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Maximum Bipartite Matching Size and
Application to Cuckoo Hashing

Yossi Kanizo, David Hay, and Isaac Keslassy

Abstract—Cuckoo hashing with a stash is a robust multiple
choice hashing scheme with high memory utilization that can
be used in many network device applications. Unfortunately, for
memory loads beyond0.5, little is known on its performance.

In this paper, we analyze its average performance over such
loads. We tackle this problem by recasting the problem as an
analysis of the expected maximum matching size of a given
random bipartite graph. We provide exact results for any finite
system, and also deduce asymptotic results as the memory size
increases. We further consider other variants of this problem,
and finally evaluate the performance of our models on Internet
backbone traces. More generally, our results give a tight lower
bound on the size of the stash needed for any multiple-choice
hashing scheme.

I. I NTRODUCTION

A. Background

Network devices increasingly rely on hash tables to ef-
ficiently implement their algorithms, in fields as diverse as
load-balancing, peer-to-peer, state management, monitoring,
caching, routing, filtering, and security [1]–[6].

Because of the stringentmemory size constraintsin network
devices, recent research is increasingly dealing with improving
the memory efficiency of hash tables. In particular,cuckoo
hashinghas recently drawn a lot of attention due to its efficient
space utilization along with its constant query and deletion
times, as well as its constant expected insertion time (e.g., [7]–
[18] and references therein). In cuckoo hashing, we want
to insert n elements intom unit-sized bins. Each of then
elements typically usesd = 2 independent hash functions,
each pointing to an arbitrary bin. When an element arrives, itis
placed in one of these 2 bins. If both bins are full, it displaces
another element, which is then moved to the bin corresponding
to its other choice. This process continues until all elements
are placed, unless it is stopped and then the element cannot
be inserted.

Cuckoo hashing is especially interesting because of its high
memory utilization. In fact, consider the bipartite graph formed
by the n elements on one side, them bins on the other,
and2 links leaving each element for2 bins according to the
hash values of the element. Then the number of elements that
cuckoo hashing inserts successfullyis exactly the size of the
maximum matching[11], [19], i.e. it is extremely sufficient.
Past papers have in fact shown that up to a loadn/m = 0.5, all
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elements could fit in the hash table with high probability [7],
[9]–[11].

Unfortunately, even this high efficiency of cuckoo hashing is
not sufficient for network devices, because designers typically
consider that at load 0.5,half the memory is lost. This is why
memory-efficient hashing schemes attempt to pack even more
elements by introducing an additional memory, calledstashor
overflow list, that stores a small number of elements outside
the main hash table [6], [14]–[17]. The stash can then be
implemented in hardware using for instance CAMs (content-
addressable memories), which rely on associative memory and
consume significantly more power [6], [18]. It can also rely on
another hash table, or simply correspond to dropped packets
in a lossy hash table [20].

This memory-efficient architecture with a stash enables the
load of the hash-table to increase beyond0.5. Unfortunately,
when the load gets beyond0.5, sizing the stash is not fully un-
derstood [18, Open Question 5].This paper is about analyzing
this challenging case where the load exceeds0.5.

To further understand why cuckoo hashing has a high
utilization, it is important to notice thatonlinecuckoo hashing
with d = 2, succeeds in inserting an element if and only if
an augmenting path originating from the corresponding vertex
exists [11]. This is because inserting an element into a cuckoo
hash table is equivalent to finding an augmenting path in
the corresponding graph (that is, a path that starts from the
vertex corresponding to the considered element, and alternates
between unmatched and matched edges until it ends at a right-
side vertex whose all edges are unmatched). Notice that for
any sub-path(r1, v, r2), wherev is a left-side vertex andr1, r2
are right-side vertices,(r1, v) must be a matched edge and
(v, r2) an unmatched edge. Intuitively, this corresponds to
moving elementv from bin r1 to bin r2. Since maximum
size matching can be computed by finding such augmenting
paths, when considering each left-side vertex only once andin
arbitrary order, we can immediately conclude that the number
of elements that a cuckoo hashing inserts successfullyis
exactly the size of the maximum matching. For example, all
n elements can be inserted if and only if the corresponding
graph has aperfect matching(namely, a maximum matching
of sizen; see [11] for more details).

B. Contributions

In this paper, we attempt to model the behavior of cuckoo
hashing with a stash as the load gets beyond0.5. To do so,
we essentially transform the problem into a problem in graph
theory, then provide a theoretical analysis of its performance,
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and later evaluate its real-life behavior by using Internet
backbone traces.

First, we study theaverage performanceof cuckoo hashing
by analyzing theexpected maximum matching sizein the
bipartite graph introduced above. We decompose each random
bipartite graph intoconnected components, and then separately
analyze each component and evaluate the size of its local
maximum bipartite match. The size of the maximum bipartite
matching is the sum of the sizes of all local matches. Then, we
count the number of connected components in the graph and
thus derive the size of the maximum matching in the entire
graph. Surprisingly, we can obtain anexact expressionof the
average performance of cuckoo hashing with a stash in any
finite system.

We further show that the actual maximum matching size
is sharply concentrated around its expected value. Thus, the
difference betweenn and the expected maximum matching
size providesthe required size of the stash, which should
store all elements with high probability. To do so, we use
concentration results based on applying Azuma’s inequality
to a Doob martingale, which is defined over the maximum
matching size when exposing vertices one at a time. In
practice, the goal of this result isto help designers size
their CAM stashesby providing guarantees on the number
of elements that can be inserted in the hash table with these
stashes.

We next provide an exact analysis when the average number
of choices is less than2 to minimize the number of memory
accesses. We further obtain a lower bound on the required
stash size when the number of hashesd exceeds2. Our results
for d > 2 rely on Huisimi tree enumerations. They illustrate
the tradeoff between an improved memory efficiency and the
need for more memory accesses, i.e.the tradeoff between
memory size and bandwidth.

Finally, we evaluate cuckoo hashing with a stash on real-
life Internet packet traces from an OC192 backbone link, using
a 64-bit mix hash function. We show that whenn = m, we
can insert an average of83.81% of the packets within the hash
table, and put the remainder in the CAM stash. Likewise, when
n = 0.6m, that is,20% more than the threshold for perfect
matching, we can insert in average≈ 0.9938n of the packets,
that is, the need stash size is≈ 0.0062n. We further confirm
our analytical models and show that our bounds ford > 2 are
typically within 1% of the exact value.

Incidentally, our paper can lead to two interesting contribu-
tions. First, the paper analysis also provides exact results for
the stash sizes when the numbers of elementsn and bucketsm
are finite. This non-asymptotic analysis is particularly needed
when n and m are known to be small. For example, as
suggested in [5], the cuckoo hashing scheme can be used to
store fingerprints of elements and thus enable set membership
queries. To be able to move a fingerprint from one bucket to
another, the hash value can only depend on the current location
and on the fingerprint itself. This can be modeled by cuckoo
hashing with a small finite number of elements and buckets,
implying again that an asymptotic analysis cannot be applied
in this case.

In addition, we note that for other multiple-choice hashing

schemes, our results providea lower bound on the size
of the stash. This is because the maximum matching size
of the graph is always an upper bound on the number of
elements that can be inserted into the hash table. Moreover,
since finding the maximum matching in bipartite graphs is
a fundamental problem with a wide range of applications
in computer science, we believe that our results have also a
theoretical significance and may be used in other contexts.

Paper Organization:We start by surveying the relevant
literature in Section II. Then we introduce the preliminary
definitions in Section III. Section IV provides the expected
maximum matching size of random bipartite graphs with left-
side vertex degree 2, where a variation of the problem in
which each left-side vertex degree is at most 2 is consideredin
Section V. Next, in Section VI, we solve the more appealing
problem in which the right-side vertices are partitioned into
two subsets, and each left-side vertex has exactly one edge to
each of these subsets. In Section VIII we verify and evaluate
our results, including by real-life trace-based experiments.
Last, Section VII provides an upper bound on the expected
maximum matching size when the constant left-side vertex
degree is at least three. For the sake of readability, most of
the proofs are presented in Appendix A.

II. RELATED WORK

Multiple-choice hashing schemes were first considered in
the seminal paper of Azar et al. [21]. It showed that placing
each element in the least occupied bin among a constant
numberd of random bins significantly improves the maximum
bin load to log logn

log d + O(1) with high probability (compared
to the case whered = 1, in which the maximum bin load is
log n (1 +O(1))). This result initiated an extensive research
with many variants of multiple-choice hashing schemes, which
typically exhibited the so-calledpower of two random choices
with d = 2 [22]. For brevity, we next survey only works that
directly correspond to our paper.

