
TECHNICAL REPORT TR11-03, COMNET, TECHNION, ISRAEL 1

Multi-Amdahl: Optimal Resource Sharing with
Multiple Program Execution Segments

Tsahee Zidenberg, Isaac Keslassy, and Uri Weiser

Abstract—This paper presents Multi-Amdahl, a resource al-
location analytical tool for heterogeneous systems. Our model
includes multiple program execution segments, where each one is
accelerated by a specific hardware unit. The acceleration speedup
of the specific hardware unit is a function of a limited resource,
such as the unit area, power, or energy.

Using the Lagrange theorem we discover the optimal resource
distribution between all specific units. We then illustrate this
general Multi-Amdahl technique using several examples of area
and power allocation among several cores and accelerators.

I. INTRODUCTION

IN the past few years, chip designers have increasingly taken
into account resource constraints, most notably power,

as a design goal. Their focus has shifted from improving
performance to improving performance within a limited power
envelope. Heterogeneous cores have been suggested for per-
formance/power ratio improvement. These units are designed
for specific workloads, trading efficiency for flexibility. The
shift towards special-purpose hardware can be seen in today’s
CPU products, which add a graphic accelerator to the general-
purpose cores [1], [2], [3]. Another example of this trend can
be seen inside the general-purpose core; special-purpose logic
is added, supporting specific computation, such as CRC or
cryptography [4].

In multicore environment it is necessary to correctly bal-
ance the performance of parallel and serial code segments
to overcome the Amdahl law ceiling [5]. Parallel code runs
most efficiently when splitting the available area into many
processors, while the serial code can only run on a single
processor. The difference between the requirements of the two
sections created the asymmetric-cores approach [6]. An opti-
mal point for the asymmetry can be found using Amdahl’s law
for balancing the importance of parallel and serial execution,
along with the fact that all processors share a common resource
[7].

As hardware becomes more specialized and diverse, Am-
dahl’s law becomes multidimensional. In this environment not
only some segments are accelerated while others are not, but
also different accelerated segments might rely on different
types of accelerators. Some of these segments could represent
high-level computation sections, such as matrix multiplication
and FFT, while others could represent low-level computation
sections, such as sections with many floating-point instruc-
tions.

All writers are with the department of Electrical Engineering, Technion,
Haifa 32000, Israel. As usual, this technical report has not been peer-reviewed
and does not count as a publication. It simply presents a few preliminary
results.

A limited resource, such as power or area, is shared among
the various specific units on the chip. Our target is to find the
optimal way to distribute that resource between the specific
HW units, balancing the efficiency of different hardware units
with their importance and performance.

This paper presents two main contributions:
• We propose Multi-Amdahl, an analytical tool to optimize

resource allocation among n different specific HW units
running n segments of execution code. The architect
may impose constraints on the design, such as total area,
power, or energy, and expect optimal outcome, such as
maximum speedup. In our model, we take into account
the differences in efficiency and scalability of hardware
units, and the workload distribution among the different
segments.

• Initial results and intuitions obtained from Multi-Amdahl
are presented. These results suggest that the opportunities
that exist in heterogeneity might surpass the cost of
inflexibility. In other words, the occasional use of an
accelerator might exceed the costs resulting from its
frequent inactivity.

The paper structure is as follows: Section II covers the
related work, Section III presents the Multi-Amdahl technique.
Our technique is compared with Amdahl’s law in Section IV.
In Sections V and VI, we present a few examples for extending
the basic model. Section VII presents results from our model
and their implications, and Section VIII concludes and points
to potential future extensions of our work.

II. RELATED WORK

The move towards accelerators

Venkatesh et al. [8] explored the problem of “dark silicon”.
Today, threshold voltage no longer scales when technology
advances. The result is that a shrinking percent of the chip may
be activated simultaneously. To achieve peak performance,
we must make sure that minimal power is spent for each
function, so that more functions could be executed in parallel.
The article suggested an architecture with many heterogeneous
cores, each designed for optimal power efficiency of a dif-
ferent software function. Those automatically-generated units
provided up to 30x efficiency (work/J) over general-purpose
MIPS. The article also suggested “patchable” versions of those
units with lower (16x) improvements.

