7, 2010.

[15] A. Kirsch, M. Mitzenmacher, and G. Varghese, “Hash-based techniques
for highspeed packet processing,” in Algorithms for Next Generation
Networks, Springer-Verlag, 2009.

[16] F. Putze, P. Sanders, and J. Singler, “Cache-,hash- and space-efficient
Bloom filters,” in Workshop on Experimental Algorithms, 2007.

[17] C. Shannon, E. Aben, K. claffy, and D. E. Andersen, “CAIDA
Anonymized 2008 Internet Trace equinix-chicago 2008-03-19 19:00-
20:00 UTC (DITL) (collection),” http://imdc.datcat.org/collection/.

[18] T. Wang, “Integer hash function,” http://www.concentric.net/∼Ttwang/
tech/inthash.htm.