First, we relate to works which considered the same model
as in this paper (a random bipartite graph with constant left-
side vertex degree). Motivated by achieving a performance
guarantee for the cuckoo hashing scheme [23], the main effort
has been to find a load threshold, such that for any load below
the threshold a perfect matching exists with high probability.
It is known that a cuckoo hashing scheme withd = 2
succeeds with high probability if the load is less than a load
threshold of 0.5, but fails when the load is larger than 0.5 [7].
Recent works [9]–[11] have settled the problem of finding the
corresponding thresholds ford > 2. Another recent work [16],
shows that cuckoo hashing with a stash of sizes, d = 2, and
a load factor less than 0.5 fails with probabilityO (n−s). Our
paper differs in that we also consider load values beyond0.5
for d = 2. Moreover, while most of the works investigate
only the asymptotic behavior, we also present in our paper
analytical expressions for finite random graphs along with the
asymptotic ones.

The problem of finding the expected maximum matching
size is also investigated assuming other models of random
graphs, mainly trees. In [24] (and references therein) the
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authors investigate the expected maximum matching size of
an (r, s)-tree, finding that for almost all(n, n)-trees the
percentage of dark vertices in a maximum matching is at
least 72%. A more recent work [25] presents results related to
the expected maximum matching size of the class of simply-
generated trees. A model of a loop graph is considered by [26],
showing a lower bound on the expected maximum matching
size. While using the cavity method of statistical physics [27],
the authors find analytically the value under considerationfor
the Erd̈os graphG(n, c/(n − 1)), where c < 2.7183. Our
paper differs in that it considers a different model of random
bipartite graphs, where each vertex inL chooses a constant
number of vertices inR.

Additional related works deal with the probability of a
perfect matching in other random graph models. For instance,
in a random directed bipartite graph withn left-side andn
right-side vertices, and an outward degreed at each vertex,
the probability that the random bipartite graph contains a
perfect matching approaches 1 ifd > 1, but approaches 0
otherwise [28]. Also, in a random bipartite graph withn left-
side vertices,n right-side vertices,cn edges picked uniformly
at random, and a degree of at least2, there is a perfect
matching with high probability [29].

Finally, conjectures in [30], [31] consider the expected mini-
mum matching weight given a full bipartite graph with random
exponentially distributed edge weights. These conjectures are
proved in [32], [33].

III. D EFINITIONS AND PROBLEM STATEMENT

Given two disjoint sets of verticesL andR of sizen and
m respectively, we consider a random bipartite graphG =
〈L+R,E〉, where each vertexv ∈ L has d = 2 outgoing
edges whose destinations are chosen independently at random
among all vertices inR. We allow both choices to be the same
vertex, implying thatG might have parallel edges. For brevity,
we sometimes say thatv ∈ L choosesa vertexv′ ∈ R if (v, v′)
is in E. The load of G is denoted byα = n

m .
We further consider cases when theaverages number of

choicesis less than2.
Definition 1: Let dv be the number of choices of each

vertexv ∈ L. Theaverage number of choicesa is the average

left-side vertex degree, i.e.a =
E(

∑
v∈L dv)
n =

∑
v∈L E(dv)

n .
First, in the deterministic case, we find the expected max-

imum matching size of the graphGa = 〈L+R,E〉, where
each vertexv ∈ L independently chooses a predetermined
number dv ∈ {1, 2} of random vertices inR, such that
a = d1+2·d2

n .
Second, in the random case, we analyze the slightly different

case of a random bipartite graphGp = 〈L+R,E〉 where each
vertex chooses two vertices with probabilityp and one vertex
with probability 1 − p. This implies that inGp, the average
number of choicesa = 1 + p.

Finally, we also consider astatic partitioning of the choices;
the setR is partitioned into two disjoint setsRu andRd of
sizesβ ·m and(1− β)m. In that case, we consider a random
bipartite graphGβ = 〈L+ (Ru ∪Rd), E〉, where each vertex
v ∈ L chooses exactly one vertex inRu and another vertex in
Rd.

 

 

 

 
 

 

 

 

Fig. 1. An example bipartite graph with left-side vertex degree 2

This paper focuses on the expected size of the maximum
size matching ofG, which is captured by the following
definition:

Definition 2: The operatorµ (·) extracts theexpected size of
the maximum size matching. It operates both on deterministic
and random bipartite graphs. (Namely, for a deterministic
graph H, µ (H) is simply the size of the maximum size
matching ofH.)

Definition 3: The normalized limit expected maximum
matching sizeγ = limn→∞

µ(·)
n is the limit percentage of

the expected maximum matching size (out of the number of
the vertices inL).

As shown in the literature, in real-world systems, practical
hash functions usually work as if they were fully random [6].
Therefore, we model the hash functions in our theoretical
analyses as such.

Our goal is to find both theexpected maximum matching size
as well as thenormalized limit expected maximum matching
sizefor the above-mentioned graph models.

IV. EXPECTEDCUCKOO PERFORMANCE: BIPARTITE

GRAPHS WITHd = 2

We are now interested in evaluating the expected perfor-
mance of cuckoo hashing with a stash. As explained in the
Introduction, we approach the problem using a graph-theory
perspective, since it is the same as evaluating the expected
maximum matching size of the random bipartite graphG.

To do so, we consider the connected components of the
random bipartite graphG. We start by stating some lemmas
on these connected components, before establishing our main
result on the expected matching size.

A. Expected Maximum Matching Size

We now deal with a random graph, in which each left-side
vertex choosesd = 2 right-side vertices (parallel edges are
allowed). Note that further evaluation of the results reported
here appears in Section VIII.

First, we quote a few useful lemmas (proved in [19]), before
stating our result. As stated, the following lemmas are for
a given bipartite graphH = 〈LH +RH , EH〉, where each
vertex inLH has degree 2 (parallel edges are allowed), with
|LH | = s and |RH | = q. An example bipartite graphs = 3,
q = 4, and left-side vertex degree 2, appears in Figure 1.
Dashed lines represent edges not in the maximum size match-
ing, while solid lines represent edges in the maximum size
matching.

Lemma 1: If s ≤ q − 2, thenH is not connected.
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Lemma 2: If H is connected ands ≥ q, thenµ (H) = q.
Lemma 3: If H is connected ands = q−1 thenµ (H) = s.
Lemma 4:For any graph withs = q − 1, H is connected

if and only if it is a tree.
Lemma 5:The numberTs of connected bipartite graphsH

whose|LH | = s and |RH | = s+ 1 is Ts = (s+ 1)
s−1

s!

We can now prove the next theorem on our bipartite graph
G, which is the main result of this paper. We remind that this
theorem states the expected number of elementsµ (G) that
can be inserted by our cuckoo hashing scheme with a stash.
Therefore,n− µ (G) also gives us theexpected stash size.

Theorem 1:Let d = 2 and b = min {n,m− 1}. The
expected maximum matching sizeµ (G) is

µ (G) = m−
b
∑

s=0

(

n

s

)(

m

s+ 1

)

×

(

1−
s+ 1

m

)2(n−s) (
s+ 1

m

)2s
2ss!

(s+ 1)s+1 .

Proof: Let M be a maximum matching ofG. Our proof
is based on counting the expected number of vertices inR
that are not part ofM , and on the decomposition ofG into
its connected components.

Lemma 1 yields that any connected component ofG with s
left-side vertices has at mosts+1 right-side vertices. We call a
connected component withs left-side vertices ands+1 right-
side verticesa deficit component of sizes. Lemma 3 implies
that the maximum matching size of any such deficit component
is s. Therefore,exactly oneof its right-side vertices is not part
of M . Notice that in all other connected components, where
q < s + 1, the maximum matching size ofG is exactly q
(Lemma 2), implying that all their right-side vertices are part
of M .

Thus, in order to calculate the size ofM , it suffices to count
the number of deficit componentsx. The size ofM is m− x
because exactlyx right-side vertices do not participate inM ,
one for each deficit component.

Let Ps = 2sTs

(s+1)2s
be the probability that a bipartite graph

H = 〈LH +RH , EH〉 is connected, with degree 2 for all
vertices inLH , where|LH | = s and |RH | = s+ 1.

The expected number of deficit components of sizes is
(

n
s

)(

m
s+1

)

·
(

1− s+1
m

)2(n−s)·
(

s+1
m

)2s·Ps. The above expression
consists of the following factors (in order):
(i) choosing thes vertices inL;
(ii) choosing thes+ 1 vertices inR;
(iii) the probability that alls + 1 vertices in R may be
connected only to the chosens vertices inL;
(iv) the probability that alls vertices inL are only connected
to thes+ 1 vertices in the right side; and,
(v) the probability that all chosen vertices are connected.