Shee et al. [9] tested a few architectures for a heterogeneous
chip built especially to encode JPG images. Each core was
optimized for one specific pipeline stage. Mostly, optimiza-
tion was done by removing unnecessary components from a



TECHNICAL REPORT TR11-03, COMNET, TECHNION, ISRAEL 2

general-purpose core. Hameed et al. [10] created an even more
specific processor for video encoding by adding custom-made
“magic” instructions. The final chip was about 256× faster
than the original RISC processor, while consuming about 1%
of the energy and 126% of the area.

Chung et al. [11] compared the power efficiency of general-
purpose cores with three forms of “unconventional cores”:
FPGA, GPGPU and custom logic. Depending on the bench-
mark, custom logic was shown to be around 100x times as
power-efficient (performance ratio / power ratio) as a CPU.
The ratio for FPGAs and GPGPUs was, depending on the
benchmark, around 10x and 5x respectively.

A large body of work by both academia and industry is ded-
icated to supporting the heterogeneous compute environment.
Various frameworks have been suggested for different aspects
of the heterogeneous environment, including programing [12],
run-time [13] and hardware [14].

Analytical models for the multiprocessor

Hill and Marty [7] created an initial analytical model
revealing the relationship between single thread execution
speedup gained from using larger cores, and the multi-threaded
phase execution speedup gained from using more cores, under
a total budget. The model shows that the optimal results are
achieved by asymmetric multicores, with one large core for
accelerating the single-threaded phase and many small cores
for accelerating the multi-threaded phases.

Woo et al. [15] extended this model for
Performance/Watt and Performance/Joule measures.
Three systems are modeled: symmetric full-blown processors,
symmetric efficient processors, and asymmetric ones. The
three systems can be compared with one another by limiting
them to an equal power budget. Once again, the asymmetric
multicore shows better results for almost any measure.

Chung et al. [11] also extended Hill’s model. Their model
took into considerations three different budgets: total area (as
in [7]), total power (similar to [15]), and total bandwidth.
Three models of chips were tested - symmetric multicore,
asymmetric multicore, and heterogeneous. The last model
is an extension of the asymmetric one, where the efficient
cores are in fact “unconventional cores” and therefore even
more power efficient. The flexibility of unconventional cores
was not modeled. All the unconventional cores in the model
can execute the entire parallel portion of the workload. The
authors of the article have made a few projections on the
future technology nodes and the changes in overall bandwidth
budget, and have reached the conclusion that bandwidth,
rather than power, would be the main reason for performance
limitation in the future.

Our technique is different from the ones presented above,
by the fact that we provide optimal solution for n different
execution segments rather than only two segments. Multi-
Amdahl models the cost of the inflexibility introduced in the
heterogeneous system.

t0 t1 tn

a0

a1

f0(a0)t0 fn(an)tn

(a)

f0 f1 fn

(b)

(c)

(d)

an

(e)

TBGP

Figure 1. Basic model (a) BGP execution time, (b) aggregated BGP execution
time, (c) resource allocation (e.g. area), (d) acceleration function, (e) final
execution time

III. MULTI-AMDAHL

A. Entities

Multi-Amdahl is a strategy for finding the optimal resource
assignment for different accelerators sharing common limited
resources.

Figure 1 illustrates an example for the three basic entities
of the technique:

The Workload — Figure 1(a) presents execution time as
measured running on a Basic General-Purpose core (BGP).
Figure 1(b) presents execution time when it is aggregated
and divided into n segments, each of which will run on a
different accelerator. For simplicity, we do not model any cost
for moving context between segments. This is common in such
models (e.g. [7], [15], [9]). Segment i takes ti seconds to
execute on the BGP. The parameters ti, 0 ≤ i < n represent
the workload’s distribution between the different execution
segments.