Finally, we calculatex by summing over all possi-
ble values ons. As mentioned before, the expected size
of M is given by m − x. We get: µ (G) = m −
∑b

s=0

(

n
s

)(

m
s+1

)

·
(

1− s+1
m

)2(n−s) ·
(

s+1
m

)2s · Ps, where b =

min {n,m− 1}, Ps =
2sTs

(s+1)2s
, andTs = (s+ 1)

s−2 ·(s+ 1)!,
as found in Lemma 5.

B. Concentration Result

We next show that the size of the maximum matching is
highly concentrated around its expectationµ(G). In other
words, this means that our stash occupancy will be close to its
average value, which can help ussize the stashmore accurately
by providing performance guarantees on its performance.

In order to prove this result, we apply Azuma’s inequality
to a Doob martingale (more specifically, the martingale is a
vertex exposure martingale of the left-side vertices).

Note that as long as all left-side vertices pick their edges
independently, this concentration result holds regardless of
the value ofd, and more generally regardless of the specific
distribution over which the hash functions are defined. There-
fore, the concentration result applies also for the settings of
Sections V – VII.

Theorem 2:Let H be a specific instance of the ran-
dom graphG, as defined in Section III. For anyλ > 0,
Pr(|µ(H)− µ(G)| > λ

√
n) < 2e−λ2/2.

Proof: Our notations follow those of [34]. We first define
an exposure martingale, which exposes one left-side vertexat
a time, along with all its outgoing edges. This martingale is
equivalent to a regular vertex exposure martingale, in which all
right-side vertices are exposed first, and then left-side vertices
are exposed one by one.

Specifically, letG be the probability space of all two-choice
bipartite graphs as defined in Section III andf the size of the
maximum size matching of a specific instance. Assume an
arbitrary order of the left-side verticesL = {v1, . . . vn}, and
defineX0, . . . , Xn by Xi(H) = E[f(G) | ∀x ≤ i, ∀vy ∈
R, (vx, vy) ∈ G iff (vx, vy) ∈ H]. Note thatX0(H) = µ(G)
since no edges were exposed, whileXn(H) = µ(H) as all
edges are exposed.

Clearly, f satisfies the vertex Lipschitz condition since if
two graphsH and H ′ differ at only one left-side vertex,
|f(H) − f(H ′)| ≤ 1 (either that vertex is in the maximum
matching or not). Thus, since each left-side vertex makes in-
dependent choices, [34, Theorem 7.2.3] implies that the corre-
sponding vertex exposure martingale satisfies|Xi+1−Xi| ≤ 1.
Hence, by applying Azuma’s inequality, we immediately get
the concentration result.

Notice that if we are interested only in one-sided bounds, we
can get a slightly tighter result:Pr(µ(G)− µ(H) > λ

√
n) <

e−λ2/2. This is exploited in the following corollary, which
shows that to obtain a given overflow fraction, the needed
stash size grows sub-linearly withn beyond its average value.

Corollary 3: To achieve an overflow fraction ofǫ in cuckoo
hashing with stash, when insertingn elements tom bins, a
stash of sizen− µ (G) +

√

2n · ln (1/ǫ) suffices, whereµ(G)
is defined in Theorem 1.

Proof: If a stash of sizen−µ (G)+
√

2n · ln 1/ǫ is used,
cuckoo hashing fails if and only ifn− µ(H) > n− µ (G) +
√

2n · ln 1/ǫ, or by rewriting it,µ(G)−µ(H) >
√

2n · ln 1/ǫ.
By substitutingλ =

√

2 · ln 1/ǫ in the above one-sided bound,
we get the claimed result.

C. Limit Normalized Expected Maximum Matching Size

We are now interested in the asymptotic expression where
n → ∞ with α = n

m constant. The following results show an



5

interesting connection between the limit normalized expected
maximum matching size and the Lambert-W function, and
even a connection between the perfect matching threshold and
the radius of convergence of the Lambert-W function [19],
[35].

For further details on the Lambert-W function, see also
Appendix B.

Theorem 4:Let d = 2. The limit normalized expected
maximum matching sizeγ = limn→∞

µ(G)
n is given by:

γ =
1

α
+

1

2α2
·W
(

−2α · e−2α
)

+
1

4α2
W 2

(

−2α · e−2α
)

, (1)

where the Lambert-W function is the inverse function of the
functionω(x) = xex.

Proof: We compute the limit ofµ(G)
n as n → ∞ such

thatα = n
m :

γ = lim
n→∞

1

n

(

m−
b
∑

s=0

(

n

s

)(

m

s+ 1

)

×

(

1− s+ 1

m

)2(n−s)(
s+ 1

m

)2s

Ps

)

We find through differentiation that
(

1− s+1
m

)2(n−s)
is an

increasing function with respect ton (where m = n
α ).

Moreover, the expansion of1n ·
(

n
s

)(

m
s+1

)

·
(

s+1
m

)2s
shows that it

is also an increasing function. Therefore, their product isalso
increasing and, by the monotone convergence theorem [36],
we get

γ =
m

n
−

b
∑

s=0

lim
n→∞

(

1

n
·
(

n

s

)(

m

s+ 1

)

×

(

1− s+ 1

m

)2(n−s)

·
(

s+ 1

m

)2s

· Ps

)

By substituting the expression forPs, and using the facts that
(

n
s

)

= ns

s! + O
(

ns−1
)

and limn→∞ (1 + a/n)
n

= ea, we
deduce:

γ =
m

n
−

1

n

∞
∑

s=0

ns

s!

ms+1

(s+ 1)!
e−2α(s+1)

·

(s+ 1)2s

m2s
·

2s (s+ 1)s−1 s!

(s+ 1)2s

By substitutingm = n
α , and simplifying the above expression,

we get:

γ =
1

α
− 1

α
·

∞
∑

s=0

αs · 2s · (s+ 1)
s−1

(s+ 1)!
· e−2α(s+1)

=
1

α
− 1

2α2
·

∞
∑

j=1

(

−2α · e−2α
)j · (−j)

j−2

j!

Let T (x) =
∑∞

j=1
(−j)j−2

j! · xj be a formal power series,
where by substitutingx = −2α · e−2α we get the above
expression. By differentiatingT (x) and multiplying byx, we
get:

x · d

dx
T (x) = −

∞
∑

j=1

(−j)
j−1

j!
· xj = −W (x) ,

where the Lambert-W function is the inverse function of the
function ω(x) = xex [35], and the last equality follows from

its known Taylor expansion that converges as long asx is
within the radius of convergence with|x| ≤ e−1 [35].

Given thatx · d
dxT (x) = −W (x), we computeT (x):

T (x) =

∫

1

x
· (−W (x)) dx = −W (x)− 1

2
W 2 (x) ,

with convergence within|x| ≤ e−1.
Interestingly, the functionf (α) = −2α · e−2α gets its

minimum at α = 0.5, where it precisely equals the radius
of convergence−e−1. Therefore, for allα we can substitute
x = −2α·e−2α, since we are within the radius of convergence
of T (x), and we finally derive the result.

We note that this particular asymptotic result can be also
achieved by the theory of giant components in random
graphs [34], [37]. However, this technique is not applicable
for finite n andm, and cannot be used to derive most of the
other results in this paper. (A proof using this technique
appears in the appendices).

The following corollary shows that forα = n
m ≤ 1

2 , the
probability for a right-side vertex to be part of a maximum
matching goes to 1. This corollary also follows from the
previously known result that there is a perfect matching with
high probability in cuckoo hash tables with loadα ≤ 1

2 [7].
Corollary 5: Let d = 2 and α = n

m ≤ 1
2 . Then the

limit normalized expected maximum matching size isγ =
limn→∞

µ(G)
n = 1.

Proof: In caseα ≤ 1
2 , W

(

−2α · e−2α
)

equals−2α, thus,
γ = 1

α + 1
2α2 · (−2α) + 1

4α2 (−2α)
2
= 1

V. CUCKOO WITH LOW MEMORY BANDWIDTH : BIPARTITE

GRAPHSWITH dv ≤ 2

In this section we are interested in alow-memory-bandwidth
versionof the cuckoo hash algorithm. We now let each element
choose either 1 or 2 bins instead of only 2 bins, to force them
to access less bins and use less memory I/O bandwidth.

Formally, we relax the constraint that each vertex inL
chooses exactly 2 vertices inR, and let each left-side vertex
choose either 1 or 2 right-side vertices. Since we can divide
the set of vertices either deterministically or randomly, we will
discuss the results in both cases. These results correspondfor
example to cases in which the average number of choices, as
defined below, is important (e.g. [15]). See also [38] for a
similar model.

Note that further evaluation of the results reported in this
section can be found in Section VIII-B.