TBGP =
∑

ti

Resource and Constraint — Figure 1(c) illustrates how
the chip is divided into n hardware units. The units share a
common resource (e.g. area, power, energy). The chip design
aims at resource allocation under a specific constraint. For
example, when allocating area A to different hardware units,
the constraint is the total die area A,∑

xi ≤ A (1)

The resource units are normalized so that the BGP uses
one unit. Different resources and constraints are presented in
Section V.

Efficiency — Figure 1(d) presents unit efficiency, which is
a function determining how long section i will take to execute
when assigned xi resource.

Ti = tifi(xi)

Each unit may be described by a different function. The
function represents the unit’s technology. For example, when
considering number of transistors (normalized to BGP transis-
tor number) as a resource, the function:



TECHNICAL REPORT TR11-03, COMNET, TECHNION, ISRAEL 3

f(x) =
1

100
√
x

models an accelerator that is 100 times as efficient as a BGP
when assigned BGP-equivalent transistors, but it will only
double its performance if assigned four times more transistors,
according to Pollack’s law [16]. Theses functions hide details
of how the resource is used (e.g. is the area divided into many
narrow units or a few wide ones).

Figure 1(e) illustrates the total aggregated execution time.
The optimization goal is to minimize this total time.

Texec =
∑

Ti =
∑

tifi(xi) (2)

Different use-cases for the model are presented in Section VI.

B. Optimization

Lagrange multipliers are a mathematical tool for finding
maxima and minima for a multi-dimensional function within
a set of constraints on the input variables. In Multi-Amdahl, we
minimize total execution output (e.g. time) under the constraint
imposed by the resource (e.g. area, power). We assume that
additional resources added to the system will create an output
gain (e.g. performance), thus the optimal point is inside the
limited space where the resource budget is exactly met (i.e.,
we assume that the Karush-Kuhn-Tucker conditions [17] are
met.) Using Equations (1) and (2), the optimization problem
can be formalized as:

minimize
∑
fi(xi)ti

subject to:
∑
xi = A

Using the Lagrange optimization method, it follows that the
optimal solution satisfies:

f
′

i (xi)ti = f
′

j(xj)tj (3)

The intuition behind Equation (3) is that each infinitesimal
additional resource would create the same overall run-time
improvement on any accelerator it would be assigned to.
This is the basic equation, describing static resources. More
complex cases can be analyzed in the same way to provide
their optimal point.

IV. COMPARING WITH AMDAHL’S LAW

As an example, we will use our optimization technique to
implement a well-known problem of asymmetric processors.
This problem is composed out of two execution segments:
parallel and serial.

t0 = tserial t1 = tparallel

The parallel section is run most efficiently on many small
cores, and the serial on a large core. Therefore, the proposed
chip should contain a mixture of both. Hill and Marty [7]
analyzed the implications of the chip’s limited area. We will
use area as a resource (i.e. constraint), and normalize total
execution time on the BGP to be 1.

Figure 2. The serial/parallel problem (a) speedup per serial CPU size
(according to [7]), (b) optimal serial CPU size per workload

aparallel + aserial = A

tserial + tparallel = 1

The speedup of the parallel section is assumed to be
proportional to the number of small cores, and therefore also
to the total area of the small cores, which execute the parallel
tasks.

fparallel(a) =
1

a

The “serial accelerator” is the large CPU, whose perfor-
mance scales with area according to Pollack’s Law [16].
Formalizing this in our model’s terms:

fserial(a) =
1√
a

Applying Equation (3) reveals the optimal relation between
the total area of the efficient parallel processors and the area
of the serial processor.

aparallel = a
3/4
serial

√
2tparallel

1− tparallel
(4)

An immediate result of our model is the optimal resource
allocation point. The speedup obtained at this point could be
calculated by Equation (2). The focus of this model allows
for a different set of insights. For example, it is apparent
from Equation (4) that the serial section grows faster than
the parallel one when the chip receives additional resource.

Note that for simplicity we presented a model in which
the large core will not be used for execution of the parallel
segment. We will use the assumption that different hardware
units do not execute the same code in following sections, when
expanding the model for many accelerators. On the contrary,
Hill and Marty [7] used a different assumption, in which the
parallel segment is executed by all the cores on the chip,
including the large core. This slightly changes the results,



TECHNICAL REPORT TR11-03, COMNET, TECHNION, ISRAEL 4

but the Multi-Amdahl optimization technique does not change
significantly.

Figure 2 illustrates the optimization results. Figure 2(a),
essentially taken from Hill and Marty’s paper [7], reveals
the existence of optimal resource allocations (aserial) which
changes according to the workload (tparallel). Figure 2(b)
presents the exact value of these optimal resource allocations
using Multi-Amdahl technique, and in particular the relation
between tparallel and the optimal value of aserial. Results are
presented for both cases, where the parallel section is executed
either only on the efficient cores or on the entire chip.

V. DIFFERENT RESOURCES

The Multi-Amdahl technique can be applied to different
resource types with various constraints.

A. Static resources

A static resource is used by an accelerator for the entire
life-time of the problem. For example it could be the die area
or the number of transistors. If all hardware units are working
concurrently, power and IO might also be modeled as static
resources.

When allocating a static resource, the designer’s goal is to
stay within a total budget X:

n−1∑
i=0

xi ≤ X

B. The Power Resource

Today, the resource-allocation efforts of the chip designer
have been shifted to power constraints. When modeling power,
we must take into account both dynamic power, which is only
consumed when the unit itself works, and static power, which
is also consumed when it is idle.

The actual resource assigned by the designer, however, is
still the number of transistors. Both the static and the dynamic
power can be modeled as proportional to the number of
transistors in the accelerator, so we can model them as linearly
dependent. A linear relation between static and dynamic power
is a common model, used e.g. by [15]. In our model, each unit
is assigned pi power when in use, and consumes additional
kipi static power all the time. ki is assumed to be another
accelerator-technology dependent parameter, known to the
chip manufacturer.

Several constraints can be considered for the power re-
source:

Instantaneous power — There is a total power budget
that the multiprocessor may use at any given instant. The
budget usually derives from power dissipation consideration.
The constraint is imposed on each unit (or execution segment)
separately. This constraint is most applicable in case the
different segments last long enough to overheat the chip.

∀0 ≤ i < n : pi +

n−1∑
j=0

kjpj ≤ P

Energy — The energy represents the total power consumed
by the chip over time. It is a design goal for servers, where

electricity costs are considerable, and for mobile devices,
where minimizing energy consumption is necessary to maxi-
mize battery life.∑

kjpj
∑

fi(pi)ti +
∑

fi(pi)tipi ≤ E

Total Dynamic Power — The total (or average) dynamic
power is calculated by dividing the overall energy by the
overall execution time. If execution segments are short enough,
power dissipation poses a constraint on the average power
consumption, rather than on the instantaneous one.∑

kipi +

∑
fi(pi)tipi∑
fi(pi)ti

≤ TDP

C. Multiple resources

More than one constraint and resource can be tested at the
same time. For example, we are going to discuss the combined
effect of assigning supply voltage (marked vi) and area (ai).

The maximum operation frequency is proportional to volt-
age.

freqi = vi

Performance is modeled as linearly proportional to fre-
quency, and sub-linearly proportional to area:

fi(ai, vi) =
1

freqi
√
ai

=
1

vi
√
ai

Energy is modeled as proportional to area, voltage, and
operation time:

Ei = fi(ai, vi)tiaiv
3
i

We have two constraints: one for total area, and one for
total energy. ∑

ai ≤ A

∑
fi(ai, vi)tiaiv

3
i ≤ E

Note that no constraints are directly applied to the voltage.