A. Connected Components in Deterministic Graphs

As in Section IV-A, we now consider a deterministic
bipartite graphH = 〈LH +RH , EH〉, with |LH | = s and
|RH | = q. We assume that the degree of each vertex inLH

is at most 2.
Proposition 1: Lemmas 1, 2, and 3 hold also when the

degree of each vertex inLH is at most (but not necessarily)
2.
Note that the proofs remain almost identical to the original
proofs, replacing a few equalities with the corresponding
inequalities.
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Lemma 6:Let s+1 = q. If H is connected then the degree
of each vertex inLH is 2.

B. Expected Maximum Matching Size

1) Predetermined Number of Choices:In this section, we
assume that each vertexv ∈ L independently chooses1 ≤
dv ≤ 2 random vertices inR, wheredv is predetermined. The
following result provides the expected maximum matching
size in this case.

Theorem 6:Given a predetermined average number of
choicesa, let d1 = (2− a)·n andd2 = n−d1 = (a− 1)·n be
the number of vertices inL that choose one and two vertices in
R, respectively. The expected maximum matching sizeµ (Ga)
is given by:

µ (Ga) = m−

b
∑

s=0

(

d2

s

)(

m

s+ 1

)

×

(

1−
s+ 1

m

)2(d2−s)+d1
(

s+ 1

m

)2s
2s · s!

(s+ 1)s+1 ,

whereb = min {d2,m− 1}.
2) Random Number of Choices:In this section, we assume

that each vertexv ∈ L independently chooses1 ≤ dv ≤ 2
random vertices inR, where for eachv ∈ L, dv equals 2
with probability p, and it equals 1 with probability1 − p.
Based on Theorem 6, the following result reflects the expected
maximum matching size in this case.

Theorem 7:The expected maximum matching sizeµ (Gp)
is given by
µ (Gp) =

∑n

d2=0

(

n

d2

)

· pd2 · (1− p)n−d2 · µ
(

G
a=1+

d2
n

)

, where
µ (Ga) is given by Theorem 6.

C. Limit Normalized Expected Maximum Matching Size

1) Predetermined Number of Choices:We are also inter-
ested in the asymptotic expression, wheren → ∞, such that
we fix both the loadα = n

m and the average number of choices
a = d1+2·d2

n of the vertices. This is reflected in the following
theorem.

Theorem 8:The limit normalized expected maximum
matching sizeγa = limn→∞

µ(Ga)
n with average number

of choicesa ∈ (1, 2] is given by: γa = lim
n→∞

µ (Ga)

n
=

1

α
+
W (−2α (a− 1) · e−aα)

2α2 · (a− 1)
+
W 2 (−2α (a− 1) · e−aα)

4α2 · (a− 1)
. For

a = 1, it is given byγa = limn→∞
µ(Ga)

n = 1
α − 1

α · e−α.
Interestingly, if even a small fraction of the elements do not

have choice then the expected maximum matching size is not
1. This is reflected in the following corollary.

Corollary 9 ((No) Perfect Matching):If 1 ≤ a < 2 then
γa < 1.

2) Random Number of Choices:We now study the case
of the random bipartite graphGp = 〈L+R,E〉, where each
vertex chooses two vertices with probabilityp (and one vertex
with probability 1− p). As we show in the next theorem, the
asymptotic expression can be derived byγa.

Theorem 10:The limit expected maximum matching size
γp = limn→∞

µ(Gp)
n where each vertex chooses two vertices

with probability p (and one vertex with probability1 − p) is
γp = γa=1+p.

VI. SINGLE-PORTED CUCKOO: STATIC PARTITIONING OF

THE CHOICES

We now consider a popular cuckoo-hashing implementation
variant in which the bins are statically partitioned into two
equal sets, and each element holds one hash function to each
set. This variant iseasier to implement in hardware, because it
can be implemented using two simplesingle-ported memories,
instead of a single dual-ported one.

Formally, we consider the random bipartite graphGβ =
〈L+ (Ru ∪Rd), E〉, where R is now partitioned into two
disjoint subsetsRu and Rd with |Ru| = β · m and |Rd| =
(1− β)m. Each vertexv ∈ L independently chooses a single
random vertex inRu and another single random vertex in
Rd. This corresponds, for example, to a hashing scheme that
selects non-overlapping sets of bins as images of its hash
functions (e.g., as in multilevel hashing scheme [39] ord-
left [40]).

Note that further evaluation of the results reported in this
section can be found in Section VIII-C.

A. Connected Components in Deterministic Graphs

The following lemma counts all the possible bipartite graphs
Hud of the form〈LH + (RHu

∪RHd
), EH〉 with degree 2 for

each vertex inLH , where|LH | = s, |RHu
| = i and |RHd

| =
j, such that each vertexv ∈ LH is connected using a single
edge to some vertex inRHu

and another single edge to some
vertex inRHd

.
Proposition 2: Lemmas 1, 2, 3, and 4 hold for this case as

well.
Lemma 7:Let s = i+ j−1. The numberTi,j of connected

bipartite graphs isTij = ij−1 · ji−1 · s! = ij−1 · ji−1 ·
(i+ j − 1)!

B. Expected Maximum Matching Size

In the next theorem we find the expected maximum match-
ing size with a static partition of the right-side vertices.

Theorem 11:Given the static partitioning of the bipartite
graphGβ , the expected maximum matching sizeµ (Gβ) is

µ
(

Gβ

)

= m−

n
∑

s=0

(n

s

)

b2
∑

i=b1

(β ·m

i

)((1− β) ·m

s+ 1− i

)

(

1−

i

β ·m

)n−s

×

(

1−

s+ 1− i

(1− β) ·m

)n−s ( i

β ·m

)s ( s+ 1− i

(1− β) ·m

)s

×

Pi,s+1−i,

where b1 = max {0, s+ 1− (1− β) ·m},
b2 = min {s+ 1, β ·m, }, Pij =

Tij

(i·j)i+j−1 , and

Tij = ij−1 · ji−1 · (i+ j − 1)! (as given in Lemma 7).
Proof: Similarly to the proof of Theorem 1, our proof is

based on counting the expected number of vertices inL that
are not in some specific maximum matchingM of Gβ , based
on the decomposition ofG into its connected components.
As in the proof of Theorem 1, we consider the number of
connected components with exactlys vertices inL and q =
s + 1 vertices inRu ∪ Rd, where we have to sum over all
possible combinations(i, s+ 1− i), where i corresponds to
the number of vertices taken fromRu ands+1−i corresponds
to those taken fromRd.
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Thus, the expected number of connected components inGβ
with s vertices inL, i vertices inRu and s + 1 − i vertices
in Rd is given by:
(

n

s

)

·

(

β ·m

i

)(

(1− β) ·m

s+ 1− i

)

·

(

1−
i

β ·m

)n−s

·

(

1−
s+ 1− i

(1− β) ·m

)n−s

·

(

i

β ·m

)s

·

(

s+ 1− i

(1− β) ·m

)s

· Pi,s+1−i,

The above expression consists of the following factors (in
order):
(i) choosing thes vertices inL;
(ii) choosing thei vertices inRu;
(iii) choosing thes+ 1− i vertices inRd;
(iv) the probability that alli vertices inRu may be connected
only to the chosens vertices inL;
(v) the probability that alls + 1 − i vertices inRd may be
connected only to the chosens vertices inL;
(vi) the probability that alls vertices inL are only connected
to the i vertices inRu;
(vii) the probability that alls vertices inL are only connected
to thes+ 1− i vertices inRd; and,
(viii) the probability that all chosen vertices are connected.

Finally, adding the expressions for all possibles’s and i’s
and subtracting it fromm yields the claimed result.

C. Limit Normalized Expected Maximum Matching Size

As in the last sections, we are also interested in the
asymptotic expression wheren → ∞ with both fixedα = n

m
and fixedβ. This is achieved in the following theorem.

Theorem 12:Given the static partitioning of the bipartite
graphGβ , the limit normalized expected maximum matching
size γβ = limn→∞

µ(Gβ)
n for β ∈ (0, 1) is given by:γβ =

1
α − β·(1−β)

α2 · (t1 + t2 − t1 · t2) , wheret1, t2 are provided by
the following equations

α

1− β
· e

−α
β = t1 · e

−t2 ,
α

β
· e

− α
1−β = t2 · e

−t1 (2)

and satisfy the conditiont1 · t2 ≤ 1.
For β ∈ {0, 1}, (namely, the trivial partitions), the limit

normalized expected maximum matching sizeγβ is 1
α− 1

α ·e−α.
We deduce the following two corollaries.
Corollary 13 (Asymptotic Equivalence):Let d = 2. The

limit normalized expected maximum matching size ofGβ with
β = 0.5 is the same as the limit expected maximum matching
size ofG.