VI. DIFFERENT USE-CASES

Multi-Amdahl could be used to describe different use cases.
A use case determines the workload and efficiency functions.

A. Serial Execution

One case of introducing accelerators into a system is when
little or no parallelism can be extracted from the code. In this
simplified model, we assume the entire chip only executes one
segment at a time, and only on the appropriate accelerator. The
total execution time is given by:

Texec =
∑

Ti Ti = tifi(xi)

This was the use-case of all the previous sections.



TECHNICAL REPORT TR11-03, COMNET, TECHNION, ISRAEL 5

B. Parallel Execution

In this model, the various accelerators handle a different
type of parallel input each. We try to minimize the average
latency, given by:

Tlatency =
∑

λifi(xi)

λi is the rate (inputs per second) for this type of input.
fi is the latency of calculation of type i when assigned xi

resource.
This model can be applied, e.g. for network processors,

where different accelerators handle different types of packages
(such as encrypted, compacted..).

C. Optimizing for different units in a CPU

Even inside a basic CPU there are various separate hardware
units, some of which can be described as handling their own
instruction set. For example, we might consider allocating
resource optimally between 3 units: the cache, the branch
predictor, and the ALU.

CPI = λccc(xc) + λpcp(xp) + λaca(xa)

λc is the number of memory accesses per instructions. In
our model, memory accesses are executed by the cache. As
the cache is assigned more resource, it becomes larger and the
cache hit ratio increases.

cc(x) = hit%(x) ∗ Thit + (1− hit%(x)) ∗ Tmiss

λp is the number of branches per instruction. Branches are
modeled as executed by the branch predictor. As the cache
predictor is assigned more resource, it should improve branch
prediction rates.

cp(x) = (1− predict%(x)) ∗ Tmispredict

λa is the number of ALU instructions. As ALU is assigned
more resource, more ALUs are added to the system which
increases throughput of ALU instructions.

ca(x) =
TALU
x

VII. INITIAL RESULTS

Initial results were calculated for a static resource, such as
area, and for the serial execution model. Our results indicate
that good accelerator efficiency can be put to use even for
the price of flexibility. With dynamic resource, the cost of
inflexibility is much smaller, and in that sense our results are
conservative.

A. The general case

When allocating resources for different accelerators, we
must take two elements into consideration: how efficient the
accelerator is and how useful it is (meaning, what is its part
in the workload). We consider a general efficiency function:

fi(a) =
1

αiaβi

A general-purpose CPU can be modeled by α0 = 1. Higher
values of α are assigned to more efficient accelerators. We
use Multi-Amdahl to extract the appropriate area allocation
for each of the accelerators:

ai = a
βj+1

βi+1

0

(
α0/β0
αi/βi

ti
t0

) 1
βi+1

(5)

The most interesting thing this solution reveals is that
the workload-dependent parameters (ti) have equal or lower
importance to the parameters that are dependent on the ac-
celerator’s technology (αi, βi) when determining the optimal
solution. This has an implication on the chip manufacturer’s
ability to allocate resources properly with even a partial
knowledge of the workload, which will be analyzed later.

B. Effective heterogeneous speedup

A heterogeneous system might consist of various units,
when each can accelerate its designated code segment with
noticeable speedup over a general-purpose machine. The pro-
gram is composed of various segments. The effective speedup
is measured over the entire execution, including the general-
purpose section, and is generally lower then the speedup
for a single section. Multi-Amdahl reveals another effect of
heterogeneity. As more heterogeneity is added to the system,
the resource is shared between more accelerators, and therefore
each accelerator is assigned less resource, thus reducing its
speedup.