Proof: We substituteβ = 0.5 in the expression from
Theorem 12, and getα0.5 · e−

α
0.5 = t1 · e−t2 , α

0.5 · e−
α
0.5 =

t2 · e−t1 . One of the solutions of the above equations ist1 =
t2 = −W

(

−2αe−2α
)

. In the proof of Theorem 4, we showed
that −W

(

−2αe−2α
)

≤ 1. Thus,t1 · t2 < 1. By substituting
this solution in the expression forγβ from Theorem 12 , we
get the exact expression as in Equation (1).

Corollary 14: Let d = 2, α ≤ 1
2 , and fix a partitionβ.

The limit normalized expected maximum matching sizeγβ =

limn→∞
µ(Gβ)

n is 1 whenever1−
√
1−4α2

2 ≤ β ≤ 1+
√
1−4α2

2 .
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n = m (model)

Fig. 2. Expected maximum matching size for various values ofn andm
(normalized byn) .

VII. SUPER-CUCKOO: BIPARTITE GRAPHS WITHd > 2

We are now interested in checking how powerful cuckoo
hashing can be when we allow more than 2 hash functions
per element. Of course, using more hash functions will result
in an increase in implementation complexity, and therefore
one goal of this study is to point out the tradeoff between
efficiency and complexity.

In this section we briefly show how our method can be
applied to find an upper bound on the expected maximum
size matching where each left-side vertex hasd > 2 choices.
Formally, we are given two disjoint sets of verticesL andR of
sizen andm, respectively, and a random bipartite graphGd =
〈L+R,E〉, where each vertexv ∈ L hasd outgoing edges
whose destinations are chosen independently at random (with
repetition) among all vertices inR. We obtain the following
upper bound on the maximum matching size of the bipartite
graphGd.

Theorem 15:Let b = min
{

n,
⌊

m−1
d−1

⌋}

and q = (d− 1) ·
s+ 1. Then,µ

(

Gd
)

is lower or equal to

min

{

n,m−

b
∑

s=0

(q − s)
(n

s

)(m

q

)(

1−

q

m

)d(n−s) ( q

m

)ds ds · q!

q(d−1)·s+2

}

.

An evaluation of the upper bound and a comparison to
the simulated expected matching size is presented in Sec-
tion VIII-D.

VIII. E VALUATION AND EXPERIMENTS

A. Expected Maximum Matching Size Withd = 2

Figure 2 shows the expected maximum matching size
normalized byn for various values ofn and m. We show
the expected maximum matching size both via our analytical
model from Theorem 1 and via simulations. For each instance
of n andm, we randomizedm = 10,000 bipartite graphs. The
results fairly confirm that our model is accurate, and also show
the convergence of the expected maximum matching size to its
limit. A simple evaluation appears in the following example.

Example 1: In casen = m = 2 (andd = 2), the expected
maximum matching size isµ (G) = 15

8 = 1.875. This simple
result can be justified as follows: In all cases the maximum
matching size is 2, except for the two cases of maximum
matching of size 1, where all 4 edges are connected to a
specific vertex inR. Each such case occurs with probability
(

1
2

)4
. Hence,µ (G) = 2− 1

16 − 1
16 = 15

8 .
Figure 3 shows the expected maximum matching size nor-

malized byn as found in Theorem 4, for various values of



8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

1.05

α

γ

 

 
simulation
model
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α, normalized byn
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Fig. 4. Limit expected maximum matching size for various values of α and
a, normalized byn

loadα, both via our analytical model and via simulations. The
simulations were performed usingm = 1000 andn = α ·m.
For each value ofα, we randomized 100 bipartite graphs. The
results fairly confirm that our model is accurate.

We conclude by the following simple example:
Example 2: In caseα = 1, that isn = m, the normalized

limit expected maximum matching size is

γ = 1 +
1

2
·W

(

−2 · e−2
)

+
1

4
W 2

(

−2 · e−2
)

≈ 0.8381.

B. Expected Maximum Matching Size Withdv ≤ 2

Figure 4 shows the normalized limit expected maximum
matching size, for various values of loadα and average
number of choicesa, both via our analytical model (from
Theorem 4) as well as via simulations. The simulations were
performed usingm = 1000 and n = α · m, where for each
instance of the simulation we randomized 100 bipartite graphs.
The results fairly confirm that our model is accurate.

C. Expected Maximum Matching Size With Static Partition

Figure 5 shows the limit expected maximum matching size
normalized byn, for various values of loadα and partition
β, both via our analytical model (from Theorem 12) and via
simulations. The simulations were performed usingm = 1000
and n = α · m. For each pair of values ofα and β, we
randomized 100 bipartite graphs. The results fairly confirm
that our model is accurate.

As expected, the limit expected maximum matching size is
symmetric aroundβ = 0.5. In caseα = 0.5 and β < 0.5,
while it seems that the normalized limit expected maximum
matching size is 1, it is not the case. For instance, in case
α = 0.5 and β = 0.45, we get that1 − γβ ≈ 1.675 · 10−7.
However, there are cases where imbalance in the partition sizes
does not reduceγβ , as shown for instance in Corollary 14.
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0.9

1
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γ
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Fig. 5. Limit expected maximum matching size for various values of β and
α, normalized byn
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Fig. 6. Upper bound on the normalized expected maximum matching size
for α = 1 as a function ofd

D. Expected Maximum Matching Size Withd > 2

We evaluate the upper bound found for the expected match-
ing size (Theorem 15). Figure 6 shows our upper bound as
well as simulation results for various values of the number of
choicesd. We tookn = m = 100, while for each instance ofd,
we randomized105 bipartite graphs. In the case ofd = 2, our
upper bound matches the exact expression found in Theorem 1
and thus matches the simulation results. In addition, we can
compare simulation results for higher values ofd with our
bounds. For instance, in the case ofd = 3 the normalized
expected maximum matching size via the simulation is0.9402,
while our upper bound is0.9508. In cased = 4, we get
a simulation value of0.9795, while the corresponding upper
bound is0.9820.

E. Trace-Driven Experiments

We have also conducted experiments using real-life traces
recorded on a single direction of an OC192 backbone link [41],
where packets are hashed using a real 64-bit mix function [42].
Our goal is two-folded. First, we would like to verify that our
analysis agrees with results of real-life traces. And second,
we want to verify that the distribution of overflow list size is
highly concentrated around its mean, as stated in Theorem 2.

We tookm = 10,000, and set a number of elementsn as
corresponding to various values of loadα. We repeated each
experiment 100 times. Fig. 7 shows that the results of our
experiments are very close to our model. Furthermore, it also
shows the minimum and the maximum overflow list size as a
function of the loadα, thus, introducing aconfidence interval
of 98% for the case wherem = 10,000. Note that, as reflected
in Thoerem 2, if we increasem (and setn accordingly) then
the confidence interval narrows down.

IX. CONCLUSION

In this work, we analyzed the performance of cuckoo
hashing with a stash for loads above0.5. We first provided
an exact expression for the expected maximum matching size
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Fig. 7. An experiment using real-life traces

of a random bipartite graph with each left-side vertex picking
d = 2 right-side vertices. Then, we deduced asymptotic results
as the memory size goes to infinity, and showed a connection
to the Lambert-W function.

Both these results directly apply as exact results for the
average number of inserted elements using cuckoo hashing.
They also help us size the stash needed in the algorithm.
In addition, they serve as an upper bound for any alternative
hashing algorithm.

We also discussed alternative cases, in which cuckoo either
uses a lower memory bandwidth to gain power, or uses a
higher memory bandwidth to gain in efficiency, as well as a
case in which memory is partitioned and can be implemented
using two single-ported memories. Finally, we evaluated our
results on Internet backbone traces.

As future work, our goal is to implement the algorithm
in FPGAs, and evaluate its performance according to the
measures accepted in the switch industry (e.g., mean time to
failure vs. power utilization resulting from the CAM stash).
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APPENDIX A
OMITTED PROOFS

A. Proof of Lemma 1

The proof follows by induction ons. For s = 1, there are
2 edges in the graph and therefore every graph withq ≥ 3 is
not connected. Assume that the claim holds up untils = s′,
we next prove that it holds for any bipartite graphH ′ such
that |LH′ | = s′ + 1 and |RH′ | ≥ s′ + 3. Assume towards
a contradiction that there is a graphH ′ that is connected.
We first show that there is a vertex inRH′ with a degree1:
This follows from the fact that the average right-side degree
is 2(s′+1)

s′+3 < 2, implying that there is at least one vertex with
degree strictly less than2; since the graph is connected, there
are no right-side vertices with degree0. Let vr be such a vertex
and letvℓ ∈ LH′ be the (only) left-side vertex to which it is
connected. By the induction hypothesis, the graph induced by
LH′ \ {vℓ} andRH′ \ {vr} is not connected, implying it has
at least two connected components. InH ′, vℓ is connected to
vr and since its degree is2 it can be connected only to one of
these components. This implies thatH ′ is also not connected,
and the claim follows.

B. Proof of Lemma 2

We first consider the case wheres = q. For S ⊆ LH ,
let d(S) ⊆ RH be the set of vertices that are adjacent to
any vertex inS. Hall’s Theorem [43] implies that to prove
that µ (H) = q (namely, there is a perfect matching inH)
it suffices to prove that for everyS ⊆ LH , |S| ≤ |d(S)|.
Assume towards a contradiction that there is a subsetS ⊆ LH

such that|S| > |d(S)|, and denote|d(S)| by b. Furthermore,

consider the bipartite grapĥH =
〈

L̂H + R̂H , ÊH

〉

, in which

L̂H = LH \ S, R̂H = RH ∪ {v̂R} \ d(S) (where v̂R is a
newly-introduced vertex) and any edge inE(H) of the form
(vℓ, vr) such thatvℓ ∈ LH \S andvr ∈ d(S) is replaced with
the edge(vℓ, v̂R) in ÊH . Notice that sinceH is connected,̂H

must be connected as well. Recall that|S| > b, thus
∣

∣

∣
L̂H

∣

∣

∣
=

|LH\S| ≤ s − b − 1, while
∣

∣

∣
R̂H

∣

∣

∣
= |RH ∪ {v̂R} \ d(S)| =

|RH | − |d(S)| + 1 = s − b + 1. This contradicts Lemma 1,
implying that for everyS ⊆ LH , |S| ≤ |d(S)| and by Hall’s
Theoremµ (H) = q.

For s > q, trivially µ(H) ≤ q. Therefore, it suffices to
show that there exists a subsetS ⊆ LH of size q, such
that the corresponding bipartite subgraph is connected (and
hence has a perfect matching of sizeq). We constructS in q
iterations such that at the end of iterationn we end up with
some subsetsSn ⊆ LH and Qn ⊆ RH of the same size
n, whose corresponding subgraph is connected. We start by
n = 1 and pick some vertexvR ∈ RH and one of its adjacent
verticesvL ∈ LH . Assuming that at the end of iterationn,
setsSn andQn were chosen (and their corresponding graph

is connected), we next constructSn+1 andQn+1. Let v1 be
an arbitrary vertex inSn and let v2 be an arbitrary vertex
in LH ∪ Sn (such a vertex always exists sinces > q > n).
Similarly, let v′1 be an arbitrary vertex inQn and letv′2 be an
arbitrary vertex inRH ∪Qn. SinceH is connected there is a
path betweenv1 andv2, and letv be the first vertex along this
path that is not inSn. Similarly, v′ is the first vertex along
the path betweenv′1 andv′2 that is not inQn. We differentiate
between three cases:(i) v is adjacent toQn and v′ is to Sn.
In this caseSn+1 = Sn∪{v} andQn+1 = Qn∪{v′} and the
corresponding subgraph is connected;(ii) v is not adjacent to
aQn. Let w be the vertex beforev in the path betweenv1 and
v2, and letw′ be the vertex beforew in the path. Note that
w′ ∈ Sn by the choice ofv, and thatw /∈ Qn (otherwise
v is adjacent to aQn). Thus, for Sn+1 = Sn ∪ {v} and
Qn+1 = Qn ∪{w}, the corresponding subgraph is connected;
(iii) v′ is not adjacent to aSn. The claim holds similarly to case
(ii) by looking at the path betweenv′1 andv′2. We continue this
construction forq iterations, resulting in two subsetsSq ⊆ LH

andQq ⊆ RH of sizeq each, whose corresponding subgraph
is connected.

C. Proof of Lemma 3

Since each vertex inLH has a degree of two, the sum of the
degrees of all the vertices inRH is 2s = 2q − 2. Therefore,
there must be at least one vertexvr ∈ RH with degree 1
(there cannot be a vertex with degree 0 sinceH is connected).
Let vL ∈ LH be the (only) vertex that is connected tovR
and v̂R ∈ RH be the other vertex that is connected tovL.
Also consider the bipartite grapĥH =

〈

L̂H + R̂H , ÊH

〉

that
is given by removingvR from H and adding a new edge
(vL, v̂R). By the construction of̂H, the degree of each vertex
in L̂H is exactly 2. Moreover, sinceH is connected,̂H is also
connected. Hence, Lemma 2 implies that there is a matching of
sizes in Ĥ. By the construction of̂H, this is also a matching
in graphH.

D. Proof of Lemma 4

First, if H is a tree then it is connected by definition. To
show the other direction, we assume towards a contradiction
that H is a connected graph with cycles; letC be a cycle
in H, and consider an edgee = (vL, vR) that resides at
cycle C (where vL ∈ LH and vR ∈ RH ). We build the
bipartite graphĤ =

〈

L̂H + R̂H , ÊH

〉

, such thatL̂H = LH ,

R̂H = RH ∪ {v̂R}, where v̂R is a newly-introduced vertex,
and ÊH = EH \ {e} ∪ {ê}, where ê = (vL, v̂R). Intuitively,
we replace one of the edges in the cycle to reach for a newly-
introduced vertex, and by that we increase the size of the
connected component. Notice that̂H is connected and all
vertices inL̂H have a degree of 2. But,

∣

∣

∣
L̂H

∣

∣

∣
<
∣

∣

∣
R̂H

∣

∣

∣
− 1,

thus contradicting Lemma 1 and the claim follows.

E. Proof of Lemma 5

We count the connected bipartite graphs with two disjoint
setsLH andRH . By Lemma 4, we have to count the number
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of trees over the setLH ∪ RH , where edges must be of the
form (vL, vR), such thatvL ∈ LH and vR ∈ RH . We build
(and count) the set as follows: The number of trees over the
setRH is (s+ 1)

s−1. For each such tree instance, we put a
new vertex (originally fromLH ) between each pair of adjacent
vertices. There ares! possibilities to do so.

F. An Alternative Proof of Theorem 4

Considering the random graph withm vertices andn edges
such that a vertexm1 is connected to vertexm2 if and only
if there exists an element that hashes intom1 andm2. This
random graph is called the cuckoo graph [9]. Neglecting the
O(1) loops, this graph is equivalent to the Erdös-Renyi random
graphGm,n that assigns equal probability to all graphs with
exactlyn edges (andm vertices)

A matching inGm,n corresponds to directing some of the
edges in the random graph such that the in-degree is at most
1. For each connected componentC in Gm,n, if C is a tree
we can direct all edges, while in all other cases we can direct
as much edges as the number of vertices.

The number of such edges and vertices can be found in [34],
[37], yielding the exact same result.

G. Proof of Lemma 7

The proof is identical to the proof of Lemma 4 with two
modifications. First, instead of initially counting the number of
trees over the setRH , we count the number of parity trees [44]
over the disjoint setsRHu

andRHd
. By [44] we are given that

the number of parity trees isij−1 · ji−1. Second, we do not
have to color the edges because of the partition.

H. Proof of Theorem 12

As in the proof of Theorem 4, we compute the limit of
µ(G)
n as n → ∞. We consider the case whereα = n

m and
0 ≤ β ≤ 1 are fixed. Soγβ = limn→∞

µ(Gβ)
n , that is,

γβ = lim
n→∞

1

n
·



m−

n
∑

s=0

(n

s

)

·

b2
∑

i=b1

(β ·m

i

)((1− β) ·m

s+ 1− i

)

·

(

1−

i

β ·m

)n−s

·

(

1−

s+ 1− i

(1− β) ·m

)n−s

·

(

i

β ·m

)s

·

(

s+ 1− i

(1− β) ·m

)s

· Pi,s+1−i

)

By substituting the expression forPi,s+1−i from Theorem 11,
and moving

(

n
s

)

inside the second summation, we get:

γβ = lim
n→∞

(

1

α
−

1

n

n
∑

s=0

s+1
∑

i=0

(n

s

)(βm

i

)((1− β)m

s+ 1− i

)

(

1−

i

βm

)n−s

·

(

1−

s+ 1− i

(1− β) ·m

)n−s

·

(

i

β ·m

)s

·

(

s+ 1− i

(1− β) ·m

)s

·

i(s+1−i)−1
· (s+ 1− i)i−1

· (i+ (s+ 1− i)− 1)!

(i · (s+ 1− i))i+(s+1−i)−1

)

By substitutingα = n
m , we get:

γβ = lim
n→∞





1

α
−

1

n

n
∑

s=0

s+1
∑

i=0

(n

s

)( β

α
n

i

)( 1−β

α
n

s+ 1− i

)

(

1−

i
β

α
n

)n−s

·

(

1−

s+ 1− i
1−β

α
· n

)n−s

·

(

i
β

α
· n

)s

·

(

s+ 1− i
1−β

α
· n

)s

·

i(s+1−i)−1
· (s+ 1− i)i−1

· (i+ (s+ 1− i)− 1)!