To display this effect, we consider a system composed of
one general-purpose section and n accelerators (notice this
system has n + 1 segments). All code, accelerated or not, is
assumed to be entirely parallelisable (βi = 1). All accelerators
are equally efficient (αi>0 = α).

f0(a) =
1

a
fi>0(a) =

1

αa

We mark δ to be the part of the original code using the
accelerators. We assume this part is equally distributed among
the different accelerated segments.

t0 = 1− δ ti>0 =
δ

n

Putting this into Equation (5):

ai = a0

√
δ

αn(1− δ)

from which we can also derive the total execution time for a
chip with area budget A, using Equation (2):

Thet =
1

A

(
2

√
n

α
δ(1− δ) + 1− δ

(
1− n

α

))
A homogeneous multicore system uses the entire available

area for general-purpose CPU, and executes the entire code
without any speedup:

Thom =
1

A

Therefore, the speedup from introducing heterogeneity into the
system is:



TECHNICAL REPORT TR11-03, COMNET, TECHNION, ISRAEL 6

Figure 3. Combined effect of n
α

and δ on speedup

Speeduphet =
Thom
Thet

=

(
2

√
n

α
δ(1− δ) + 1− δ

(
1− n

α

))−1

Speedup vs. Flexibility — The value of n has a tremendous
influence on the speedup gained. This is the effect of accel-
erator’s inflexibility. Accelerators use system resources all the
time, but they are seldom used for actual computation. The
more accelerators are in the multiprocessor, the more “dead
area” it contains, per execution segment.

One reason for adding accelerators into a system would
be to create more specific, and therefore more efficient,
accelerators. The equations present a linear relation between
n and α, which fits intuition. An accelerator capable of two
operations should be split into two accelerators capable of one
operation each, only if those two accelerators are at least twice
as efficient as the previous one.

Speedup vs. Code coverage — Another reason for adding
accelerators to an existing system would be moving part of
the code that previously ran on the general processor to an
accelerator, namely to increase δ.

Figure 3 reveals that for low values of δ there is little
effect either way. As δ approaches 1, the rule of thumb is
that multiplying the number of accelerators is worthwhile if
it does better than halve the amount of code not running on
accelerators (1− δ).

C. Resource allocation sensitivity

As we have previously mentioned, the chip manufacturer
is unaware of the exact nature of the workload running on
the machine, and can only estimate the expected workloads.
For that reason we also model the case where the manufacturer
creates a chip for a given workload, while the actual workload
is different.

In our case, the chip manufacturer assumes equal use of
all accelerators, and assumes use of accelerated code δ = d.
According to these assumptions, the manufacturer divides the
area between the accelerators.

ai = a0

√
d

αn(1− d)

Figure 4. Sensitivity (n
α

= 1
50

)

However, the actual value of δ is different. The speedup of
the chip for the actual workload will be:

Speedup =

((
1 +

δ

d
− 2δ

)√
n

α

d

(1− d)
+ 1− δ

(
1− n

α

))−1

Figure 4 presents a few properties of the equation: There
is no reason for the chip manufacturer to assume small
values for d (significantly smaller then 0.5). For those values,
high accelerator use will incur a serious slowdown, as most
execution time is spent on an accelerator with insufficient
resource, while low accelerator use results in minimal speedup,
because most of the execution is on the CPU. Large values of d
(close to 1) might prove very beneficial for enough accelerator
usage, but will be destructive if the accelerators are not used,
as the CPU is very weak. Using 0.5, or somewhat larger values
for d is the “safe” choice. An observable speedup can be
seen when the accelerator is used, while the slowdown for
workloads not using the accelerator is negligible.

VIII. CONCLUSION AND FUTURE WORK

This paper presents Multi-Amdahl, an analytical technique
for optimal resource allocation in a heterogeneous chip. Our
technique relies on the modeling of the resource, the work-
load, and the accelerators’ performance as a function of the
chip’s resource. We have shown the technique’s applicability
to a large field of problems. For example, the accelerators
considered may either be part of the general-purpose cores or
separate accelerators.

We have used our model to test the importance of accel-
erator efficiency vs. code coverage, and have found the two
parameters to be equal when looking for the optimal resource
allocation. We have also discussed the case of workload vari-
ance, and found a “sweet-spot” for chip design, characterized
by minimal slowdown when the accelerator is not used, versus
a measurable speedup when the accelerator is used. Those
results are based on an environment in which moving context
between accelerators has no overhead, and resource allocation
is static.



TECHNICAL REPORT TR11-03, COMNET, TECHNION, ISRAEL 7

Generally speaking, our results suggest that inflexibility is
a reasonable price to pay for efficiency, and that accelerator-
based heterogeneous multicores are a promising direction for
future chip architectures.

Our future research will concentrate on the expansion of the
applications area, while putting more overhead and resource
allocations constrains.

ACKNOWLEDGMENT

This research work was partly supported by an Intel research
grant on heterogeneous computing, by the European Research
Council Starting Grant n◦ 210389, by the Hasso Plattner
Center for Scalable Computing, and by the Israeli MOST CMP
Research Center.

REFERENCES

[1] H. Jiang and T. A. Piazza, “Intel next generation microarchitecture code
named sandybridge,” in Intel Developer Forum, 2010.

[2] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy, “Introduction to the cell multiprocessor,” IBM Journal
of Research and Development, vol. 49, no. 4.5, pp. 589–604, july 2005.

[3] N. Brookwood, “Amd fusion family of apus,” Insight 64, 2010.
[4] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,

N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund et al.,
“Debunking the 100x gpu vs. cpu myth: an evaluation of throughput
computing on cpu and gpu,” in ISCA ’10: Proceedings of the 37th annual
International Iymposium on Computer Architecture. ACM, 2010, pp.
451–460.

[5] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference. ACM, 1967, pp. 483–485.

[6] T. Y. Morad, U. C. Weiser, and A. Kolodny, "ACCMP-Asymmetric
Cluster Chip Multi-Processing". Citeseer, 2004.

[7] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, 2008.

[8] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: reducing
the energy of mature computations,” ACM SIGPLAN Notices, vol. 45,
no. 3, pp. 205–218, 2010.

[9] S. L. Shee, A. Erdos, and S. Parameswaran, “Architectural exploration of
heterogeneous multiprocessor systems for jpeg,” International Journal
of Parallel Programming, vol. 36, no. 1, p. 140, 2008.

[10] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources
of inefficiency in general-purpose chips,” in ISCA ’10: Proceedings of
the 37th annual International Symposium on Computer Architecture.
ACM, 2010, pp. 37–47.

[11] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip
heterogeneous computing: Does the future include custom logic, fpgas,
and gpgpus?” in MICRO-43: Proceedings of the 43th Annual IEEE/ACM
International Symposium on Microarchitecture, 2010.

[12] A. Munshi, “Opencl,” Parallel Computing on the GPU and CPU,
SIGGRAPH, 2008.

[13] C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier, “Starpu:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Euro-Par 2009 Parallel Processing, pp. 863–874, 2009.

[14] M. Lyons, M. Hempstead, G. Y. Wei, and D. Brooks, “The accelerator
store framework for high-performance, low-power accelerator-based
systems,” Computer Architecture Letters, vol. 9, no. 2, pp. 53–56, 2010.

[15] D. H. Woo and H. H. S. Lee, “Extending amdahl’s law for energy-
efficient computing in the many-core era,” Computer, vol. 41, no. 12,
pp. 24–31, 2008.

[16] F. J. Pollack, “New microarchitecture challenges in the coming gener-
ations of cmos process technologies (keynote address),” in Proceedings
of the 32nd annual ACM/IEEE international symposium on Microarchi-
tecture. IEEE Computer Society, 1999, p. 2.

[17] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and
Probability. July 31-August 12, 1950., vol. 1, 1951, pp. 481–492.