(i · (s+ 1− i))i+(s+1−i)−1

)

As in the proof of Theorems 4 and 8, using the monotone
convergence theorem [36], we can put the limit inside the
sum. By further simplifying the above expression with similar
consideration to the proofs of Theorems 4 and 8, we get
eventually:

γβ =
1

α
−

β · (1− β)

α2

∞
∑

s=0

s+1
∑

i=0

i(s+1−i)−1 · (s+ 1− i)i−1

i! · (s+ 1− i)!
·

(

α

β
· e

− α
1−β

)s+1−i

·

(

α

1− β
· e

−α
β

)i

We switch the order of summation and get thati ∈ {0, 1, . . .}
ands goes frommax{0, i− 1} to ∞. We also substitutej =
s+ 1− i (or s = i+ j − 1). Thus,

γβ =
1

α
−

β · (1− β)

α2

∞
∑

i=0

∞
∑

j=max{0,i−1}

ij−1 · ji−1

i! · j!
· (3)

(

α

1− β
· e

−α
β

)i

·

(

α

β
· e

− α
1−β

)j

Let T (x, y) =
∑

j+i≥1
ij−1·ji−1

i!·j! ·xi · yj . This expression has
been previously found [7] to be the multivariate formal power
series about the point(x0, y0) = (0, 0) of t (x, y) = t1 (x, y)+
t2 (x, y)− t1 (x, y) · t2 (x, y) wheret1 (x, y) and t2 (x, y) are
given by the following implicit multivariate functions:

x = t1 (x, y) · e−t2(x,y) , y = t2 (x, y) · e−t1(x,y) (4)

However, the mentioned range of convergence in [7] is insuf-
ficient for our case. (Note also that in [7] the sums should be
over i+ j ≥ 1 and not overi, j ≥ 0.)

Since we compute the limit normalized expected maximum
matching, then the expression forγβ in Equation (3) is
bounded from below by 0, thus, by Equation (3) the double
summation is bounded from above by a constant. On the other
hand, all terms in the summation in Equation (3) are positive.
Then, if we look at the partial-sum series (by defining an
arbitrary order), we get an increasing series which is bounded.
Thus, by the monotone convergence theorem the double series
converges for any valuesx and y satisfyingx = α

1−β · e−α
β

andy = α
β · e− α

1−β .
However, the multivariate functions in Equation (4) have

multiple branches (as the Lambert-W function does [35]), that
is, for a givenx and y there is more than one solution. We
aim to find this branch in terms oft1 and t2. We use the
implicit function theorem to find the derivatives singularities.
The Jacobian is given by

J =

(

e−t2(x,y) −t1 (x, y) · e−t2(x,y)

−t2 (x, y) · e−t1(x,y) e−t1(x,y)

)

,

and it is invertible wherever|J | 6= 0. Thus, there is a derivative
singularity in caset1 (x, y) · t2 (x, y) = 1, which is the
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only solution. Therefore, as the given formal power series
in Equation (3) is about the point(x0, y0) = (0, 0) (which
corresponds toα = 0), wheret1 = t2 = 0, it converges to the
branch wheret1 (x, y) · t2 (x, y) ≤ 1 (note that botht1 (x, y)
and t2 (x, y) are always positive).

I. Proof of Corollary 14

One of the solutions to Equation (2) is given by:t1 = α
1−β ,

t2 = α
β . By substitutingt1 and t2 in the expression forγβ

from Theorem 12, we get that the limit normalized expected
maximum matching size is 1. We also have to verify thatt1 ·
t2 ≤ 1. Since α

1−β and α
β are both positive, we are left with

α
1−β · α

β < 1. By solving the quadratic inequality, we get the
claimed condition. Note that forα = 1/2 the range reduces
to β = 1/2.

J. Proof of Lemma 6

Assume on the contrary thatH is connected but that there
is (at least) a single vertexvL ∈ LH with degree 1. Consider
the bipartite graphĤ =

〈

L̂H + R̂H , ÊH

〉

, that is given by
removing the vertexvL (and its connected edge) fromH .
By the construction ofĤ, we get thatĤ is connected, but
∣

∣

∣
L̂H

∣

∣

∣
+ 1 <

∣

∣

∣
R̂H

∣

∣

∣
, which contradicts Lemma 1.

K. Proof of Theorem 6

As in the proof of Theorem 1, our proof is based on
counting the expected number of vertices inL that are not
in some specific maximum matchingM of G, based on the
decomposition ofG into its connected components. The proof
is almost identical, with the modification that, due to Lemma6,
we only take into account thed2 vertices that have a degree
of 2 (instead of alln vertices in the proof of Theorem 1).

Thus, the expected number of connected components inG
with s elements inL ands+ 1 in R is given by:

(

d2
s

)(

m

s+ 1

)

·
(

1− s+ 1

m

)2(d2−s)+d1

·
(

s+ 1

m

)2s

· Ps,

where the above expression consists of the same considerations
as in the proof of Theorem 1. Finally, as before, adding the
expressions for all possibles’s and subtracting the sum from
m yields the claimed result.

L. Proof of Theorem 7

The number of vertices inL with degree 2 follows a
Binomial distribution withn experiments and a probability of
successp. In Theorem 6 we found the expected maximum
matching size of each such instance. Thus, by the law of
total expectation, the claimed result is given by computing
the weighted average, where we computea by the equations
d1 + d2 = n andd1 + 2 · d2 = a · n.

M. Proof of Theorem 8

We compute the limit ofµ(Ga)
n as n → ∞. We consider

the case whereα = n
m and a = d1+2·d2

n > 1 are fixed. So
γa = limn→∞

µ(Ga)
n , that is,

γa= lim
n→∞

1

n

(

m−

b
∑

s=0

(

d2

s

)(

m

s+ 1

)

(

1−
s+ 1

m

)2(d2−s)+d1

·

(

s+ 1

m

)2s

· Ps

)

Given that a = d1+2·d2

n and n = d1 + d2, we find that
d2 = (a− 1) · n andd1 = (2− a) · n. Similarly to the proof
of Theorem 4, we first have to find that each term in the
summation is an increasing function with respect ton. We
discover that

(

1− s+1
m

)2(d2−s)+d1
=
(

1− s+1
m

)a·n−s
is an

increasing function (using differentiation), and also findthat
1
n ·
(

(a−1)·n
s

)(

m
s+1

)

·
(

s+1
m

)2s
is an increasing function as previ-

ously. Consequentially, each term in the sum is an increasing
function and, by the monotone convergence theorem [36], we
can put the limit inside the sum. By further simplifying the
above expression as in the proof of Theorem 4 we eventually
get:

γa=
1

α
−

1

2α2 · (a− 1)
·

∞
∑

j=1

(−j)j−2

j!
·
(

−α · 2 · (a− 1) · e−aα
)j

Let T (x) =
∑∞

j=1
(−j)j−2

j! · xj be a Taylor expansion,
where by substitutingx = −α · 2 · (a− 1) · e−aα we get
the above expression. Similarly to the proof of Theorem 4,
we get that

T (x) = −W (x)− 1

2
W 2 (x) ,

with convergence within|x| ≤ e−1 [35].
Since the functionf (α) = −α · 2 · (a− 1) · e−aα gets

its minimum atα = a−1, where it equals− 2(a−1)
a e−1, and

∣

∣

∣
− 2(a−1)

a e−1
∣

∣

∣
≤ e−1 for all a ∈ [1, 2], then for allα we can

substitutex = −α · 2 · (a− 1) · e−aα. Hence, it is within the
radius of convergence ofT (x).

Finally, for the case wherea = 1, thend2 = 0 andd1 = n.
Therefore, the expression for the expected maximum matching
size is reduced tom−

(

m ·
(

1− 1
m

)n)
. Thus,

γa = lim
n→∞

µ (Ga)

n
= lim

n→∞

1

n
·
(

m−
(

m ·
(

1− 1

m

)n))

=
1

α
− 1

α
· e−α.

N. Proof of Corollary 9
We show thatγa is strictly monotonically increasing, thus

γa < 1 for 1 ≤ a < 2, sinceγa = 1 for a = 2. This is shown
by differentiatingγa with respect toa:

dγa

da
=−

1

4α2 (a− 1)2
·
(

W
(

−2α (a− 1) · e−aα
)

+ 2α (a− 1)
)

·

W
(

−2α (a− 1) · e−aα
)

Both the first factor − 1
4α2(a−1)2

and the third factor
W (−2α (a− 1) · e−aα) are negative. Thus, if the second
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factor is positive thendγa

da is an increasing function with
respect toa ∈ [1, 2).

If α > 0.5, then 2α (a− 1) > 1, and sinceW (x) is
minimized for x = − 1

e where it equals−1, the second
factor is positive. On the other hand, consider thatα ≤
0.5. SinceW

(

−2α (a− 1) · e−2α(a−1)
)

= −2 (a− 1)α and
W (x) is an increasing function, then we have to show
that −2α (a− 1) · e−2α(a−1) < −2α (a− 1) · e−aα, that is,
−2α (a− 1) > −aα. The last inequality can easily be shown
for 1 ≤ a < 2.

O. Proof of Theorem 10

We compute the limit ofµ(Gp)
n asn → ∞.

γp = lim
n→∞

µ (Gp)

n

= lim
n→∞

1

n

n
∑

d2=0

(

n

d2

)

· pd2 · (1− p)
n−d2 · µ

(

G
a=1+

d2
n

)

Let X ∼ Bin (n, p) be the random variable counting the
number of vertices inL that choose 2 vertices inR. By
summing over three disjoint ranges of possible values ford2,
we get

γp = lim
n→∞

⌊np−n
3
4 ⌋

∑

d2=0

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

+

lim
n→∞

⌊np+n
3
4 ⌋−1

∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

+

lim
n→∞

n
∑

d2=⌊np−n
3
4 ⌋

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

By Chebyshev’s inequality we get that
Pr
{

|X − np| > n
1
4

√

np (1− p)
}

≤ 1

n
1
4

. Since

p (1− p) ≤ 1, we get thatPr
{

|X − np| > n
3
4

}

≤ 1

n
1
4

. By

the fact that1n · µ
(

G
a=1+

d2
n

)

≤ 1, we find that the first and
the third limits go to zero.

Since the functionµ (Ga) is increasing with respect toa
(this can be shown by a simple combinatorial argument), we
get the following lower bound:

γp = lim
n→∞

⌊np+n
3
4 ⌋−1

∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

≥ lim
n→∞

(

1−
1

n
1
4

)

·
1

n
· µ

(

G
a=1+

⌊np−n
3
4 ⌋+1

n

)

as well as the following upper bound:

γp = lim
n→∞

⌊np+n
3
4 ⌋−1

∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

≤ lim
n→∞

1 ·
1

n
· µ

(

G
a=1+

⌊np+n
3
4 ⌋−1

n

)

.

By the squeeze theorem, we get the claimed result.

P. Proof of Theorem 15

We first establish a few lemmas before proving the result.
As before, we start by considering a deterministic bipartite
graphH = 〈LH +RH , EH〉 with degreed of each vertex in
LH , where|LH | = s and |RH | = q.

Lemma 8: If (d− 1) · s ≤ q − 2, thenH is not connected.
Proof: As in the proof of Lemma 1, the proof follows

by induction ons. For s = 1, there ared edges in the graph
and therefore every graph withq ≥ d + 1 is not connected.
Assuming that the claim holds up untils = s′, we next prove
that it holds for any bipartite graphH ′ such that|LH′ | =
s′ + 1 and |RH′ | ≥ (d− 1) · (s′ + 1) + 2. Assume towards a
contradiction that there is a graphH ′ which is connected.

We first show that there ared−1 verticesvr1 , vr2 , . . . , vrd−1

in RH′ , all of a degree1 such that they are connected to the
same vertexvℓ ∈ RH′ : The sum of right-side vertex degree
is d · (s′ + 1). Also, since the graph is connected there are no
right-side vertices with degree0. This implies that there are
at least(d− 2) · (s′ + 1) + 2 vertices of degree 1, thus there
exists a vertexvℓ ∈ RH′ as claimed.

By the induction hypothesis, the graph induced byLH′ \
{vℓ} andRH′ \ {vr1 , vr2 , . . . , vrd−1

} is not connected, which
implies that it has at least two connected components. InH ′, vℓ
is connected to all verticesvr1 , vr2 , . . . , vrd−1

. Since its degree
is d it can be connected only to one of these components. This
implies thatH ′ is not connected as well, and the claim follows.

Lemma 9: If H is connected and(d− 1) · s = q − 1 then
µ (H) = s.

Proof: Assume towards a contradiction thatµ (H) < s,
and consider some maximum matchingM . Let vℓ ∈ LH

be a vertex that is not in the maximum matchingM ,
and vr1 , vr2 , . . . , vrd−1

be the vertices inR (which are not
necessarily distinct) that are connected tovℓ. All vertices
vr1 , vr2 , . . . , vrd−1

are connected also to another vertex inLH ,
otherwisevℓ was in the maximum matchingM .

Consider the bipartite grapĥH =
〈

L̂H + R̂H , ÊH

〉

, which
is given by removingvℓ from H. Since the right-side vertices
vr1 , vr2 , . . . , vrd−1

are also connected to the other left-side
vertices (exceptvℓ), the bipartite graphĤ is connected.
However, we get that

∣

∣

∣
L̂H

∣

∣

∣
= s−1 and

∣

∣

∣
R̂H

∣

∣

∣
= (d− 1)·s+1,

which contradicts with Lemma 8.
We note that in contrast to Lemma 2, the corresponding

proposition is not true ford > 2; that is, if H is connected
ands ≤ q, then the maximum matching size is not necessarily
s. As a counter example, consider the case whered = 3 and
s = q = 3, where two left-side vertices choose the same
single right-side vertex (using all their 3 choices), and the
other left-side vertex chooses all 3 right-side vertices. The
resulting bipartite graph is clearly connected, but the maximum
matching size is only 2 (only one of the first two left-vertices
can be in the matching).

Lemma 10:If (d− 1) · s = q − 1 thenH is connected if
and only if it is a tree.

Proof: The proof consists of the exact same construction
Ĥ as in the proof of Lemma 4, where we eventually get a
contradiction with Lemma 8.
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Fig. 8. the Lambert-W function

Lemma 11:The numberT d
s of connected bipartite graphs

H whose |LH | = s and |RH | = 2 (d− 1) · s + 1 is T d
s =

((d−1)·s+1)!
((d−1)!)s ((d− 1) · s+ 1)

s−2.

Proof: By Lemma 10, we have to count the number of
bipartite trees over the two disjoint setsLH andRH of sizes
and(d− 1) · · ·+1. SinceH is a tree, then there are no cycles.
Consequently, each one of the vertices inLH is connected to
d distinct vertices inRH . Moreover, no two vertices inLH

share more than 1 vertex inRH . For each vertexvℓ ∈ LH , let
Sv be the set of thed right-side vertices thatvℓ is connected
to and also let the cycleCvℓ

be a cycle that consists of thed
vertices ofSv.

Consider the grapĥH =
〈

R̂H , ÊH

〉

, which is given by
connecting each cycleCvℓ1

to Cvℓ2
using a common vertex

vr if and only if vr is connected to bothvℓ1 and vℓ2 . The
resulting graphĤ is a Husimi graph over(d− 1) · s +
1 vertices, where the number of such (labeled) graphs is
((d−1)·s+1)!
((d−1)!)s·s! ((d− 1) · s+ 1)

s−2 [45].

Finally, each setSv is determined by the (labeled) vertex
in RL. Thus, we multiply bys! the above expression.

We are now able to prove the result.

Let M be a maximum matching ofG. Similarly to the proof
of Theorem 1, the proof is based on counting the expected
number of vertices inR that are not part ofM , and on the
decomposition ofG into its connected components.

We count the expected number of connected components
with s left-side vertices andq = (d− 1) · s + 1 right-side
vertices. By Lemma 9, the maximum matching size of each
such connected component is exactlys. Thus, there areq− s
right-side vertices that are not inM .

Let H be a bipartite graphH = 〈LH +RH , EH〉, with
degreed for all vertices inLH , where|LH | = s and|RH | = q.
The probabilityPs that H is connected is given byPs =
(d!)sTd

s

qd·s
.

The remainder of the proof is similar to the proof of
Theorem 1.

APPENDIX B
THE LAMBERT-W FUNCTION

The Lambert-W function, usually denoted byW (·), is
given by the following implicit representation:

z = W (z) · eW (z),

wherez is a complex number [35].
For real valued arguments, i.e.z is real valued,W (z) has

two real-valued branches: the principal branch, denoted by
W0 (·) and the branchW−1 (·). Figure 8 shows the two real-
valued branches. For instance,W0

(

−e−1
)

= W−1

(

−e−1
)

=
−1 andW0 (0) = 0.

Note that the notationW (·) usually relates to the principle
branch, i.e.W0 (·). Thus, although one would expect that for
real-valuedz, W (z · ez) = z, this is only the case forz ≥ −1;
in casez < −1, W−1 (z · ez) = z 6= W (z · ez).


